Virtual Machines Recap

OS development

Allow multiple OS’es to run concurrently on
same hardware (independent upgrade paths)

Encapsulate execution environment for
application stability

Resource isolation in multi-tenant data centers

Data center management: server consolidation,
migration, checkpointing

Motivation: overhead of isolation

 VMs are great for isolation, but have significant overheads

— resource overheads: disk (GBs) and memory (512 MB+) per VM

— runtime overheads: CPU virtualization, |/O virtualization, etc.

— administrative overheads: one new OS to manage per VM

— ingress/egress overheads: moving large VHDs to/from the cloud
e ..but they offer great benefits!

— Securely isolate guest from host

— Support live migration

— Only (?) isolation mechanism strong enough to enable the cloud
 Can we retain their benefits with less overhead?

— Most apps don’t need to see virtualized hardware

— Most apps don’t require their own OS + drivers

OS Containers

* OS kernel modified to virtualise at syscall
interface

— Files

— PIDs —
Virtualisation Layer

— IPC

JReee s

 Additional controls on resource allocation
— Not just best effort

e e.g. Docker, Solaris Zones, ...

Container Example: UNIX stat

stat structure, which contains the
/* 1D of device containing file */

/* inode number */

/* protection */

/* number of hard links */

/* user ID of owner */

/* group ID of owner */

/* device ID (if special file) */

/* total size, in bytes */

/* blocksize for filesystem I/O */

/* number of 512B blocks allocated */

Linux Containers History

* Chroot
— Change the root of file system
— Originally to develop new software releases

e Jail
— Execute process with restricted set of system calls
— Ex: postscript viewer in web browser
 Namespaces/cgroups
— Restrict process visibility and resource usage
— Per-container network address translation

Containers pros/cons

* Much lower overhead

— Only one copy of the OS kernel

— Single level of address translation

— Drivers not an issue — trusted in the host OS
* Tight(er) coupling between guest/host

— Can’t run different guest OS

— Harder to encapsulate and migrate state

e ... but are they secure?
— Full OS kernel and drivers in TCB of all containers
— Syscall interface more complex than VM interface

Threat models for isolation

* Traditional enterprise (“friendly multi-tenant”)
threat model: employees run code of their
choosing on your system

* Cloud (multi-tenant) threat model:
anonymous hackers with unlimited access run
any code of their choosing on your systems,
alongside your most valued customers

— Do you trust an OS kernel to isolate them?

— Do you even trust a hypervisor to isolate them?

What's the Drawbridge approach?

* Key design philosophy:
— Start with a tight, secure isolation boundary
— Add app compatibility inside isolation container

— Not plugging holes in a leaky but compatible
interface

* Key components:

— The picoprocess, an isolation mechanism
— The library OS, a compatibility mechanism

Picoprocesses and library OSes

* Picoprocess: concept introduced by MSR’s Xax
p FOJ e Ct (Douceur et al., 2008)

— Isolated address space with a very small, fixed interface

picoprocess
isolated address space

with its host <
— Lightweight, secure isolation container @~ [mmmm=s immm————

| e Library OS: concept championed in CS community in
1 the "90s (engler et al,, 1995)

— Minimal, shared kernel runs in supervisor mode
J * Multiplexes and abstracts hardware resources

process

* Enforces cross-application protection

process

library OS — Per-app library OS runs in user mode

process

* Constitutes OS “personality”

* Provides application services and APIs to application

* Runs in application’s address space (user mode)

host kernel e Each app can choose its own library OS

Drawbridge picoprocess on NT

 NT process with modified service handler
— All 1200+ system calls blocked from user-mode (NTOS and win32k)
— 45 new system calls added to process (Drawbridge system calls)

NT process Picoprocess
: lllllllllllllllllllllllllllllll A
: shared picoprocess
address space
: | isolated
; gdi32 address space
user32
: n"'"l 800+ am AB' boundary IIIIIIIII n
. ~Win32 calls PAL 45 |
1 400+
[ERE———— LR 3 calls r
r-—- NTca”S - ‘-I F ------------ -I
: "g 8 ™ 1 ‘ : : § 8 security monitor :
< ™| I s ™ I

The Drawbridge ABI

Drawbridge ABI: interface between a Drawbridge
picoprocess and its host

— 45 downcalls, 3 upcalls — everything else is off-limits

— Designed from scratch, but heavily inspired by NT

— APIs have fixed, closed semantics (no IOCTLs)
Analogous to VM host/guest interface, but with higher-
level abstractions

