Virtual Machines

h/t: Simon Peter, Andrew Baumann

Multiprocessor Recap

* Cache coherence requires extensive bookkeeping
and hw messages to manage shared data

e Contention for shared data can slow CPUs

* How do we reduce contention?
— Per-processor data structures (Barrelfish)
— Optimize coherence communication (MCS, Barrelfish)
— Lock free data structures (MCS, RCU, ...)

Adve Implementation Rule

Let’s assume (wlog) that each process specifies
that its own operations happen in some order

— E.g., read A, write B, append(C, ...
— If concurrent, system can choose the order
Serializable/sequentially consistent if

1. Operations applied in processor order, and

2. all operations to same memory location are
serialized (as if to a single copy)

Test (and Test) and Set Performance

Time to execute a critical section

350

300

250

200

150

100

50

Test-And-Set Lock

Test-And-Test-And-Set Lock

MCS Lock

10 15

Number of processors

20

MCS Lock

 Maintain a list of threads waiting for the lock
— Thread at front of list holds the lock
— MCSLock::tail is last thread in list
— Add to tail using CompareAndSwap

* Lock handoff: set next->needToWait = FALSE
— Next thread spins: while needToWait is TRUE

MCS Lock Implementation

TCB {
TCB *next; // next in line
bool needToWait;

MCSLock::acquire() {
myTCB->next = NULL;
myTCB->needToWait = FALSE;
oldTail = tail; }
while (lcompareAndSwap(&tail, MCSLock { _ _

oldTail, &myTCB)) { Queue *tail = NULL; // end of line
oldTail = tail; }

}
f (oldTail 1= NULL) { MCSLock::release() {

myTCB->needToWait = TRUE; if ('lcompareAndSwap(&tail,

oldTail->next = myTCB; - myTCB, NUL'—)_)_{
memory_barrier(); whlle (myTCB->next == NULL)

while (myTCB->needToWait)

' }
} }

myTCB->next —>needToWait=FALSE;

TAIL

MCS In Operation

........ > NIL

next needToWait
NIL FALSE

B FALSE
NIL TRUE

B FALSE

C TRUE
NIL TRUE

e)

C FALSE
NIL TRUE
NIL FALSE

In Practice

* Spin adaptively
— No delay if few waiting
— Longer delay if many waiting
— Guess number of waiters by how long you wait

Read-Copy-Update (RCU) Locks

Goal: very fast reads to shared data
— Reads proceed without first acquiring a lock
— OK if write is (very) slow

Restricted update
— Writer computes new version of data structure
— Publishes new version with a single atomic instruction

Multiple concurrent versions

— Readers in progress may see old or new version
— New readers see new version

Integration with thread scheduler

— Readers in progress at previous update must complete
within grace period

— Then ok to garbage collect old version

Read-Copy-Update

Update is Grace Period
Published Ends
Read (0ld) Read (New)
Read (0ld) : Read (New) E
Reiad (Old or New) Read (New)
: Read (Old or New)
Write (New). .Delete (0ld)

Grace Period

Time

Read-Copy-Update Implementation

 Readers disable interrupts on entry

— Guarantees they complete critical section in a timely
fashion

— No read or write lock

* Writer
— Acquire write lock
— Compute new data structure
— Publish new version with atomic instruction
— Release write lock
— Wait for time slice on each CPU
— Only then, garbage collect old version of data structure

Lock-free Data Structures

e No lock for either read or write

— No lock contention!
— No deadlock!

* General method using compareAndSwap
— Create copy of data structure
— Modify copy
— Swap in new version iff no one else has
— Garbage collect old version (RCU style)
— Restart if pointer has changed

RCU Balanced Tree

* Readers can always walk tree

 Writers construct a new version of tree, use
compare and swap to atomically replace
— New readers see new version of tree

* Rebalancing on addition/deletion is a local
operation
— Compare and swap to atomically replace subtree

RCU Memory Management

* Operations
— Adding/removing a memory region: mmap, munmap
— Adjusting memory bounds: sbrk, mmap
— Lazy allocation of page tables
— Lazy allocation of pages
— Lazy page table entry update (e.g., copy on write)

