Concurrency and
Synchronization

Motivation

e Operating systems (and application programs)
often need to be able to handle multiple things
happening at the same time

— Process execution, interrupts, background tasks,
system maintenance

* Humans are not very good at keeping track of
multiple things happening simultaneously

* Threads and synchronization are an abstraction
to help bridge this gap

Why Concurrency?

Servers
— Multiple connections handled simultaneously

Parallel programs
— To achieve better performance

Programs with user interfaces

— To achieve user responsiveness while doing
computation

Network and disk bound programs
— To hide network/disk latency

Definitions

 Athread is a single execution sequence that
represents a separately schedulable task

— Single execution sequence: familiar programming
model

— Separately schedulable: OS can run or suspend a
thread at any time

* Protection is an orthogonal concept

— Can have one or many threads per protection
domain

Threads in the Kernel and at User-Level

 Multi-process kernel
— Multiple single-threaded processes
— System calls access shared kernel data structures

e Multi-threaded kernel

— multiple threads, sharing kernel data structures,
capable of using privileged instructions

— UNIX daemon processes -> multi-threaded kernel

 Multiple multi-threaded user processes

— Each with multiple threads, sharing same data
structures, isolated from other user processes

— Plus a multi-threaded kernel

Thread Abstraction

* Infinite number of processors
* Threads execute with variable speed
— Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

ThreadsSSSSS SSSSS

Processors i 1 i 2 i 3 i 4 i 5 : 12

Running Ready
Threads Threads

Question

Why do threads execute at variable speed?

Programmer’s

<

N

Programmer vs.

View

x + 1;
y + X3
X + Jy;

Possible

Execution
#1

X =x + 1;

y =y + Xj;

z = x + 3y,

Processor View

Possible
Execution
#2

Thread is suspended.
Other thread(s) run.

Thread is resumed.

Possible
Execution
#3

X =x + 1;
Thread is suspended.
Other thread(s) run.
Thread is resumed.

Possible Executions

One Execution

Thread 1

Thread 2

Thread 3

Another Execution

Thread 1

Thread 2

Thread 3 :|

Another Execution

Thread 1

Thread 2

Thread 3

Thread Operations

thread_create(thread, func, args)
— Create a new thread to run func(args)

thread_vyield()

— Relinquish processor voluntarily

thread_join(thread)

— In parent, wait for forked thread to exit, then
return

thread_exit
— Quit thread and clean up, wake up joiner if any

Thread Data Structures

Shared
State

Code

Thread 1’s
Per-Thread State

Global
Variables

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Thread 2’s
Per-Thread State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Heap

Thread Lifecycle

Scheduler
Thread Creation Readv |~ ResumesThread) Thread Exit
F S S ea y > 3
Sthread_create() (. Sthread_exit()
Thread Yield/Scheduler
Suspends Thread ;

sthread_yield()

Event Occurs Thread Waits for Event
Other Thread Calls . 7 sthread_join()
sthread _join()

Implementing Threads: Roadmap

e Kernel threads
— Thread abstraction only available to kernel

— To the kernel, a kernel thread and a single
threaded user process look quite similar

 Multithreaded processes using kernel threads
(Linux, MacOS, Windows)

— Kernel thread operations available via syscall

e User-level threads (Windows)
— Thread operations without system calls

Multithreaded OS Kernel

Kernel

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2
Globals TCB 1 TCB 2 TCB 3 PCB 1 PCB 2
Stack Stack Stack Stack Stack
Heap RPN RPN RPN ‘
Process 1 Process 2
User-Level Processes Thread Thread
Stack Stack
Code Code
Globals Globals
Heap Heap

Implementing threads

 Thread_fork(func, args)

— Allocate thread control block

— Allocate stack

— Build stack frame for base of stack (stub)

— Put func, args on stack

— Put thread on ready list

— Will run sometime later (maybe right away!)
e stub(func, args):

— Call (*func)(args)

— If return, call thread_exit()

Thread Stack

 What if a thread puts too many procedures on
its stack?

— What happens in Java?

— What happens in the Linux kernel?
— What happens in 0S/161?
— What should happen?