— threads (not virtual CPUs)

— virtual memory (not physical memory)

— 1/0 streams (not virtual device hardware)
Design benefits:

— security - interface is small enough to undergo manual
review / inspection

— portability - Windows apps run unmodified on any system
that implements 45 functions

— flexibility — interface allows app’s state to live (almost)
entirely in process

Drawbridge ABI
(excerpt)

Threading
DkThreadCreate
DkSemaphoreCreate
DkSemaphorePeek
DkSemaphoreRelease
DkObjectsWaitAny

Memory management
DkVirtualMemoryAllocate
DkVirtualMemoryFree
DkVirtualMemoryProtect

1/O streams
DkStreamOpen
DkStreamRead
DkStreamhWrite
DkStreamMap
DkStreamFlush

Upcalls
LibOsInitialize
LibOsThreadStart
LibOsExceptionDispatch

The Windows library OS

Based on Windows OS
— Same binaries (where possible)
— Same architecture

Windows enlightened to run in a

picoprocess with the app
— lifted into user mode
— most changes in user-mode
kernel
Example library OS: Win7 SP1
— 100MB on disk (~150 DLLs)
— 16MB of working set + app

— 5.5+ MLoC for 15,000+ Win32
APls

Each picoprocess runs its own
library OS
— app chooses its library OS

— version need not match across
picoprocesses or host

picoprocess

" advapi32 ‘

| Reess
kernel32 ‘ |]
ntdll user32 ’ gdi32
UM boundary mdry e
caII: ksecdd | afd ‘ | rdpvdd
y. http win32k

SO Aipuqi)

am ABI boundar‘y IEEEEEEESEEEEEESEEEE NS EEEEEEEEEEEEEEENL
platform abstraction layer (PAL)

calls

AEEEEERER

45

P
calls

Drawbridge host

The Drawbridge-on-Windows host

 Drawbridge host
implements 45-function

ABI atop Windows Drawbridge security
e Anal to H v’ monitor Picoprocess
Na Og.OUS O Ayper-v'Ss (dkmon.exe)
hypervisor + . 45
. . . calls !
virtua I zation stac k e Kernel-/user-mode boundary === arersssssssaeen
* Split between kernel- Drawbridge driver

ALPC

mode driver and user- | (dkdriver.sys)
mode worker
— Driver implements ABI

— Driver consults security
monitor for policy
decisions

Windows kernel
(ntoskrnl.exe)

The Drawbridge security monitor

Security monitor — user-mode half of Drawbridge host

— launches app in picoprocess

— makes access policy decisions Drawbridge security

— “normal” NT process monitor
Policy decisions based on manifests (dkmon.exe)

— All external resources are blocked by default
— Resources can be white-listed back in by admin
— Access specified via virtual to physical namespace mappings

Sample Policy

[Namespace.Writable]
pipe.server:///RDP=pipe.server:///RDP_Drawbridge expose ‘RDP’ named pipe server out of
process as ‘RDP_Drawbridge’

allow app to Listen (only) on port 36000

allow use of any TCP client socket

tcp.server://localhost:3000=tcp.server://localhost:3000
tcp.client:=tcp.client:

e “we Wwe wo

[Namespace]
file:///users/jdoe/documents=file:///documents ; allow R/0 access to Documents folder

Drawbridge package

Drawbridge package — self-contained, self-describing unit of

deployment

A package contains:

— Manifest

* |dentity (name, version, options)

* Dependencies on other packages

* Access control policy requirements

* Relative paths to important contained files (e.g. app EXE)

— Files

— Registry data (.reg format)
— Debug resources (e.g. symbols, etc.)

