Multiprocessor Issues

Consistency and Coherency

* Memory can change under a cache
— Writes from other processors to memory

1. Consistency:

— The order in which changes to memory are seen
by different processors

2. Cache coherence:
— Values in caches all match each other

— How consistency is implemented with caches

Memory consistency

When several processors are reading and writing
memory, what value is read by each processor?

* Defines semantics of order-dependent
operations

— E.g. does mutual exclusion work?
— How to ensure that it does work?

 There are many memory consistency models

Consistency models: terminology

* Program order: order in which a program on a
processor appears to issue reads and writes

— Refers only to local reads/writes
— Even on a uniprocessor # order the CPU issues them!

— Write-back caches, write buffers, out-of-order
execution, etc.

* Visibility order: order in which all reads and
writes are seen by one or more processors
— Refers to all operations in the machine
— Depends on memory consistency model

Memory consistency models

 Strict/Sequential consistency
— Writes appear in the order they are made
— reads return the most recently written value

— Concurrent operations can occur in any (consistent)
order

 Serializable

— All operations appear to occur in some serial order,
to all processors

* Linearizable (strictly serializable)
— Serializable and consistent with real time

Other Models

* Processor ordering
— writes from one CPU are seen in order
— Writes may be seen in different orders by different CPUs

* Weak/Barrier ordering: rules for synchronizing
accesses (atomic read/modify/write instructions)

— Synchronising accesses sequentially consistent

— Synchronising accesses act as a barrier:
e previous writes completed
e future read/writes blocked

Important to know your hardware!
— x86: processor ordering
— PowerPC: weak/barrier ordering

Sequential consistency (SC)

1. Operations from a processor appear (to all
others) in program order

2. Every processor’s visibility order is the same as
every other processor’s

Requirements:
— Each processor issues memory ops in program order
— RAM totally orders all operations to each location

— Memory operations are atomic

Adve Implementation Rule

Let’s assume (wlog) that each process specifies
that its own operations happen in some order

— E.g., read A, write B, append(C, ...
— If concurrent, system can choose the order
Serializable/sequentially consistent if

1. Operations applied in processor order, and

2. all operations to same memory location are
serialized (as if to a single copy)

Sequential consistency example

CPUA CPUB

Results: a: *p=l by u=*g
e (u=1, v=1): a *q=1; b,: v =*p;
— Possible under SC: (a,, a,, b;, b,)
— (a,, a,) and (b, b,) are both program orders
e (u=1, v=0):
— Impossible under SC:

— No interleaving of program orders that generates this
result

— Would require: a, > b, >b, >3,

Sequential consistency example

CPUA CPUB

Results: a: *p=l by *q=1
° (U=1, V=1)I a,: u=*g; b,: v=*p;
— Possible under SC: (a,, by, a,, b,)
— (a,, a,) and (b, b,) are both program orders
e (u=0, v=0):
— Impossible under SC:

— No interleaving of program orders that generates this
result

— Would require: a, > b, >b, >3,

Sequential consistency

* Advantages:
— Easy to understand for the programmer
— Easy to write correct code to
— Easy to analyze automatically

* Disadvantages:
— Hard to build a fast implementation

— Cannot reorder reads/writes
* even in the compiler
e even from a single processor!

— Cannot combine writes to same cache line (write buffer)

Relaxing sequential consistency

CPUA CPUB

a;r *p=1; b;: u=*q;
a,: *q=1; b,: v=7*p;
e Recall program order requirement for SC:
— Out-of-order execution might reorder (b,, b,)
— Write buffer might reorder (a,, a,)
— a, might miss in the cache, and a, might hit

— Compiler might reorder operations in each thread
* Or optimize out entire reads or writes

e What can be done?

Relaxing sequential consistency

* Many, many different ways to do this!
E.g.:
— Write-to-read: later reads can bypass earlier writes
— Write-to-write: later writes can bypass earlier writes
— Break write atomicity (no single visibility order)
— Weak ordering: no implicit order guarantees at all

e Explicit synchronization instructions

— x86: Ifence (load fence), sfence (store fence), mfence
(memory fence)

— Alpha: mb (memory barrier), wmb (write memory
barrier)

Processor Consistency

* Also PRAM (Pipelined Random Access
Memory)

— Implemented in Pentium Pro, now part of x86
architecture.

