
Physical clock synchronization [flaviu cristian]

Setup

• master clock that is assumed to keep perfect time (RT)
o keeps time t

• slave clocks Ci that we want to synchronize to master

o each keeps local time Ci(t)
o assume that Ci is “correct” if it drifts at a rate p

§ i.e., (1-p)∆ <= Ci(t+∆) – Ci(t) <= (1+p)∆

• want two properties from clock synchronization
o Clock consistency (internal): | Ci(t) – Cj(t) | < d1 for all i, j
o Clock accuracy (external): | Ci(t) – t | < d2 for all i

If you have external synchronization, get internal synchronization for free.

Why is clock synchronization hard?

We have to assume an asynchronous network. So, messages have:

• lower bound “min” on propagation delay, dictated by speed of light
o if unknown, assume min = 0 (hurts estimates the most)

• no real upper bound on propagation delay
o some algorithms assume a known max – problematic in practice

 --> start the ping experiment

Simple broadcast-based time synchronization

Clock broadcasts time to all slaves

• broadcast message contains t
• slaves set clock to (t + min) when they receive broadcast

What is the accuracy of the clock?

• depends on where in the distribution the message delay is
• if assume “max” delay, then error could fall anywhere in the range (max – min)
• provable that this is the tightest error bound with probability 100%

o therefore tightest consistency / accuracy

Interrogation-based time synchronization

master

slave T0

T1

T2

min α minß

Goal:

• figure out what the master’s clock says when the slave’s clock says T2
o it depends on alpha and beta, obviously

§ bounded by two cases: alpha = 0, and beta = 0
o if alpha = 0, then beta = (T2-T0) – 2*min

§ Cmaster(T2) = T1 + min + beta
§ Cmaster(T2) = T1 + (T2-T0) – min

o If beta = 0 , then:
§ Cmaster(T2) = T1 + min

• least possible error is to pick the midpoint

o Cmaster(T2) = T1 + ((T2 – T0) / 2)
o Max error = ((T2 – T0) / 2) - min

That was ignoring clock skew p. If you factor in clock skew, then the equations get a
little more complicated:

• Least possible error is to pick:
o Cmaster(T2) = T + ((T2 – T0)/2)(1 + 2p) – min p
o Max error = ((T2 – T0)/2)(1 + 2p) - min

Many implications to this:

• max error grows as clock skew climbs
• if you don’t know “min”

o have to set min = 0, and max error is basically proportional to the RTT
• error diminishes as the measurement trial RTT approaches 2*min

o is a probabilistic tradeoff
§ can require measurements to be close to RTT to “accept” them and

achieve rapport – increase number of trials necessary, but get tight
error bounds

§ can be sloppy and take any measurement – decreases number of
trials, but get worse error bounds

Other realities

• don’t want jump discontinuities in time
o play around with clock rate, rather than clock setting, to make clock drift

into sync with master over a configurable time period
• often don’t have a single master, but a distributed hierarchy of clocks

o need a way to average estimates from multiple parents
• Q: does GPS change any of this fundamentally?

o can get a pretty tight bound on “min”
o alpha, beta are low
o get very good synchronization error bounds as a result