Everything’s a package: app, library, library OS, suspended app
Security monitor resolves transitive closure of packages and

dependencies

— File content from packages is unioned into virtual FS
— Registry content from packages is unioned into virtual registry
— Packages are read-only, mapped copy-on-write

C

Sample Manifest

[Package]
ManifestVersion=1
PackageRevision=4

[Identity]
Name=IISWorker
MajorVersion=7
MinorVersion=5
BuildNumber=7601
Architecture=x64

[Dependency.Win7]
Name=Windows
MajorVersion=6
MinorVersion=1

[Dependency.CLR4]
Name=MicrosoftNET
MajorVersion=4
MinorVersion=0

[Windows.Application]
Exe=package:///windows/
system32/inetsrv/w3wp.exe

[Windows.Registry]
File:///w3wp.exe.dbreg

Committed Memory by Apps

800
(aa]

S 700
>600
£ 500
(o))

S 400
©300
?é 200
= 100
S o

11 ® Windows ® Drawbridge ® Hyper-V 1,116

603 603 614 607 606

NoOp Internet 1S Excel 11KB Excel Excel

Explorer 20MB 100MB
+11.1IMB +6.9MB <0 MB +35.7MB +33MB +38.7MB

Time to Start Application Package

100
2 90
80
70
60
50
40
30
20
10

0

Time to Start (secon

Windows E Drawbridge = Hyper-V 130

67

o wn
o o

69

o N
o N

NoOp

Internet
Explorer

1.4

10.0

IN

63

74

nol| T

o o

Excel Excel Excel
11KB 20MB 100MB

Scheduling

Multilevel Scheduling Examples

e Virtual machine abstraction: no information
about underlying resource sharing

e Spark task assignment: how should it partition
mapreduce or ML tasks?

— One per server? What if some servers are busier/
slower than others? What if some partitions take
more time than others?

— Many partitions per server? More overhead, more
communication

— How does OS scheduler know which task will be last?

Multilevel Scheduling

* Process abstraction: no information about
physical resources

e Parallel application: how should it split its work?

— One thread per hyperthread? One thread per core?
What if thread takes a page fault?

— Many threads per hyperthread? More coherence
traffic, more overhead. What if many competing
tasks?

— How does application tell kernel which thread to run
first? What if task priority is dynamic?

Multilevel Scheduling

Virtual machine abstraction: guest OS has no
information about physical memory

Host OS chooses a page to evict; writes changes
to physical disk

Guest OS chooses same page to evict; writes
changes to virtual disk, faulting in physical page

VMWare balloon driver communicates resource
usage across host/guest OS boundary

Multilevel Scheduling

Virtual memory: application has no information
as to which pages are in physical memory

OS evicts unused pages, writes changes to disk

Application uses a garbage collector: some pages
are in use, some unused, some garbage

Application coalesces used data, collects garbage

Unused garbage pages evicted to disk, brought
back in for GC, empty pages re-written to disk

Multilevel Scheduling Revisited

 Many (!) cases where a layer wants to do its
own resource management

 But runs on another layer that provides
abstraction of virtual resources

e Solutions?
— Live with it
— Change the API

Mach External Pager

* When Mach chooses a page to evict, it upcalls to
an external pager to do the eviction

— Original motivation: allow paging over network

* External pager can choose a different page to
evict
— user-level access to page use/modify bits in VTx
— Kernel only decides how many pages per app
— Self-paging => better isolation

Scheduler Activations

* Kernel allocates processors to apps

e User-level threads, scheduled at user level
— Faster! No kernel trap for blocking locks, CVs
— User-level control over priorities

e Kernel upcalls
— When new processor is assigned
— (on different CPU) when processor is taken away
— Syscall/page fault blocks in kernel

Scheduler Activation Mechanism

 Example: user-level thread does file read,
misses in buffer cache, blocks in kernel

e Normal
— save kernel context, switch to new thread
— When |/O completes, switch back

* New:

— Save kernel context, create new thread to do
upcall, switch to that thread

— When 1/O completes, complete syscall, then upcall
— Advanced version: pipeline upcall events

Transparent Asynch |/O

* Many kernels have both synch and asynch 1/0
— Synch: syscall blocks until operation completes

— Asynch: syscall returns immediately, kernel thread
completes operation in background, upcall when done

* Implementation: Synchronous syscall with upcall
— If blocks, do upcall; user lib schedules new thread
— When |I/O completes, complete syscall
— When done, “return” by doing another upcall
— User lib runs the user-level syscall return

Scheduling

Policy: what to do next, when there are multiple threads
ready to run (or packets, or web requests, or ...)

Uniprocessor policies
— FIFO, round robin, optimal
— multilevel feedback as approximation of optimal

Multiprocessor policies

— Affinity scheduling, gang scheduling

Queueing theory

— Can you predict/improve a system’s response time?