* Write-to-read relaxation:
later reads can bypass earlier writes

— All processors see writes from one processor in
the order they were issued.

— Processors can see different interleavings of
writes from different processors.

Processor (PRAM) Consistency

CPUA CPUB CPUC

a;r *p=1; b;: u=*p; c;: v=7*g;

b,: *q=1; C,: W=*p;

* (u,v,w)=(1,1,0) is possible in PRAM
— B sees visibility order (a,, b,)
— C sees visibility order (b,, a,)

Other consistency models

—mmmmm

Reads after reads

<

Reads after writes

Writes after reads

Writes after writes

Dependent reads

Ifetch after write

Icache is
incoherent:
requires explicit

N

Icache flushes for

self-modifying
code

o

v v
v v v
v v v
v v v

v

N[

Read of value can
be seen before
read of address of

value!
(U /

<

Not shown:
SPARC, which
supports 3

models

different memory

o

DN N N

AN

Portable languages
like Java must
define their own
memory model,
and enforce it!

Implementing Single Copy

e Cache invalidation

— Before every write, locate all copies of data and
remove them

— Apply change to single remaining copy
* Lease: permission for some period of time
— Ex: lease to use cached copy of some data item

— Wait until lease expires before applying update
(plus clock skew)

— Or ask client to return lease

Terminology

Lease

— Allow client to use cached copy for some period of
time (lease)

— Before lease expires, client can renew
— After lease expires, client discards cached copy
— On next use, client fetches the latest version.

Write through

— All writes are sent through to memory

Write back

— Writes applied to local copy
— Sent to memory in background

Implementing SC
with a snoopy cache

Cache “snoops” on reads/writes from other
processors

If a line is valid in local cache:

— Remote (other processor) write to line
=> invalidate local line

Requires a write-through cache!

— But coherency mechanism = sequential
consistency

Line can be valid in many caches, until a write

Directory-Based Cache Coherence

* How do we know which cores have a location
cached?

— Hardware keeps track of all cached copies

— On a read miss, if held exclusive, fetch latest copy and
invalidate that copy

— On a write miss, invalidate all copies

* Read-modify-write instructions

— Fetch cache entry exclusive, prevent any other cache
from reading the data until instruction completes

Write Through Cache Coherence

* Before applying update at server:

1. Send message to all clients with copy

2.

3. Server waits for all invalidations, then does update
4,

Each client invalidates, responds to server

Then returns to client

* Reads can proceed
— Whenever there is a local copy
— Or if no write ahead of it in the queue at the server

Questions

* |f write is in progress, can server perform
reads/writes to other memory locations?

* While waiting for invalidations/lease expiration,
is it ok to read (old value) at a client?

* While waiting for invalidations/lease expiration,
can server return new value to a new client

request?

More Questions

* Why does server need to wait until write is
applied before returning to client?

* Why does server need to queue incoming
requests while write is in progress?

* How much directory state do we need at the
server?

Example

Two concurrent writes to two concurrent
readers. Readers have item cached.

Weriters send change through to server
— What is the order of operations?

Server uses callback state to invalidate caches
— For first write, what about second write?

Reader has a cache miss and fetches the value
from the server.

Write Back Cache Coherence

e Server tracks which clients have cached copy

* On write miss, client asks server to:
1. Send message to all clients with copy
2. Each client invalidates, responds to server
3. Server waits for invalidations, then returns to client
4. Client performs write

* Reads can proceed whenever there is a local copy

e Careful ordering of requests at server
— Enforce processor order, avoid deadlock

MSI state machine:
local (processor) transitions

Local write
miss
= fie Local read)«
Local read
or write
Shared

Local read

MSI state machine:
local (processor) transitions

Eviction
=> write back block

Local write
miss

Invalid Local read Local write

miss MOdb
Local read
or write

Shared

Eviction
Cache write back

Local read

MSI state machine:
remote (snooped) transitions

@ Modified
[Remote write%ss] @
Remote read miss

=> write back block
[Remote
read miss

MSI Issues

Assumes we can distinguish remote processor read and
write misses

* |In | state, executing a write miss:
— Need to first read line (allocate)
— If someone else has it in M state, need to wait for flush

* |In M state, other core issues a read:
— Must flush line (required)

— Invalidate line?
e But what if you want read sharing? Extra cache miss!