Thread Context Switch

* Voluntary
— Thread_yield
— Thread_join (if child is not done yet)

* |[nvoluntary
— Interrupt or exception
— Some other thread is higher priority

Voluntary thread context switch

Save registers on old stack
Switch to new stack, new thread
Restore registers from new stack
Return

Exactly the same with kernel threads or user
threads

— Xv6 hint: thread switch between kernel threads,
not between user process and kernel thread

0S/161 switchframe switch

/* a0: pointer to old thread control block /* Get new stack pointer from new thread */

* al: pointer to new thread control block */ Iw sp, 0(al)

/* Allocate stack space for 10 registers. */ nop /* delay slot for load */
addi sp, sp, -40 /* Now, restore the registers */
/* Save the registers */ lw s0, O(sp)
sw ra, 36(sp) lw s1, 4(sp)
sw gp, 32(sp) lw s2, 8(sp)
sw s8, 28(sp) lw s3, 12(sp)
sw sb6, 24(sp) lw s4, 16(sp)
sw s5, 20(sp) lw s5, 20(sp)
sw s4, 16(sp) lw s6, 24(sp)
sw s3, 12(sp) lw s8, 28(sp)
sw s2, 8(sp) lw gp, 32(sp)
sw s1, 4(sp) lw ra, 36(sp)
sw s0, O(sp) nop /* delay slot for load */

/* Store old stack pointer in old thread */

SW

sp, 0(a0)

jra

addi sp, sp, 40

/* and return. */
/* in delay slot */

x86 switch threads

Save caller’s register state

NOTE: %eax, etc. are ephemeral
pushl %ebx

pushl %ebp

pushl %esi

pushl %edi

Get offset of struct thread.stack
mov thread stack_ ofs, %edx

Save current stack pointer

movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Change stack pointer;

stack points to new TCB

movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi

popl %esi

popl %ebp

popl %ebx

ret

A Subtlety

* Thread create puts new thread on ready list

 When it first runs, some thread calls
switchframe
— Saves old thread state to stack
— Restores new thread state from stack

e Set up new thread’s stack as if it had saved its
state in switchframe

— “returns” to stub at base of stack to run func

Two Threads Call Yield

Thread 1’s instructions

“return” from thread_switch
into stub

call go

call thread_yield

choose another thread

call thread_switch

save thread 1 state to TCB

load thread 2 state

return from thread_switch
return from thread_yield
call thread_yield

choose another thread
call thread_switch

Thread 2’s instructions

“return” from thread switch
into stub

call go

call thread_yield

choose another thread

call thread switch

save thread 2 state to TCB

load thread 1 state

Processor’s instructions

“return” from thread_switch
into stub

call go

call thread_yield

choose another thread

call thread_switch

save thread 1 state to TCB

load thread 2 state

“return” from thread switch
into stub

call go

call thread_yield

choose another thread

call thread switch

save thread 2 state to TCB

load thread 1 state

return from thread_switch

return from thread yield

call thread_yield

choose another thread

call thread_switch

Involuntary Thread/Process Switch

* Timer or I/O interrupt
— Tells OS some other thread should run

* Simple version
— End of interrupt handler calls switch()

— When resumed, return from handler resumes
kernel thread or user process

— Thus, processor context is saved/restored twice
(once by interrupt handler, once by thread switch)

Faster Thread/Process Switch

 What happens on a timer (or other) interrupt?

— Interrupt handler saves state of interrupted
thread

— Decides to run a new thread

— Throw away current state of interrupt handler!
— Instead, set saved stack pointer to trapframe
— Restore state of new thread

— On resume, pops trapframe to restore interrupted
thread

Multithreaded User Processes (Take 1)

e User thread = kernel thread (Linux, MacOS)

— System calls for thread fork, join, exit (and lock,
unlock,...)