Control theory
— How to achieve response time goals, tail latency, ...

Example

* You manage a web site, that suddenly

becomes wildly popular. Performance starts
to degrade. Do you?

— Buy more hardware?

— Implement a different scheduling policy?
— Turn away some users? Which ones?

* How much worse will performance get if the
web site becomes even more popular?

Definitions

Task/Job

— User request: e.g., mouse click, web request, shell command, ...
Latency/response time

— How long does a task take to complete?
Tail latency

— How consistent is task response time?
Throughput

— How many tasks can be done per unit of time?
Overhead

— How much extra work is done by the scheduler?

Fairness

— How equal is the performance received by different users?

Strategy-proof
— Can a user manipulate the system to gain more than their fair share?

More Definitions

Workload

— Set of tasks for system to perform

Preemptive scheduler

— If we can take resources away from a running task
Work-conserving

— Resource is used whenever there is a task to run

— For non-preemptive schedulers, work-conserving is not always
better

Scheduling algorithm
— takes a workload as input
— decides which tasks to do first
— Performance metric (throughput, latency) as output
— Only preemptive, work-conserving schedulers to be considered

First In First Out (FIFO)

* Schedule tasks in the order they arrive

— Continue running them until they complete or
give up the processor

* Example: memcached

— Facebook cache of friend lists, ...

 On what workloads is FIFO particularly bad?

Shortest Job First (SJF)

e Always do the task that has the shortest
remaining amount of work to do

— Often called Shortest Remaining Time First (SRTF)

e Suppose we have five tasks arrive one right
after each other, but the first one is much
longer than the others

— Which completes first in FIFO? Next?
— Which completes first in SJF? Next?

FIFO vs. SJF

FIFO

o~ e~ e e

N~ S N N S~~~

SJF

P -y

e

Time

Question

* Claim: SJF is optimal for average response
time

— Why?

* Does SJF have any downsides?

Question

* |s FIFO ever optimal?

e Pessimal?

Starvation and Sample Bias

* Suppose you want to compare two scheduling
algorithms

— Create some infinite sequence of arriving tasks
— Start measuring
— Stop at some point

— Compute average response time as the average
for completed tasks between start and stop

e |s this valid or invalid?

Sample Bias Solutions

 Measure for long enough that # of completed
tasks >> # of uncompleted tasks

— For both systems!

e Start and stop system in idle periods
— Idle period: no work to do

— If algorithms are work-conserving, both will
complete the same tasks

Tail Latency

What if we are optimizing for tail latency and
not average responsiveness?

Minimize max response time?

— FIFO? Longest job first?

SLA: minimize % over max response time?
— FIFO or SJF with early discard?

Min-max inflation factor in response time?
— Round Robin

Round Robin

e Each task gets resource for a fixed period of
time (time quantum)
— If task doesn’t complete, it goes back in line

* Need to pick a time quantum

— What if time quantum is too long?
* Infinite?

— What if time quantum is too short?
* One instruction -> Hyperthreading!

Round Robin

Round Robin (1 ms time slice)

Rest of Task 1

Round Robin (100 ms time slice)

Rest of Task 1

Time

Round Robin vs. FIFO

* Assuming zero-cost time slice, is Round Robin
always better than FIFO?

Round Robin vs. FIFO

Round Robin (1 ms time slice)

FIFO and SJF

Time

Max-Min Fairness

* Applies to repeating tasks

— Ex: network bandwidth allocation

 Maximize the min allocation given to a task

— If any task needs less than an equal share, schedule the
smallest of these first

— Split the remaining time using max-min
— If all remaining tasks need at least equal share, split evenly
* Implementation

— Add credits to each task at same rate, debit on use (age)
— Randomly choose proportional to # of credits

Tasks

|/0 Bound

CPU Bound
CPU Bound

N

Issues

1/0
Request

Mixed Workload

N

1/0
Completes

N

Issues

/0
Request

N

1/0
Completes

Time

Multi-level Feedback Queue (MFQ)

* Goals:
— Responsiveness
— Low overhead
— Starvation freedom
— Some tasks are high/low priority
— Fairness (among equal priority tasks)

* Not perfect at any of them!
— Used in Linux (and probably Windows, MacOS)

MFQ

Set of Round Robin queues
— Each queue has a separate priority

High priority queues have short time slices

— Low priority queues have long time slices

Scheduler picks first thread in highest priority
queue

Tasks start in highest priority queue

— If time slice expires, task drops one level

Priority

MFQ

Time Slice (ms) Round Robin Queues
10 - o MO VO
) (E;rgﬁast:locf
40 (

MFQ and Tail Latency

* How predictable is a task’s performance?
— Can it be affected by other users?