— Transition to shared?
 But what if it’s actually a remote write miss? Extra invalidate!

MESI protocol

Add a new line state: “exclusive”
Modified: This is the only copy, it’s dirty
Exclusive: This is the only copy, it’s clean
Shared: This is one of several copies, all clean
Invalid
Add a new bus signal: RdX
— “Read exclusive”
— Cache can load into either “shared” or “exclusive” states
— Other caches can see the type of read
Also: HIT signal
— Signals to a remote processor that its read hit in local cache

First x86 appearance in the Pentium

MESI invariants

e Allowed combination of states for a line
between any pair of caches:

SN NS

* Protocol must preserve these invariants

MSI invariants:

MESI state machine

Terminology:

. PrRd >
* PrRd: processor rea.d Issue BusRd,
* PrWr: processor write if shared...
 BusRd: bus read /
e BusRdX: bus read excl
e BusWr: bus write !
Invalid
Processor-initiated \ Prwr =
PrRd -> issue
If line not BusRdX
shared

Prwr >
issue
BusRdX

/ Exclusive
AN

PrRd >
No transaction

PrWr >
No transaction

PrRd >

‘/'\ No transaction

Shared)

\/ PrRd, PrWr >
No transaction

MESI state machine

Terminology:

* PrRd: processor read
* PrWr: processor write
* BusRd: bus read

/ BusRdX =

e BusRdX: bus read excl discard BusRd =
* BusWor: bus write Signal HIT
Snoop-initiated
BusRd >
BusRdX - Write back
BusRdX - Write back
discard

BusRd -
Signal HIT

Modified

MESI observations

* Dirty data always written through memory
— No cache-cache transfers
— “Invalidation-based” protocol

* Data is always either:

1. Dirty in one cache
= must be written back before a remote read

2. Clean
=> can be safely fetched from memory

Good if:
latency of memory << latency of remote cache

MOESI protocol

Add new “Owner” state: allow line to be modified, but other
unmodified copies to exist in other caches.
Modified:
No other cached copies exist, local copy dirty
Owner:
Unmodified copies may exist, local copy is dirty

Exclusive:

No other cached copies exist, local copy clean
Shared:

Other cached copies exist, local copy clean

One other copy might be dirty (state Owner)
Invalid:

Not in cache.

MOESI invariants

 Allowed combination of states for a line between
any pair of cach

v
v | v
v
v v | v
ARZARARAR4

 MOESI can satisfy a read request in state | from a
remote cache in state O, for example.

Good if:
latency of remote cache < latency of main memory

Three Clients Example

Client 1

Client 2

Client 3

k1l = f(data);
donel = true;

while(donel == false)

k2 = g(k1);
done2 = true;

while(done2 == false)

rslt = h(k1,k2);

Initially, donel, done2 = false
Intuitive intent:
client3 should execute h() with results from client1 and client2
waiting for client2 implies waiting for clientl

Question

Is write back always more efficient than write
through?

Distributed Shared Memory

e Can run a parallel program across a network
of servers
— Threads communicate through shared memory,
not message passing

e Set virtual memory page protection to trigger
fault whenever remote operation needed:

— read to an invalid page
— write to an invalid or read-only page

Example

Parallel successive mesh approximation
— Update each element based on neighbors
— Repeat until converged

DSM approach
— Put boundary elements in their own pages
— Automatic exclusive when updated
— Automatic fetch of neighbor’s boundary pages

Message passing approach
— Explicitly fetch boundary elements from neighbors

Transactional Memory

Group of operations with four properties:
— Atomic — all or nothing
— Consistent — equivalent to some sequential order
— Isolation — no data races between groups
— Durable — once done, stays done

Transactions appear to occur in some serial order:
—T0, T1...Ti, Ti+1 ...