— Kernel does context switch

— Simple, but a lot of transitions between user and
kernel mode

Kernel

Multithreaded User Processes

(Take 1)

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3

o o o

Process 1

Process 2

Globals TCB 1 | tce2 | | 183 | [t1cB1a| [T1eB1B]| [TCB2A| | TCB2B|
Stack Stack Stack Stack Stack Stack Stack
Heap SRS |:::::::::::| |:::::::::::| | | | | | | | |
Process 1 Process 2
User-Level Processes Thread A Thread B Thread A Thread B
| Stack || Stack | | Stack || Stack |
Code Code
Globals Globals
Heap Heap

Multithreaded User Processes (Take 2)

* Green threads (early Java)

— User-level library, within a single-threaded
process

— Library does thread context switch

— Preemption via upcall/UNIX signal on timer
interrupt

— Use multiple processes for parallelism
* Shared memory region mapped into each process

Multithreaded User Processes (Take 3)

e Scheduler activations (Windows 8)
— Kernel allocates processors to user-level library
— Thread library implements context switch
— Thread library decides what thread to run next
* Upcall whenever kernel needs a user-level
scheduling decision
* Process assigned a new processor
* Processor removed from process
e System call blocks in kernel

Synchronization

Synchronization Motivation

When threads concurrently read/write shared
memory, program behavior is undefined

— Two threads write to the same variable; which one
should win?

Thread schedule is non-deterministic

— Behavior changes when re-run program
Compiler/hardware instruction reordering
Multi-word operations are not atomic

Question: Can this panic?

Thread 1 Thread 2

p = someComputation(); while (Iplnitialized)
pinitialized = true; ;

g = someFunction(p);

if (g != someFunction(p))

panic

Why Reordering?

* Why do compilers reorder instructions?

— Efficient code generation requires analyzing control/
data dependency

— If variables can spontaneously change, most compiler
optimizations become impossible

* Why do CPUs reorder instructions?

— Write buffering: allow next instruction to execute
while write is being completed

Fix: memory barrier
— Instruction to compiler/CPU
— All ops before barrier complete before barrier returns
— No op after barrier starts until barrier returns

Too Much Beer Example

Person A Person B

9:30 Look in fridge. Out of beer.

9:35 Leave for store.

9:40 Arrive at store. Look in fridge. Out of beer.
9:45 Buy beer. Leave for store.

9:50 Arrive home, put beer away. Arrive at store.

9:55 Buy beer.

10:00 Arrive home, put beer away.

No room!

Definitions
Race condition: output of a concurrent program depends on
the order of operations between threads
Mutual exclusion: only one thread does a particular thing at a
time
— Critical section: piece of code that only one thread can
execute at once
Lock: prevent someone from doing something

— Lock before entering critical section, before accessing
shared data

— Unlock when leaving, after done accessing shared data
— Wait if locked (all synchronization involves waiting!)

Too Much Beer, Try

e Correctness property
— Someone buys if needed (liveness)
— At most one person buys (safety)

 Try #1: leave a note
if (Inote)
if (!beer) {
leave note
buy beer
remove note

Too Much Beer, Try #2

Thread A Thread B
leave note A leave note B
if (Inote B) { if (InoteA) {
if (!beer) if (!beer)
buy beer buy beer
} }

remove note A remove note B

Too Much Beer, Try #3

Thread A Thread B

leave note A leave note B

while (note B) // X if (InoteA){ //Y
do nothing; if (!beer)

if (!beer) buy beer
buy beer; }

remove note A remove note B

Can guarantee at X and Y that either:
(i) Safe for me to buy
(ii) Other will buy, ok to quit

Lessons

* Solution is complicated

— “obvious” code often has bugs

 Modern compilers/architectures reorder
Instructions

— Making reasoning even more difficult

* Generalizing to many threads/processors

— Even more complex: see Peterson’s algorithm

Roadmap

Concurrent Applications

Semaphores Locks Condition Variables

Interrupt Disable Atomic Read/Modify/Write Instructions

Multiple Processors Hardware Interrupts

Locks

* Lock::acquire
— wait until lock is free, then take it

e Lock::release

— release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)

2. If no one holding, acquire gets

OC

3. If all lock holders finish and no hig

waiters, waiter eventually gets

K (progress)
ner priority

OC

K (progress)

Question: Why only Acquire/Release?

* Suppose we add a method to a lock, to ask if
the lock is free. Suppose it returns true. Is
the lock:

— Free?
— Busy?
— Don’t know?