* For multithreaded user programs
— Concurrent page faults

* Both machine-independent and machine-dependent
data structures

Barrelfish:
The OS as Distributed System

2007-today, ETH Zurich
OS for “multicore” systems

— OS can be reconfigured for each new machine

No shared state
Message passing

Software consistency mechanisms

Barrelfish Observations

* Heterogeneous cores, cache coherence
protocols

— Optimizations for one architecture may be
counterproductive for another

 Complex core-core interconnect topologies
* Message passing can be faster than locking

— Cache locality inside the critical section

Barrelfish

* Explicit inter-core communication
— Message pipelining vs. synchronous locking

e Hardware neutral OS structure

— Cache coherence costs vary dramatically

* Replicated state, not shared state

Clear trend....

OSes
Shared. state, Finer-grained Clustered objects Message passing,
One-big-lock locking partitioning replication

* Finer-grained locking of shared memory
e Replication as an optimization of shared memory

Barrelfish Architecture

A

Agreement
algorithms

Arch-specific

I
I
I
I
I
I
I
I
code I

Heterogeneous
cores

App

App App
OS node OS node OS node
State State State
replica replica replica

/

S

<Async message

x86

x64

ARM

AN

OS node

State
replica

Interconnect

User-space producer-
consumer queue

Engueue (send)

U

Shared memory
segment

Dequeue (recv)

Address space 1 Address space 2

Barrelfish CC-UMP (x86)
Interconnect Driver

Cache-coherent shared memory
— inspired by URPC

Ring buffer of cache-line sized messages
— 64 bytes or 32 bytes
— 1 word for bookkeeping; last one written

Credit-based flow control out of band
One channel per IPC binding (not shared)

CC-UMP: cache-coherent
user-space messaging

A_Ck pointer aglvanced Sender fills in message
vVia messages in in next cache-line sized
reverse path slot
> <
o

XY

Unidirectional channels Receiver polls for
update at end of

All messages are 64-byte cache lines

CC-UMP: cache-coherent
user-space messaging

@ Sending core’s write
buffer

=

the line

Sending core’s cache:
" invalid => no copy of
\

Receiver’s cache:
%: shared => read-only

copy of the line

CC-UMP: cache-coherent
user-space messaging

Sender starts to write

message; h/w combines
writes in write buffer @ Sending core’s write

\-: buffer
o

the line
s R — |

Receiver’s cache:

e/ shared =>read-only

Sending core’s cache:
| " invalid => no copy of
'\

copy of the line

CC-UMP: cache-coherent
user-space messaging

Sender starts to write

message; h/w combines

i e
/

the line
) s — |

Receiver’s cache:

o/ shared => read-only

Sending core’s cache:
| '. invalid => no copy of
'\

copy of the line

CC-UMP: cache-coherent
user-space messaging

Sender starts to write

message; h/w combines

I e

Sending core’s cache:
| '. invalid => no copy of

the line
Receiver’s cache:

o/ shared => read-only

'\
copy of the line

CC-UMP: cache-coherent
user-space messaging

Sender starts to write
message; h/w combines
writes in write buffer a Sending core’s write

buffer
@ Write buffer fills: fetch Sending core’s cache:
target cache line in exclusive => clean,

Receiver’s cache:
invalid => out-of-date

copy of the line

_
exclusive (E) state ! writable copy

CC-UMP: cache-coherent
user-space messaging

Sender starts to write
message; h/w combines

writes in write buffer < Sending core’s write
buffer

@ Write buffer fills: fetch Sending core’s cache:

target cache line in ‘ modified => dirty r/w
exclusive (E) state copy

y

gram buffered writes into

L _
cache line, change to O Receiver’s cache:

modified (M) state invalid => out-of-date
copy of the line

CC-UMP: cache-coherent
user-space messaging

Sender starts to write
message; h/w combines

buffer
Q Write buffer fills: fetch

Sending core’s cache:
target cache line in ‘ h modified => dirty r/w
exclusive (E) state

X1

31VAITVvANI

copy
arain buffered writes into

cache line, change to ~ Receiver’s cache:
modified (M) state ' {F invalid => out-of-date

@ - copy of the line
X
eader polls again; own cache >

is invalid (I) so needs to fetch
fresh read-only copy (S)