— Everything Ti depends on completed in some earlier
transaction

Transactions Across Shards

Setting: data store partitioned across servers

Individual updates are serializable using cache
coherence

What about updates to groups of items?
— Items may be on different shards

Transactional Memory

Use write back cache coherence

— Pull data needed for the transaction into local
cache, write ownership

— Perform transaction
— Release data

Synchronization Performance

* A program with lots of concurrent threads can
still have poor performance on a multiprocessor:
— Overhead of creating threads, if not needed

— Lock contention: only one thread at a time can hold a
given lock

— Shared data protected by a lock may ping back and
forth between cores

— False sharing: communication between cores even
for data that is not shared

A Simple Critical Section

// A counter protected by a spinlock
Counter::Increment() {
while (test_and set(&lock))
value++;

test_and_clear(&lock);

A Simple Test of Cache Behavior

Array of 1K counters, each protected by a
separate spinlock

— Array small enough to fit in cache

* Test 1: one thread loops over array

* Test 2: two threads loop over different arrays

* Test 3: two threads loop over single array

* Test 4: two threads loop over alternate
elements in single array

Results (64 core AMD Opteron)

One thread, one array 51 cycles
Two threads, two arrays 52
Two threads, one array 197
Two threads, odd/even 127

Reducing Lock Contention

* Fine-grained locking

— Partition object into subsets, each protected by its own
lock

— Example: hash table buckets

° Per-processor data structures

— Partition object so that most/all accesses are made by
one processor

— Example: per-processor heap
* Ownership/Staged architecture

— Only one thread at a time accesses shared data
— Example: pipeline of threads

What If Locks are Still Mostly Busy?

e MCS Locks

— Optimize lock implementation for when lock is
contended

 RCU (read-copy-update)
— Efficient readers/writers lock used in Linux kernel
— Readers proceed without first acquiring lock
— Writer ensures that readers are done

 Lock-free data structures

What if many processors call
Counter::Increment()?

Counter::Increment() {
while (test_and_set(&lock))
value++;
lock = FREE;
memory_barrier();

What if many processors call
Counter::Increment?

Counter::Increment() {
while (lock == BUSY && test and set(&lock))

)
value++;

memory_barrier();
lock = FREE;

Test (and Test) and Set Performance

Time to execute a critical section

350

300

250

200

150

100

50

Test-And-Set Lock

Test-And-Test-And-Set Lock

MCS Lock

10 15

Number of processors

20

Some Approaches

* |nsert a delay in the spin loop

— Helps but acquire is slow when not much contention
e Spin adaptively

— No delay if few waiting

— Longer delay if many waiting

— Guess number of waiters by how long you wait

* MCS

— Create a linked list of waiters using compareAndSwap
— Spin on a per-processor location

Atomic CompareAndSwap

CompareAndSwap(location, oldValue, newValue)

— |If *location == oldValue, set *location = newValue
and return ok

— |If *location != oldValue, return error

If two threads CompareAndSwap at the same time:
— One thread “wins”, sets *location to newValue
— One thread “loses”, sees *location has changed

MCS Lock

 Maintain a list of threads waiting for the lock
— Thread at front of list holds the lock
— MCSLock::tail is last thread in list
— Add to tail using CompareAndSwap

* Lock handoff: set next->needToWait = FALSE
— Next thread spins: while needToWait is TRUE

MCS Lock Implementation

TCB {
TCB *next; // next in line
bool needToWait;

MCSLock::acquire() {
myTCB->next = NULL;
myTCB->needToWait = FALSE;
oldTail = tail; }
while (lcompareAndSwap(&tail, MCSLock { _ _

oldTail, &myTCB)) { Queue *tail = NULL; // end of line
oldTail = tail; }

}
f (oldTail 1= NULL) { MCSLock::release() {

myTCB->needToWait = TRUE; if ('lcompareAndSwap(&tail,

oldTail->next = myTCB; - myTCB, NUL'—)_)_{
memory_barrier(); whlle (myTCB->next == NULL)

while (myTCB->needToWait)

' }
} }

myTCB->next —>needToWait=FALSE;

TAIL

MCS In Operation

........ > NIL

next needToWait
NIL FALSE

B FALSE
NIL TRUE

B FALSE

C TRUE
NIL TRUE

e)

C FALSE
NIL TRUE
NIL FALSE

Read-Copy-Update (RCU) Locks

Goal: very fast reads to shared data
— Reads proceed without first acquiring a lock
— OK if write is (very) slow

Restricted update
— Writer computes new version of data structure
— Publishes new version with a single atomic instruction

