
Bayou

All about embracing weak connectivity and disconnected operation

- old world: LANs and continuous connectivity, chatty protocols, strong consistency

and coherence guarantees
- new world: mobile devices with spotty wireless connectivity, more efficient

protocools, need to reconsider what consistency/coherence guarantees are possible

Several major observations
- best consistency that you can hope for while still letting people make forward

progress while disconnected is “eventual consistency”
o if all updating stops, then eventually all replicas will converge to identical

values
o implies there will be churn at replicas as they wander towards eventual

consistency
o notion of “tentative” vs. “committed” comes out of this – a tentative update

might be reordered and thus undo has to happen, might experience a
conflict and thus resolution has to happen

- fundamental to weak/disconnected operation are conflicts
o two writers update a data item in a conflicting manner
o idea that applications are the best arbitors of what constitutes a conflict and

how to resolve it
o so, replication system propagates updates, applications resolve conflicts

when they happen

Basic model of Bayou (and other systems)

- clients introduce state-changing operations, and replicas/servers manage state
- each replica/server defined in terms of state of:

o “write log” – an ordered log of updates to a DB
o DB – a database that results from the in-order execution of write log
o goal: get all replicas to eventually agree on set and order of writes in log

§ Relies on two underlying properties:
• Total propagation: every server eventually receives every

update (perhaps via intermediaries) – epidemic algorithms
• Consistent ordering: every server can agree on the order of all

(non-commutative) updates – primary commit scheme

Basic idea of bayou:

- client is allowed to immediately update its replica

o but, update is “tentative”- may be reordered with respect to other updates
before it becomes committed, or perhaps even rejected if conflict cannot
be resolved

- a “write” operation is assigned a monotically increased “accept-stamp” by server
o total order of writes accepted by server
o partial order of writes across servers

- “prefix property”: enforce accept-stamp order during anti-entropy
o if server R holds a write stamped Wi that was initially accepted by another

server X, then R also holds all writes accepted by X earlier than Wi
o this property allows the use of version vectors as compact representation

of set of writes known to a server: version vector entry is latest accept-
stamp known from a certain server

o also allows incremental update transmission (just move version vector
forward, and will eventually propagate all)

- anti-entropy: exchange operations between peers, bringing each other up-to-date by
exchanging operations not yet known by other server

o use vector timestamps to figure out which operations in log to exchange
o exchanging operations is useful: no longer have to worry about death

certificates (why? otherwise, cannot tell if update is to a new data
element, or an old update from deleted element.)

- “stable write”: also known as committed write. One whose position in write-log will

never change
o hence, its side-effect on DB never needs to be undone
o bayou: uses primary-commit protocol to decide on stability

§ a primary decides on commit order, uses anti-entropy to propagate
commit-sequence number

§ write becomes stable at a non-primary replica when it learns its
CSN

§ have both commit and accept version vectors
§ first anti-entropy on commit vector, then accept: this preserves

prefix property
o replica can truncate any stable prefix of its log!!

Space of policies for:
- when to begin anti-entropy
- with whom
- write-log truncation policies

o e.g.: estimate rate at which updates propagate globally, and match
truncation rate to it

Weak consistency is visible to application in two ways:
- tentative versus stable commit order
- fact that tentative can be reordered before becoming committed

Conflicts
- may be detected arbitrarily far from user that introduced conflict, and maybe even

when no user is present: hence want automatic conflict detection and resolution
- application specifies notion of conflict plus policy for resolving

o system provides mechanism for detecting conflict and resolving them
automatically where possible

Dependency check
- along with each write operation, application provides a query that must resolve

correctly before write operation can be safely applied
o e.g., meeting doesn’t conflict with other meeting (room or people)

- if does conflict, apply a merge procedure
o e.g., alternate meeting times

- if merge procedure cannot complete, log conflict and punt to human
- requirement on dependency check and merge: must be deterministic

o else may have different answers at different replicas

Other notions of conflicts:

• many systems treat updates as nonconflicting iff
o u and w update different objects (e.g., files or records)
o u and w update the same object, but one writer had observed the other’s

update before making its own.
• hence conflicting update if concurrent writes to same object

o concurrent can be temporal or causal, depending on system
• bayou:

o rejects this “blind” view of conflicts, and relies on application-specific
semantics

o hence, two updates may conflict even if they are to different records
§ e.g., DB integrity rules

Note: no real discussion of experience with conflicts in general!!?!