CC-UMP: cache-coherent
user-space messaging

End state for MOESI : :

(AMD machines):

Sending core’s cache:
ﬂ\ modified => dirty r/w
copy

Receiver’s cache:
B shared->

read-only copy

Virtual Machine

“A VM is an efficient, isolated duplicate of a real machine”
[Popek & Goldberg, 1974]

* Duplicate: VM behaves identically to real machine
— Programs can’t tell the difference
— Caveats: resources, timing differences

* |solated: several VMs execute without interference
* Efficient: speed close to that of real hardware
— Requires that most instructions are executed directly by hardware

Hypervisor aka virtual-machine monitor (VMM): software
implementing the VM

Types of Virtualisation

“Platform”

(HW/SwW Programming

Interface) Processor Language
OS API

Process

Java
Program
-
Virtualisation Layer

Processor Processor Processor Processor

Platform VM or System VM OS-level VM / Process VM
Type-1 Type-2 Containers

“Native” “Hosted”
(Main topic of this lecture)

VMM History

* Appeared concurrently with timesharing, late
60’s
— Multics and IBM’s competitor (TSS) were both late
— IBM hacked together a system known as CP/CMS

e CP = control program (virtual machine monitor)
 CMS was an existing single-user OS

— Precursor of IBM mainframe VMMs

e Confined mostly to mainframes for decades
— PC hardware was not efficiently virtualisable

Disco

Running commodity OSes on scalable multiprocessors [Bugnion et al., 1997]

Context: ca. 1995, large ccNUMA multiprocessors appearing

Problem: scaling OSes to run efficiently on these was hard
— Extensive modification of OS required

— Complexity of OS makes this expensive

— Availability of software and OSes trailing hardware

Idea: implement a scalable VMM, run multiple OS instances

VMM has most of the features of a scalable OS, e.g.:
— NUMA-aware allocator
— Page replication, remapping, etc.
VMM substantially simpler/cheaper to implement
Run multiple (smaller) OS images, for different applications

Disco architecture

0 [|[@)][@)] | Ear
O

OS SMP-0OS OS OS Thin OS

Disco

PE PE PE PE PE PE PE PE

| | | | | |
Interconnect

ccNUMA Multiprocessor

[Bugnion et al., 1997]

VMM History

* Disco authors went on to found VMware
— Instead of pursuing scalability research
* Shipped vl in 1999, showed it was practical on

X86
— Big challenge because x86 was not virtualizable

— Research version on MIPS
 Hugely important today

— OS security concerns

— Cloud

Why Virtual Machines?

* Historically, used to share mainframes
— Run several (even different) guest OSes
. . VM, Apps VM, Apps
— Each gets a static subset of physical
resources

* Recent renaissance; Mmany reasons:
— Strong isolation (e.g. in the cloud)

— Security (thinner interface) -
— Complete encapsulation of app/0S Virt RAM _V'rt RAM
[T

* Decouples OS from hardware

* Migration/consolidation —
e Checkpointing, debugging Mem. region Mem. region
— Run multiple OSes concurrently RAM

A band-aid for OS limitations?

VMs in the cloud

e Utility computing is an old idea, but VMs
made it practical

* |Infrastructure as a Service (laaS)
— Rent VMs from cloud provider
— Provider increases utilisation by sharing hardware
— On-demand provisioning
— Dynamic load balancing / live migration

Native vs. Hosted VMM

2:}';‘5‘;{&'2?7{% o Hosted/Typedl o Ho;ted VMM beside
native apps

— Sandbox untrusted apps

— Convenient for running
alternative OS on desktop

— Leverage host drivers

- e Less efficient
— Double mode switches
— Double context switches

— Host not optimised for
exception forwarding

Hypervisor

Virtualisation mechanics

Trap and emulate
Binary translation
Paravirtualisation
Hardware assistance

Trap and emulate virtualisation

* Traditional approach
— Run guest OS and applications in unprivileged mode
— Guest attempts to access physical resource
— Hardware raises exception (trap), invokes hypervisor

— Hypervisor emulates instruction
e e.g. updates virtual CPU state

 Most instructions don’t trap
— Prerequisite for efficient virtualisation

Trap and emulate virtualisation

* Formalised by Popek & Goldberg (1974)
* Definitions:
— Assume HW user/system mode (e.g. x86 ring 0)

— Privileged state determines resource allocation
* Privilege mode, address space, etc.