Multiple concurrent versions

— Readers in progress may see old or new version
— New readers see new version

Integration with thread scheduler

— Readers in progress at previous update must complete
within grace period

— Then ok to garbage collect old version

Read-Copy-Update

Update is Grace Period
Published Ends
Read (0ld) Read (New)
Read (0ld) : Read (New) E
Reiad (Old or New) Read (New)
: Read (Old or New)
Write (New). .Delete (0ld)

Grace Period

Time

Read-Copy-Update Implementation

 Readers disable interrupts on entry

— Guarantees they complete critical section in a timely
fashion

— No read or write lock

* Writer
— Acquire write lock
— Compute new data structure
— Publish new version with atomic instruction
— Release write lock
— Wait for time slice on each CPU
— Only then, garbage collect old version of data structure

Lock-free Data Structures

e Data structures that can be read/modified
without acquiring a lock

— No lock contention!
— No deadlock!

* General method using compareAndSwap
— Create copy of data structure
— Modify copy
— Swap in new version iff no one else has
— Restart if pointer has changed

Lock-Free Bounded Buffer

tryget() {
do {

copy = ConsistentCopy(p);
if (copy->front == copy->tail)
return NULL;
else {
item = copy->buf[copy->front % MAX];
copy->front++;
} while (compareAndSwap(&p, p, copy));
return item;

J

Multiprocessor OSes

A multiprocessor OS:

— Runs on a “tightly-coupled” (usually shared-
memory) multiprocessor machine

— Provides system-wide OS abstractions
* Multiprocessor computers were anticipated

by the research community long before they
became mainstream

— Typically restricted to “big iron”

 But few commercial OSes are designed from
the outset for multiprocessor hardware

Multics

Time-sharing operating system for a
multiprocessor mainframe

Joint project between MIT, General Electric,
and Bell Labs (until 1969)

1965 — mid 1980s

— Last Multics system decommissioned in 2000
Goals: reliability, dynamic reconfiguration, etc.
Very influential

Multics: typical configuration

GE645 computer

Symmetric multiprocessor

Communication
was by using
“mailboxes” in the
memory modules
and corresponding
interrupts
(asynchronous).

memory

memory

/O

controller

memory

/O

controller

memory

/O

controller

to remote terminals, magnetic tape, disc, console reader punch etc

Multics on GE645

SIE[o B

Reliable interconnect

No caches

chip

Failure boundary

Single level of shared memory
e Uniform memory access (UMA)
Online reconfiguration of the hardware

e Regularly partitioned into 2 separate systems

for testing and development and then
recombined

Hydra

e Early 1970s, CMU
* Multiprocessor operating system for C.mmp
(Carnegie-Mellon Multi-Mini-Processor)
— Up to 16 PDP-11 processors
— Up to 32MB memory
* Design goals:
— Effective utilization of hardware resources

— Base for further research into OSes and runtimes
for multiprocessor systems

C.mmp multiprocessor

Mp, (2MB) N
Primary : '
memory ° Switch

Mp,c (2MB) |

® 00
Pc, Dmap Pcys Dmap

Central \address
entra relocation M
processor Mp hardware P
(PDP-11) Kc Kc
Control for/ Clock
clock, IPC

Interrupt

to secondary _
memory and Switch
devices

Hydra (cont)

 Limited hardware H)eee
— No hardware messaging, send IPIs X
— No caches E|eee

* 8k private memory on processors

— No virtual memory support

* Crossbar switch to access memory banks

— Uniform memory access (~1us if no contention)
— But had to worry about contention

* Not scalable

Cm*

e Late 19/0s, CMU

* Improved scalability over C.mmp
— 50 processors, 3MB shared memory

— Each processor is a DEC LSI-11 processor with bus,
local memory and peripherals

— Set of clusters (up to 14 processors per cluster)
connected by a bus

— Memory can be accessed locally, within the cluster
and at another cluster (NUMA)

— No cache
* 2 Oses developed: StarOS and Medusa

One Kmap

per cluster \

CM CM CM

50 compute
modules (CMs)

5 communication
controllers (Kmaps)

10 11 oo 19

CM CM oo CM
00 01 09

CM CM CM

40 41 49

NUMA
Reliable message-passing
No caches
Contention and latency big
issues when accessing
remote memory

* Sharing is expensive

* Concurrent processes run

better if independent

Medusa

OS for Cm™, 1977-1980

Goal: reflect the underlying distributed
architecture of the hardware
Single copy of the OS impractical