Too Much Beer, #4

Locks allow concurrent code to be much simpler:
lock.acquire();
if (!beer)
buy beer
lock.release();

Lock Example: Malloc/Free

char *malloc (n) { void free(char *p) {
heaplock.acquire(); heaplock.acquire();
p = allocate memory put p back on free list
heaplock.release(); heaplock.release();
return p; }

Rules for Using Locks

Lock is initially free

Always acquire before accessing shared data
structure

— Beginning of procedure!

Always release after finishing with shared data
— End of procedure!

— Only the lock holder can release

— DO NOT throw lock for someone else to release
Never access shared data without lock

— Danger!

Double Checked Locking

if (p == NULL) { newP() {
lock.acquire(); tmp = malloc(sizeof(p));
if (p == NULL) { tmp->fieldl = ...
p = newP(); tmp->field2 = ...
} return tmp;
lock.release(); }
}

use p->fieldl

Single Checked Locking

lock.acquire(); newP() {
if (p == NULL) { tmp = malloc(sizeof(p));
p = newP(); tmp->fieldl = ...
} tmp->field2 = ...
lock.release(); return tmp;

use p->fieldl }

Example: Bounded Buffer

tryget() { tryput(item) {
lock.acquire(); lock.acquire();
item = NULL; success = FALSE;
if (front < tail) { if ((tail — front) < MAX) {
item = buf[front % MAX]; buf[tail % MAX] = item;
front++; tail++;
} success = TRUE;
lock.release(); }
return item; lock.release();
} return success;
}

Initially: front = tail = 0; lock = FREE; MAX is buffer capacity

Question

* |f tryget returns NULL, do we know the buffer
is empty?

* |f we poll tryget in a loop, what happens to a
thread calling tryput?

Condition Variables

Waiting inside a critical section
— Called only when holding a lock

Wait: atomically release lock and relinquish
processor

— Reacquire the lock when wakened
Signal: wake up a waiter, if any
Broadcast: wake up all waiters, if any

Condition Variable Design Pattern

methodThatWaits() { methodThatSignals() {

lock.acquire(); lock.acquire();

// Read/write shared state // Read/write shared state
while (!testSharedState()) { // If testSharedState is now true

cv.wait(&lock); cv.signal(&lock);

}

// Read/write shared state // Read/write shared state
lock.release(); lock.release();

J }

Example: Bounded Buffer

get() { put(item) {
lock.acquire(); lock.acquire();
while (front == tail) { while ((tail = front) == MAX) {

empty.wait(&lock); full.wait(&lock);

} }
item = buf[front % MAX]; buf[tail % MAX] = item;
front++; tail++;
full.signal(&lock); empty.signal(&lock);
lock.release(); lock.release();
return item; }

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

Pre/Post Conditions

What is state of the bounded buffer at lock
acquire?

— front <= tail

— tail — front <= MAX

These are also true on return from wait
And at lock release
Allows for proof of correctness

Question

Does the kth call to get return the kth item put?

Hint: wait must re-acquire the lock after the
signaller releases it.

Pre/Post Conditions

methodThatWaits() { methodThatSignals() {
lock.acquire(); lock.acquire();
// Pre-condition: State is consistent // Pre-condition: State is consistent
// Read/write shared state // Read/write shared state
while (!testSharedState()) { // If testSharedState is now true
cv.wait(&lock); cv.signal(&lock);
}
// WARNING: shared state may // NO WARNING: signal keeps lock
// have changed! But
// testSharedState is TRUE // Read/write shared state
// and pre-condition is true lock.release();
}

// Read/write shared state
lock.release();

}

Rules for Condition Variables

 ALWAYS hold lock when calling wait, signal,
broadcast

— Condition variable is sync FOR shared state
— ALWAYS hold lock when accessing shared state

* Condition variable is memoryless
— If signal when no one is waiting, no op
— If wait before signal, waiter wakes up
* Wait atomically releases lock
— What if wait, then release?
— What if release, then wait?

Rules for Condition Variables, cont’d

* When a thread is woken up from wait, it may not
run immediately

— Signal/broadcast put thread on ready list
— When lock is released, anyone might acquire it

 Wait MUST be in a loop
while (needToWait()) {
condition.Wait(&lock);

!
e Simplifies implementation
— Of condition variables and locks
— Of code that uses condition variables and locks

Java Manual

When waiting upon a Condition, a “spurious
wakeup” is permitted to occur, in general, as a
concession to the underlying platform
semantics. This has little practical impact on
most application programs as a Condition
should always be waited upon in a loop,
testing the state predicate that is being waited
for.