— Privileged instructions trap in user but not system mode
(e.g. cli, sti)
— Sensitive instructions change or expose privileged state
(e.g. mov to CR3, int, iret)
e Theorem:

— Can construct an effective VMM if sensitive instructions are a
subset of privileged instructions

— Can also perform recursive virtualisation (run VMM in a VM)

Trap and emulate example:
Virtual interrupts and CLI/STI

 Virtual machine monitor:

— Controls hardware interrupt flag (IF)
* Enabled during guest execution

— Maintains virtual IF
— Uses virtual IF to decide when to interrupt guest

* When guest executes CLI or STI
— Protection violation trap, since guest is in user mode

— VMM looks at virtual privilege level
* If 0 (kernel mode), changes virtual IF
* Else emulates virtual protection violation trap to guest kernel

e VMM must only expose virtual IF to guest

Trap and emulate limitations

* Problem 1: not all architectures are T&E virtualisable
— e.g.: x86 CS exposes privilege level
— pushT reveals real (host) interrupt flag
— popf modifies flags, but silently ignores some in user mode

* Problem 2: high overhead/frequency of traps

e Solutions

1. Rewrite problem instructions before they execute
* Binary translation
* (Classic) VMware

2. Change guest OSes
* “Paravirtualisation”
* Xen, Denalj, ...

3. Change the architecture
» x86 virtualisation extensions, first shipped in 2005

Binary translation

* Basicidea:
— Translate all instructions before they are executed
— Most innocuous instructions are identical
— Replace sensitive instructions (with traps, or other code)

* Very complex, especially for x86!
— Code and data are intermingled
— Code might be 64-, 32- or 16-bit
— Introspection needs to show original code

— Variable-length instructions
* What happens if you branch to the “middle” of an instruction?

— Self-modifying code

e Can also think of this as a JIT-compiling emulator
— Can sometimes improve performance vs. native!

Binary translation example

Program:

int isPrime(int a) {

for (int 1 = 2; i < a; i++) {

if (a % i
}

return 1;

}

We're executing isPrime(49)...

@) return 0;

“Basic block”

(a)
mov %esi, $2 ;1 =2
cmp %esi, %ecx ; 1s 1 >= a?
jge prime 5 Jump 1if yes
nexti: mov_%eax, %»ecx , set Zeax =la
cdq ;5 sign-extend
idiv %esi s a% i
test %edx, %edx ; zero
remainder?
jz notPrime 5 Jump 1if yes
inc %esi 5 1++
cmp %esi, %ecx ,; is 1 >= a’
jl nexti 5 jump 1f no
prime: mov %eax, $1 ; return 1in
Zeax
ret
notPrime: xor %eax, %eax ; Zeax = 0

ret

[Adams and Agesen, 2006]

Binary translation example

isPrime:

mov %ecx, %edi
mov %esi, $2
cmp %esi, %ecx
jge prime

isPrime’ :

mov %ecx, %edi
mov %esi, $2

cmp %esi, %ecx
jge [takenAddr]
jmp [fallthrAddr]

e Translate and execute

first basic block

— Branch targets point
back into translator

* Translate next

(reached) basic block, ...

Chain translations
— Update jump targets
— Elide fall-through jumps

isPrime’:

nexti':

notPrime’:

Binary translation example

mov %ecx, %edi
mov %esi, $2
cmp %esi, %ecx
jge [takenAddr]
; fall-thru into next CCF
mov %eax, %ecx
cdq
idiv %esi
test %edx, %edx
jz notPrime’
; fall-thru into next CCF
inc %esi
cmp %esi, %ecx
jl nexti'
jmp [fallthrAddr3]

Xor %eax, %eax

pop %rll 5 RET

mov %gs:0xff39eb8(%rip), %rcx ; spill rcx
movzx %ecx, %rlilb

jmp %gs:0xfc7dde@(8*%rcx) ; (restores rcx)