— Huge difference in local vs non-local memory
access times

— 3.5us local vs 24us cross-cluster
Complete replication of the OS impractical

— Small local memories (64 or 128KB)
— Typical OS size 40-60KB

Medusa (cont)

* Replicated kernel on each processor
— Interrupts, context switching

e Other OS functions divided into disjoint utilities

— Utility code always executed on local processor

— Utility functions invoked (asynchronously) by sending
messages on pipes

e Utilities:
— Memory manager
— File system

— Task force manager

* All processes are task forces, consisting of multiple activities that
are co-scheduled across multiple processors

— Exception reporter
— Debugger/tracer

Medusa (cont)

 Had to be careful about deadlock, eg file
open.
— File manager must request storage for file control
block from memory manager

— |If swapping between primary and secondary
memory is required, then memory manager must
request |/O transfer from file system

— Deadlock

* Used coscheduling of activities in a task force
to avoid livelock

Firefly

* Shared-memory, multiprocessor, personal
workstation

— Developed at DEC SRC, 1985-1987

* Requirements:
— Research platform (powerful, multiprocessor)

— Built in a short amount of time (off-the-shelf
components as much as possible)

— Suitable for an office (not too large, loud or power-
hungry)

— Ease of programming (hardware cache coherence)

Firefly (version 2)

M-Bus
32MByte CPU CPU CPU CPU . Primar
memory FPU i FPU FPU § FPU procesZor'
- MicroVAX
Cache Cache 78032
Secondary processors: Q-Bus
CVAX 78034
(typically 4)

|/O controllers
(disk, network,
display, keyboard,
mouse)

Firefly

e SMP
* Reliable interconnect
* Hardware support for cache
coherence
* Bus contention an important issue
* Analysis found that adding
processors improved

performance up to about 9

Processors

Topaz

Software system for the Firefly

Multiple threads of control in a shared address space
Binary emulation of Ultrix system call interface
Uniform IPC communication mechanism

— Same machine and between machines

System kernel called the Nub

— Virtual memory

— Scheduler
— Device drivers

Rest of the OS ran in user-mode

All software multithreaded
— Executed simultaneously on multiple processors

Hive

Stanford, early 1990s

Targeted at the Stanford FLASH
multiprocessor

— Large-scale ccNUMA

Main goal was fault containment

— Contain hardware and software failure to the
smallest possible set of resources

Second goal was scalability through limited
sharing of kernel resources

Stanford FLASH architecture

2nd_[evel
Cache

F

Memory Processor

PRI
e

<: N Coherence <E
et Controller

Stanford FLASH

* Reliable message-passing

| i T — Nodes can fail

| independently
| | = * Designed to scale to 1000’s

| of nodes
| |- » Non-Uniform Memor
y
Access
ll — — Latency increases with
distance

e Hardware cache coherence

Hive (cont)

* Each “cell” (ie kernel) independently manages a
small group of processors, plus memory and 1/0
devices

— Controls a portion of the global address space

* Cells communicate mostly by IPC
— But for performance can read and write each other’s
memory directly
 Resource management in user-space (by Wax)
— Global allocation policies for memory and processors

— Threads on different cells synchronize via shared
memory

Hive: failure detection
and fault containment

* Failure detection mechanisms
— RPC timeouts
— Keep-alive increments on shared memory locations
— Consistency checks on reading remote cell data structures
— Hardware errors, eg bus errors

 Fault containment

— Hardware firewall (an ACL per page of memory) prevents
wild writes

— Preemptive discard of all pages belonging to a failed
process

— Aggressive failure detection

* Distributed agreement algorithm confirms cell has failed and
reboot it

Disco

Context: ca. 1995, large ccNUMA multiprocessors
appearing
Problem: scaling OSes to run efficiently on these was hard

— Extensive modification of OS required
— Complexity of OS makes this expensive

Idea: implement a scalable VMM, run multiple OS instances

VMM has most of the features of a scalable OS, e.g.:
— NUMA-aware allocator
— Page replication, remapping, etc.
VMM substantially simpler/cheaper to implement
Run multiple (smaller) OS images, for different applications

Disco Contributions

* First project to revive an old idea: virtualization
— New way to work around shortcomings of commodity
Oses

 Another interesting idea:
programming a single machine as a distributed
system

— Example: parallel make, two configurations:
1. Run an 8-CPU IRIX instance
2. Run 8 IRIX VMs on Disco, one with an NFS server

— Speedup for case 2, despite VM and vNIC overheads

K42

OS for cache-coherent NUMA
systems

IBM Research, 1997-2006ish

Successor of Tornado and
Hurricane systems
(University of Toronto)

Supports Linux API/ABI
Aims: high locality, scalability

Heavily object-oriented

— Resources managed by set of
object instances

The Answer To...