Structured Synchronization

|dentify objects or data structures that can be accessed by
multiple threads concurrently

— In kernel, everything!

Add locks to object/module
— Grab lock on start to every method/procedure
— Release lock on finish

If need to wait
— while(needToWait()) { condition.Wait(lock); }
— Do not assume when you wake up, signaller just ran

If do something that might wake someone up
— Signal or Broadcast

Always leave shared state variables in a consistent state
— When lock is released, or when waiting

Remember the rules

Use consistent structure
Always use locks and condition variables

Always acquire lock at beginning of
procedure, release at end

Always hold lock when using a condition
variable

Always wait in while loop
Never spin in sleep()

Implementing Synchronization

Concurrent Applications

Semaphores Locks Condition Variables

Interrupt Disable Atomic Read/Modify/Write Instructions

Multiple Processors Hardware Interrupts

Implementing Synchronization
(Take 1)

Use memory load/store instructions
— See too much beer solution/Peterson’s algorithm
— Complex
— Need memory barriers
— Hard to test/verify correctness

Implementing Synchronization
(Take 2)

Lock::acquire() {
oldIPL = setInterrupts(OFF);
lockHolder = myTCB;
}
Lock::release() {
ASSERT(lockholder == myTCB);
lockHolder = NULL;
setinterrupts(oldIPL); // implies memory barrier

Lock Implementation, Uniprocessor

Lock::acquire() {

oldIPL = setinterrupts(OFF);

if (value == BUSY) {
waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else {
value = BUSY;
lockHolder = myTCB;

}
setinterrupts(oldIPL);

}

Lock::release() {
ASSERT(lockHolder == myTCB);
oldIPL = setInterrupts(OFF);
if ('waiting.Empty()) {

next = waiting.remove();
next->state = READY;
readyList.add(next);
lockHolder = next;

} else {
value = FREE;

lockHolder = NULL;

}
setinterrupts(oldIPL);

What thread is currently running?

 Thread scheduler needs to know the TCB of the
currently running thread

— To suspend and switch to a new thread
— To check if the current thread holds a lock before
acquiring or releasing it
* On a uniprocessor, easy: just use a global
variable

— Change the value in switch

* On a multiprocessor?

What thread is currently running?
(Multiprocessor Version)

 Compiler dedicates a register
— 0S/161 on MIPS: s7 points to TCB running on this CPU
 Hardware register holds processor number

— x86 RDTSCP: read timestamp counter and processor ID

— OS keeps an array, indexed by processor ID, listing
current thread on each CPU

* Fixed-size thread stacks: put a pointer to the TCB
at the bottom of its stack

— Find it by masking the current stack pointer

Mutual Exclusion Support on a
Multiprocessor

* Read-modify-write instructions

— Atomically read a value from memory, operate onit,
and then write it back to memory

— Intervening instructions prevented in hardware

— Implies a memory barrier

 Examples
— Test and set // read old value, set value to 1
— Intel: xchgb // read old value, set new value
— Compare and swap // test if old value has changed
// if not change it

Spinlocks

A spinlock waits in a loop for the lock to become
free

— Assumes lock will be held for a short time

— Used to protect the CPU scheduler and to
implement locks, CVs

loop: // pointer to lock value in (%eax)
lock xchgb (%eax), 1

jnz loop

Spinlocks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)
lockHolder = myTCB;

}

Spinlock::release() {
ASSERT(lockHolder == myTCB);
lockHolder = NULL;
(void)testAndClear(&lockValue); // membarrier

J

Spinlocks and Interrupt Handlers

* Suppose an interrupt handler needs to access
some shared data => acquires spinlock

— To put a thread on the ready list (I/O completion)
— To switch between threads (time slice)

 What happens if a thread holds that spinlock
with interrupts enabled?