Untaken branches
never translated

|-cache locality good

GS refers to VMM
state

CALL/RET are

complex

— Stack contains native
addresses

64-bit registers
handy for a 32-bit
guest

Paravirtualisation

— Denali [Whitaker et al, OSDI‘02] and Xen [Barham et al, SOSP‘03]

— Basic idea: “enlighten” guest OS to run in VM
* Augment processor ISA with explicit hypercalls
* Remove sensitive instructions
* Reduce number of traps
— Generally outperforms trap and emulate, binary

translation
* Requires source modifications for each guest / host

Hardware extensions

* Intel VT / AMD SVM (circa 2006)
 Changed architecture to enable virtualisation

— New privilege mode (guest mode / “root” mode)
— New instructions (vmrun, vmexit) — a bit like iret / syscall
— New data structure: VM control block (for guest state)

Non-Root

Kernel
entry

VM exit

Virtualisation overheads

VMM must maintain virtualised privileged machine state
— processor status

— addressing context

— device state

VMM needs to emulate privileged instructions
— translate between virtual and real privileged state
— e.g. guest < real page tables

Virtualisation traps are expensive

— >1000 cycles on some Intel processors!

— But improving (Haswell round-trip < 500 cycles)
Some OS operations involve frequent traps

— STI/CLI for mutual exclusion

— frequent page table updates during fork()

Memory Virtualization

VM address translation

Virtual Memory

Virtual Memory

Virtual
Page
Table

Virtual
Page
Table

Virtual Memory W

Virtual
Page
Table

Page
Table

Page
Table

Must implement with single MMU translation!

Real Guest PT
e enisor |

maintains guest PT

* On guest PT access must translate
(virtualise) PTEs

— store: translate guest “PTE”
to real PTE

— |load: translate real PTE to
guest “PTE”

* Each guest PT access traps!
— including reads
— high overhead

User

mov rax, addn

Physical
address

Shadow Page Table

Guest (Virtual)

virtual guest page

mov rax, addr address table Shadow (real) guest page
table, translations
cached in TLB

User

Hypervisor's

Guest guest memory
physical map
address

Physical
address

Shadow Page Table

* Hypervisor must shadow
(virtualise) all guest PT updates:
— trap when guest writes to PT

— translate guest PA (virtual)
using guest memory map

— insert translated PTE in shadow PT
Guest

virtual * Shadow PT has TLB semantics
address — (i.e. weak consistency)

— Update at synchronisation points:
Guest e page faults
physical e TLB flushes

e Shadow PT as virtual TLB

— can be incomplete:
physical LRU translation cache

address

User

mov rax, addr

address

Segment Table Page Table A Page Table B
0 Page Table A 0 0002 0 0001
1 Page Table B 1 0006 1 0004
X (restinvalid) 2 0000 2 0003
3 0005 X (restinvalid)

X (restinvalid)

Segment Table

Page Table K

0 Page Table K

X

(rest invalid)

0
1

N OO O AWM

X

BEEF
FO00
CAFE
3333
(invalid)
BA11
DEAD
5555

(rest invalid)

User

Lazy Shadow Update

Guest OS

access new page

mapping to GPT

add mappings...

return to user

Hypervisor

User

Lazy Shadow Update

Guest OS

continue

mapping in
GPT

invalidate mapping...

Hypervisor

Paravirtualization

* Impure virtualisation methods (aka
paravirtualization) enable new optimisations

— avoid traps through ability to control the ISA

— changed contract between guest and hypervisor

 Example: para-virtualised guest page table

Paravirtual Guest PT

e @QGuest translates PTEs itself when
reading from PT

User G,”tGStl — supported by Linux PT-access
mov rax, addn virtua
address Wrappers
* Guest batches PT updates using
hypercalls

— reduced overhead

(o]

0
Q

Used by

original Xen

Physical
address

Problems with shadow paging

Significant overhead for PT updates

— Workload dependent performance impact
Lots of complexity in the hypervisor

Solution: more hardware!
— Intel / AMD introduced nested paging circa 2008

Hardware walks both guest and host page table

— A bit scary: for x64 (4-level PT), a single memory
access might require 16 page table fetches!

— In practice, they are cached in the TLB

Device Virtualization

VMM Device Models

w
through

e
Emulated

Device Virtual Device

Driver Driver

Driver

Device
Driver

Emulation

Emulated Device

register

accesses
Device

Driver

e Each device access must be
trapped and emulated

ALzl — unmodified native driver

— high overhead!