Why use OO in an OS?

Traditional System OO Decomposed System

User-level
requests

System paths &

data structures

used to satisfy
requests

e much sharing e much less sharing

e better performance
[Appavoo, 2005]

Clustered Objects

Example: shared counter

* Object internally decomposed
into processor-local
representatives

 Same reference on any
processor
— Object system routes

invocation to local
representative

=> Choice of sharing and locking
strategy local to each object

* Inexample, inc and dec are
local; only val needs to
communicate

Proco Proc1 Proc2

Clustered objects

Implementation using processor-local
object translation table:

reference

object translation table

code

object instance virtual function
table

Challenges with
clustered objects

* Degree of clustering (number of replicas,
partitioned vs replicated) depends on how the
object is used

* State maintained by the object replicas must
be kept consistent

* Determining global state can be expensive

— Eg choosing the next highest priority thread for
scheduling when priorities are distributed across
many user-level scheduler objects

K42 Principles/Lessons

* Focus on locality in addition to concurrency,
to achieve scalability

* Distributed component model enables
consistent construction of locality-tuned
objects

e Support distribution within each object:

— eases complexity

— abstraction permits controlled/manageable
introduction of localized data structures

Barrelfish:
The OS as Distributed System

2007-today, ETH Zurich
OS for “multicore” systems

— OS can be reconfigured for each new machine

No shared state
Message passing

Software consistency mechanisms

Barrelfish Architecture

A

Agreement
algorithms

Arch-specific

I
I
I
I
I
I
I
I
code I

Heterogeneous
cores

App

App App
OS node OS node OS node
State State State
replica replica replica

/

S

<Async message

x86

x64

ARM

AN

OS node

State
replica

Interconnect

Other recent multicore OSes

* Tessellation
— Berkeley, 2009
— Space-time partitioning for performance isolation

e fos (factored OS)
— MIT, 2009

— Space instead of time sharing, no distinction between
cluster and on-chip

e Akaros
— Berkeley, 2011

— “peer through layers of virtualization”

Clear trend....

OSes
Shared. state, Finer-grained Clustered objects Message passing,
One-big-lock locking partitioning replication

* Finer-grained locking of shared memory
e Replication as an optimization of shared memory

Further reading

Multics: www.multicians.org

“C.mmp: a multi-mini-processor”, W. Wulf and C.G. Bell, Fall Joint Computer Conference, Dec 1972
“HYDRA: The kernel of a multiprocessor operating system”, W. Wulf et al, Comm. ACM, 17(6) , June 1974
“Overview of the Hydra Operating System Development”, W. Wulf et al, 5" SOSP, Nov 1975
“Policy/Mechanism Separation in Hydra”, R. Levin et al, 5t SOSP, Nov 1975

“Medusa: An Experiment in Distributed Operating System Structure”, John K. Ousterhout et al, CACM,
23(2), Feb 1980

“Firefly: a multiprocessor workstation”, Chuck Thacker and Lawrence Stewart, Computer Architecture
News, 15(5), 1987

“The duality of memory and communication in the implementation of a multiprocessor operating system”,
Michael Young et al, 11t SOSP, Nov 1987 [Mach]

Mach: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html

“The Stanford FLASH Multiprocessor”, J Kuskin et al, ISCA, 1994

“Hive: Fault Containment for Shared-Memory Multiprocessors”, J.Chapin et al, 15t SOSP, Dec 1995
“K42: Building a Complete Operating System”, 15t EuroSys, April, 2006

“Tornado: Maximising Locality and Concurrency in a Shared Memory Multiprocessor Operating System”,
Gamsa et al, OSDI, Feb 1999

K42: http://domino.research.ibm.com/comm/research projects.nsf/pages/k42.index.html