* Linux boosts priority to tasks being starved...

MFQ and Strategy

e Can a user get better performance (response
time, throughput) by doing useless work?

Uniprocessor Summary (1)

FIFO is simple and minimizes overhead.

If tasks are variable in size, then FIFO can have
Very poor average response time.

If tasks are equal in size, FIFO is optimal in terms
of average response time.

Considering only the processor, SJF is optimal in
terms of average response time.

SJF is pessimal in terms of variance in response
time.

Uniprocessor Summary (2)

* If tasks are variable in size, Round Robin

approximates SJF.

* |f tasks are equal in size, Round Robin will
have very poor average response time.

* Tasks that intermix processor and 1/O can do
poorly under Round Robin.

Uniprocessor Summary (3)

* Max-Min fairness can improve response time for
|/O-bound tasks.

e Round Robin and Max-Min both avoid starvation.
* MFQ approximates SJF

— High variance for long jobs; vulnerable to strategy

Multiprocessor Scheduling

 What would happen if we used MFQ on a
multiprocessor?

— Contention for scheduler spinlock

— Cache slowdown due to ready list data structure
pinging from one CPU to another

— Limited cache reuse: thread’s data from last time
it ran is often still in its old cache

Per-Processor Affinity Scheduling

* Each processor has its own ready list
— Protected by a per-processor spinlock

* Put threads back on the ready list where it
had most recently run

— Ex: when |/O completes, or on Condition->signal

* |dle processors can steal work from other
pProcessors

Per-Processor Multi-level Feedback
with Affinity Scheduling

Processor 1 Processor 2 Processor 3

..

Govoonnst Coooooneet ITTTETTETY I R N B FTT e

Gooovonot oovoonnst IETTerrrey R R N Y ST LI

Govoonnon Goovoonnor Govoonnnn

Scheduling Parallel Programs

 What happens if one thread gets time-sliced
while other threads from the same program
are still running?

— Assuming program uses locks and condition
variables, it will still be correct

— What about performance?

Bulk Synchronous Parallelism

* Loop at each processor:
— Compute on local data (in parallel)
— Barrier
— Send (selected) data to other processors (in parallel)
— Barrier

 Examples:
— MapReduce
— Fluid flow over a wing

— Most parallel algorithms can be recast in BSP, sacrificing
at most a small constant factor in performance

Time

Processor 1

Tail Latency

Processor 2 Processor 3

Local Computation

Processor 4

Communication

Local Computation

Barrier

Barrier

Scheduling Parallel Programs

Oblivious: each processor time-slices its ready
list independently of the other processors

Processor 1 Processor 2 Processor 3

p1.4 p1.2

S = o
® p2.3 p1.3

E S S p3.4 S
S p3.1 S p2.2

p2.4
p

px.y = Thread y in process X

Time

Gang Scheduling

Processor 1 Processor 2 Processor 3
5p1.1 5p1.2 5p1.3
5 p2.1 5 p2.2 5 p2.3
p3.1 p3.2 p3.3

o o

px.y = Thread y in process x

Performance
(Inverse Response Time)

Parallel Program Speedup

Perfectly Parallel

Diminishing Returns

Limited Parallelism

Number of Processors

Time

Space Sharing

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5 Processor 6

o o o o o o

Process 1 Process 2

Scheduler activations: kernel tells each application its # of
processors with upcalls every time the assignment changes

Queueing Theory

* Can we predict what will happen to user
performance:

— If a service becomes more popular?
— |f we buy more hardware?

— |If we change the implementation to provide more
features?

Queueing Model

Arrivals Departures
(Throughput)

Queue Server

Assumption: average performance in a stable system,
where the arrival rate (A) matches the departure rate (u)

Definitions

Queueing delay (W): wait time

— Number of tasks queued (Q)

Service time (S): time to service the request
Response time (R) = queueing delay + service time
Utilization (U): fraction of time the server is busy
— Service time * arrival rate (A)

Throughput (X): rate of task completions
— If no overload, throughput = arrival rate

Little’s Law

N=X*R

N: number of tasks in the system

Applies to any stable system — where arrivals
match departures.