Split Driver (Xen speak)

virtualised

driver”

e Simplified, high-level
|mpe Virtual device interface

interface Driver

— small number of
hypercalls

— new (but very

Device . .
simple) driver

Virtual
device

— low overhead
— must port drivers

Driver OS (Xen DomO)

Virtual Device e Leverage Driver-OS native drivers

Driver Drivers — no driver porting

— must trust complete Driver OS!
— huge TCB!

Pass-Through Driver

e Unmodified native driver

e Only secure with

hardware support ‘

e |/O MMU and VM- Direct device

safe devices access by guest Device
Driver

Hybrid Hypervisor OSes

* |dea: turn standard OS into hypervisor
— ... by running in VT-x root mode
— eg: KVM (“kernel-based virtual machine”)

* Canre-use Linux drivers etc
* Huge trusted computing base!
* Often falsely called a Type-2 hypervisor

Non-Root

VM exit

Multilevel Memory Allocation

e Guest OS has fixed memory size, set at boot

* Host VMM multiplexes memory between VM'’s
— Host VMM evicts an unused page
— Guest OS flushes unused dirty page to virtual disk

— Host VMM brings back unused page to write to
virtual disk

Multilevel Memory Allocation

* Balloon driver: load a dummy I/O device
driver into the guest OS to allocate/deallocate

frames

e Paravirtualization: modify guest OS to handle
dynamic resource allocation
* What about multiplexing guest OS processors?

— Balloon driver?
— Scheduler activations?

Memory Compression

* Guest OS’s are likely to contain copies of the
same page
— code pages if running same linux version

— App pages if running the same applications

* ESX solution:
— Keep hash of recent version of every page
— Update randomly
— If match, remap to same page, copy-on-write

VMM memory compression

Guest Process

on VM #1

Guest Virtual
Address

Guest Process

on VM #2

Guest Virtual
Address

Guest Page Table

Guest Page Table

Guest Physical Address

Guest Physical

Address

Space, VM #1

Guest Physical
Address

Guest Physical Address

Address

Space, VM #2

Guest Physical
Address

Host Page Table

Host Page Table

Invalid

v

Host Physical

Address

Delta Relative

to Page A

Host Physical

Memory

Page A

Page B

Fun and Games with VMMs

* Time-travelling virtual machines [King ‘05]
— debug backwards by replay VM from checkpoint, log state changes
e SecVisor: kernel integrity by virtualisation [Seshadri ‘07]
— controls modifications to kernel (guest) memory
* QOvershadow: protect apps from OS [Chen ‘O8]
— make user Mmemaory opaque to OS by transparently encrypting
* Turtles: Recursive virtualisation [Ben-Yehuda ‘10]
— virtualise VT-x to run hypervisor in VM

* CloudVisor: mini-hypervisor underneath Xen [Zhang ‘11]
— isolates co-hosted VMs belonging to different users
— leverages remote attestation (TPM) and Turtles ideas

... and many more!

Motivation: overhead of isolation

 VMs are great for isolation, but have significant overheads

— resource overheads: disk (GBs) and memory (512 MB+) per VM

— runtime overheads: CPU virtualization, |/O virtualization, etc.

— administrative overheads: one new OS to manage per VM

— ingress/egress overheads: moving large VHDs to/from the cloud
e ..but they offer great benefits!

— Securely isolate guest from host

— Support live migration

— Only (?) isolation mechanism strong enough to enable the cloud
 Can we retain their benefits with less overhead?

— Most apps don’t need to see virtualized hardware

— Most apps don’t require their own OS + drivers

OS Containers

* OS kernel modified to virtualise at syscall
interface

— Files

— PIDs —
Virtualisation Layer

— IPC

JReee s

 Additional controls on resource allocation
— Not just best effort

e e.g. Docker, Solaris Zones, ...

Container Example: UNIX stat

stat structure, which contains the
/* 1D of device containing file */

/* inode number */

/* protection */

/* number of hard links */

/* user ID of owner */

/* group ID of owner */

/* device ID (if special file) */

/* total size, in bytes */

/* blocksize for filesystem I/O */

/* number of 512B blocks allocated */

Linux Containers History

* Chroot
— Change the root of file system
— Originally to develop new software releases

e Jail
— Execute process with restricted set of system calls
— Ex: postscript viewer in web browser
 Namespaces/cgroups
— Restrict process visibility and resource usage
— Per-container network address translation

Containers pros/cons

* Much lower overhead

— Only one copy of the OS kernel

— Single level of address translation

— Drivers not an issue — trusted in the host OS
* Tight(er) coupling between guest/host

— Can’t run different guest OS

— Harder to encapsulate and migrate state

e ... but are they secure?
— Full OS kernel and drivers in TCB of all containers
— Syscall interface more complex than VM interface

Threat models for isolation

* Traditional enterprise (“friendly multi-tenant”)
threat model: employees run code of their
choosing on your system

* Cloud (multi-tenant) threat model: anonymous
hackers with unlimited access run any code of

their choosing on your systems, alongside your
most valued customers

— Do you trust an OS kernel to isolate them?

— Do you even trust a hypervisor to isolate them?
e (More on this later...)

What's the Drawbridge approach?

* Key design philosophy:
— Start with a tight, secure isolation boundary
— Add app compatibility inside isolation container

— Not plugging holes in a leaky but compatible
interface

* Key components:
— The picoprocess, an isolation mechanism

— The library OS, a compatibility mechanism

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, G. C. Hunt,
Rethinking the library OS from the top down, Proc. ASPLOS’11

Picoprocesses and library OSes

* Picoprocess: concept introduced by MSR’s Xax
p FOJ e Ct (Douceur et al., 2008)

— Isolated address space with a very small, fixed interface

picoprocess
isolated address space

with its host <
— Lightweight, secure isolation container @~ [mmmm=s immm————

| e Library OS: concept championed in CS community in
1 the "90s (engler et al,, 1995)

— Minimal, shared kernel runs in supervisor mode
J * Multiplexes and abstracts hardware resources

process

* Enforces cross-application protection

process

library OS — Per-app library OS runs in user mode

process

* Constitutes OS “personality”

* Provides application services and APIs to application

* Runs in application’s address space (user mode)

host kernel e Each app can choose its own library OS

Drawbridge picoprocess on NT

 NT process with modified service handler
— All 1200+ system calls blocked from user-mode (NTOS and win32k)
— 45 new system calls added to process (Drawbridge system calls)

NT process Picoprocess
: lllllllllllllllllllllllllllllll A
: shared picoprocess
address space
: | isolated
; gdi32 address space
user32
: n"'"l 800+ am AB' boundary IIIIIIIII n
. ~Win32 calls PAL 45 |
1 400+
[ERE———— LR 3 calls r
r-—- NTca”S - ‘-I F ------------ -I
: "g 8 ™ 1 ‘ : : § 8 security monitor :
< ™| I s ™ I

The Drawbridge ABI

Drawbridge ABI: interface between a Drawbridge
picoprocess and its host

— 45 downcalls, 3 upcalls — everything else is off-limits

— Designed from scratch, but heavily inspired by NT

— APIs have fixed, closed semantics (no IOCTLs)
Analogous to VM host/guest interface, but with higher-
level abstractions

— threads (not virtual CPUs)

— virtual memory (not physical memory)

— 1/0 streams (not virtual device hardware)
Design benefits:

— security - interface is small enough to undergo manual
review / inspection

— portability - Windows apps run unmodified on any system
that implements 45 functions

— flexibility — interface allows app’s state to live (almost)
entirely in process

Drawbridge ABI
(excerpt)

Threading
DkThreadCreate
DkSemaphoreCreate
DkSemaphorePeek
DkSemaphoreRelease
DkObjectsWaitAny

Memory management
DkVirtualMemoryAllocate
DkVirtualMemoryFree
DkVirtualMemoryProtect

1/O streams
DkStreamOpen
DkStreamRead
DkStreamhWrite
DkStreamMap
DkStreamFlush

Upcalls
LibOsInitialize
LibOsThreadStart
LibOsExceptionDispatch

The Windows library OS

Based on Windows OS
— Same binaries (where possible)
— Same architecture

Windows enlightened to run in a

picoprocess with the app
— lifted into user mode
— most changes in user-mode
kernel
Example library OS: Win7 SP1
— 100MB on disk (~150 DLLs)
— 16MB of working set + app