— Independent of scheduling discipline and burstiness

Question

Suppose a system has throughput (X) = 100 tasks/s,
average response time (R) = 50 ms/task

* How many tasks are in the system on average?
— Hint: Little’s Law N =X * R

Arrivals éDepartures
5 (Throughput)

Queue Server

Question

Suppose a system has throughput (X) = 100 tasks/s,
average response time (R) = 50 ms/task

* |f the server takes 5 ms/task, what is its
utilization? (N = X * R)

Arrivals ____________________________________ bepartures
: (Throughput)

Queue Server

Question

Suppose a system has throughput (X) = 100 tasks/s,
average response time (R) = 50 ms/task

 What is the average wait time?
 What is the average number of queued tasks?

Arrivals Departures
5 5 (Throughput)

~ Queue Server

Question

* From example:
X =100 task/sec
R = 50 ms/task
S =5 ms/task
W =45 ms/task
Q = 4.5 tasks

 What gives? W =45 ms whileS * Q =22.5ms
— Hint: what if S=10ms? S=1ms?

Queueing

 What is the best case scenario for minimizing
gueueing delay?
— Keeping arrival rate, service time constant

e What is the worst case scenario?

Response Time (R)

Queueing: Best Case

A<u
no queuing
R=S

A>u
growing queues
R undefined

Arrival Rate (A)

N
/

Throughput (X)

Max throughput

Arrival Rate (A)

N\
H /

Response Time: Best vs. Worst Case

7\ -
A< | A>[
queuing | growing queues
depends on R undefined
burstiness

bursty arrivals

Response Time (R)

evenly spaced arrivals

Arrivals Per Second (\)

Queueing: Average Case?

* What is average?

— Gaussian: Arrivals are spread out, around a
mean value

— Exponential: arrivals are memoryless
— Heavy-tailed: arrivals are bursty

e Can have randomness in both arrivals
and service times

Probability of x

Exponential Distribution

Exponential Distribution
f(x) = Ae™

Exponential Distribution

0 1 2 3 4

NI Nl NIl NIl NI

Permits closed form solution to state probabilities,
as function of arrival rate and service rate

Response Time vs. Utilization

100 S

80 S
oc
£

i= 60 S
Q
(%]
S

40 S
o
Q
oc

20 S

0

0 0.2 0.4 0.6 0.8

Utilization U

Question

* Exponential arrivals: R = S/(1-U)

* |f system is 20% utilized, and load increases by
5%, how much does response time increase?

* |f system is 90% utilized, and load increases by
5%, how much does response time increase?

Variance in Response Time

* Exponential arrivals
— Variance in R =S/(1-U)"2

 What if less bursty than exponential?

 What if more bursty than exponential?

What if Multiple Resources?

* Assuming exponential arrival, service times
* Response time =
Sum over all i
Service time for resource i /
(1 — Utilization of resource i)
* Implication

— If you fix one bottleneck, the next highest utilized
resource will limit performance

Overload Management

e What if arrivals occur faster than service can
handle them

— If do nothing, response time will become infinite

 Turn users away?

— Which ones? Average response time is best if turn
away users that have the highest service demand

— Example: Highway congestion
 Degrade service?

— Compute result with fewer resources
— Example: CNN static front page on 9/11

Highway Congestion (measured)
Real Traffic

LN T I T T T i
fr— - . -
$—! [~ 0.0 -
~ 2000 . -
o I a :
- i i
9 - . _
g 1500 - .
i : : X
N - . .
S 1000} * -
o - '’ .
Q - .
—) i
> 500} .
O) :
— l -
0 i A | i | L | ! i

0 20 40 60 80

occupancy [%]

Why Do Metro Buses Cluster?

Suppose two Metro buses start 10 minutes apart.
Why might they arrive at the same time?

Control Theory

* Regulate tasks entering system to meet SLA
— Or to manage chance of queue overflow
— Or to optimize for some system objective

 May be complex system

— May or may not be modelled by queueing theory

Black Box Control Theory

* Assume no internal visibility
— See input arrivals and task completions

* Regulate at time scale of task response time
— If too rapid, oscillate

— If too slow, slow convergence

e Rate(k+1) = a*Rate(k) — b*N(k)