— 5.5+ MLoC for 15,000+ Win32
APls

Each picoprocess runs its own
library OS
— app chooses its library OS

— version need not match across
picoprocesses or host

picoprocess

" advapi32 ‘

| Reess
kernel32 ‘ |]
ntdll user32 ’ gdi32
UM boundary mdry e
caII: ksecdd | afd ‘ | rdpvdd
y. http win32k

SO Aipuqi)

am ABI boundar‘y IEEEEEEESEEEEEESEEEE NS EEEEEEEEEEEEEEENL
platform abstraction layer (PAL)

calls

AEEEEERER

45

P
calls

Drawbridge host

The Drawbridge-on-Windows host

 Drawbridge host
implements 45-function

ABI atop Windows Drawbridge security
e Anal to H v’ monitor Picoprocess
Na Og.OUS O Ayper-v'Ss (dkmon.exe)
hypervisor + . 45
. . . calls !
virtua I zation stac k e Kernel-/user-mode boundary === arersssssssaeen
* Split between kernel- Drawbridge driver

ALPC

mode driver and user- | (dkdriver.sys)
mode worker
— Driver implements ABI

— Driver consults security
monitor for policy
decisions

Windows kernel
(ntoskrnl.exe)

The Drawbridge security monitor

Security monitor — user-mode half of Drawbridge host

— launches app in picoprocess

— makes access policy decisions Drawbridge security

— “normal” NT process monitor
Policy decisions based on manifests (dkmon.exe)

— All external resources are blocked by default
— Resources can be white-listed back in by admin
— Access specified via virtual to physical namespace mappings

Sample Policy

[Namespace.Writable]
pipe.server:///RDP=pipe.server:///RDP_Drawbridge expose ‘RDP’ named pipe server out of
process as ‘RDP_Drawbridge’

allow app to Listen (only) on port 36000

allow use of any TCP client socket

tcp.server://localhost:3000=tcp.server://localhost:3000
tcp.client:=tcp.client:

e “we Wwe wo

[Namespace]
file:///users/jdoe/documents=file:///documents ; allow R/0 access to Documents folder

Drawbridge package

Drawbridge package — self-contained, self-describing unit of

deployment

A package contains:

— Manifest

* |dentity (name, version, options)

* Dependencies on other packages

* Access control policy requirements

* Relative paths to important contained files (e.g. app EXE)

— Files

— Registry data (.reg format)
— Debug resources (e.g. symbols, etc.)

Everything’s a package: app, library, library OS, suspended app
Security monitor resolves transitive closure of packages and

dependencies

— File content from packages is unioned into virtual FS
— Registry content from packages is unioned into virtual registry
— Packages are read-only, mapped copy-on-write

C

Sample Manifest

[Package]
ManifestVersion=1
PackageRevision=4

[Identity]
Name=IISWorker
MajorVersion=7
MinorVersion=5
BuildNumber=7601
Architecture=x64

[Dependency.Win7]
Name=Windows
MajorVersion=6
MinorVersion=1

[Dependency.CLR4]
Name=MicrosoftNET
MajorVersion=4
MinorVersion=0

[Windows.Application]
Exe=package:///windows/
system32/inetsrv/w3wp.exe

[Windows.Registry]
File:///w3wp.exe.dbreg

Committed Memory by Apps

800
(aa]

S 700
>600
£ 500
(o))

S 400
©300
?é 200
= 100
S o

11 ® Windows ® Drawbridge ® Hyper-V 1,116

603 603 614 607 606

NoOp Internet 1S Excel 11KB Excel Excel

Explorer 20MB 100MB
+11.1IMB +6.9MB <0 MB +35.7MB +33MB +38.7MB

Time to Start Application Package

100
2 90
80
70
60
50
40
30
20
10

0

Time to Start (secon

Windows E Drawbridge = Hyper-V 130

67

o wn
o o

69

o N
o N

NoOp

Internet
Explorer

1.4

10.0

IN

63

74

nol| T

o o

Excel Excel Excel
11KB 20MB 100MB