— Deadlock is possible unless ALL uses of that
spinlock are with interrupts disabled

How Many Spinlocks?

e Various data structures
— Queue of waiting threads on lock X
— Queue of waiting threads on lock Y

— List of threads ready to run
* One spinlock per kernel? Bottleneck!
* One spinlock per lock

* One spinlock for the scheduler ready list
— Per-core ready list: one spinlock per core
— Scheduler lock requires interrupts off!

Lock Implementation, Multiprocessor

Lock::acquire() {

spinLock.acquire();

if (value == BUSY) {
waiting.add(myTCB);
suspend(&spinlock);
ASSERT(lockHolder ==

myTCB);

} else {
value = BUSY;
lockHolder = myTCB;

}

spinLock.release();

Lock::release() {
ASSERT(lockHolder = myTCB);
spinLock.acquire();
if ('waiting.Empty()) {

next = waiting.remove();
lockHolder = next;
sched.makeReady(next);

} else {
value = FREE;

lockHolder = NULL;
}

spinLock.release();

Lock Implementation, Multiprocessor

Sched::suspend(SpinLock *sl) {

TCB *next; Sched::makeReady(TCB
oldIPL = setinterrupts(OFF); *thread) {
schedSL.acquire(); oldIPL =setInterrupts(OFF);
sl->release(); schedSL.acquire();
myTCB->state = WAITING; readyList.add(thread);
next = readyList.remove(); thread->state = READY:

switch(myTCB, next);
myTCB->state = RUNNING;
schedSL.release(); }
setinterrupts(oldIPL);

schedSL.release();
setinterrupts(oldIPL);

Lock Implementation, Linux

Most locks are free most of the time. Why?
— Linux implementation takes advantage of this fact

Fast path

— If lock is FREE and no one is waiting, two instructions
to acquire the lock

— If no one is waiting, two instructions to release

Slow path
— If lock is BUSY or someone is waiting (see multiproc)

Two versions: one with interrupts off, one w/o

Lock Implementation, Linux

struct mutex { // atomic decrement
/* 1: unlocked ; O: locked; // %eax is pointer to count
negative : locked, lock decl (%eax)

possible waiters */ jns 1f // jump if not signed

// (if value is now 0)

call slowpath_acquire
1:

atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;

5

Application Locks

* A system call for every lock acquire/release?
— Context switch in the kernel!

* |nstead:
— Spinlock at user level

— “Lazy” switch into kernel if spin for period of time

e Or scheduler activations:
— Thread context switch at user level

Readers/Writers Lock

e A common variant for mutual exclusion
— One writer at a time, if no readers
— Many readers, if no writer

* How might we implement this?
— ReaderAcquire(), ReaderRelease()
— WriterAcquire(), WriterRelease()
— Need a lock to keep track of shared state

— Need condition variables for waiting if readers/
writers are in progress

— Some state variables

Readers/Writers Lock

Lock lock = FREE

CV okToRead = nil

CV okToWrite = nil

AW =0 //active writers
AR =0 // active readers
WW =0 // waiting writers
WR =0 // waiting readers

Readers/Writers Lock

ReaderAcquire()
lock.Acquire();
while (AW > 0) {
WR++;
okToRead.wait(&lock);
WR--;

Lock lock = FREE lock.Acquire(); lock.Acquire();
while (AW >0 || WW >0) { while (AW >0 || AR > 0) {

CV okToRead = nil WR++; WW++;
CV okToWrite = nil okToRead.wait(&lock); okToRead.wait(&lock);
WR--; WW--;
AW =0 } }
AR=0 AR++; AW++;
WW =0 lock.Release(); lock.Release();
WR=0
Read data Write data
lock.Acquire(); lock.Acquire();
AR--; AW--;
if (AR==0&& WW >0) if (WW >0)
okToWrite.Signal(); okToWrite.Signal();
lock.Release(); else if (WR > 0)

okToRead.Signal();
lock.Release();

Readers/Writers Lock

e Can readers starve?
— Yes: writers take priority

e Can writers starve?

— Yes: a waiting writer may not be able to proceed, if
another writer slips in between signal and wakeup

Readers/Writers Lock, w/o Starvation
Take 1

Writer() {
lock.Acquire();
// check if another thread is already waiting
while ((AW + AR + WW) > 0) {
WW++;
okToWrite.Wait(&lock);
WW--;
}
AW++;
lock.Release();

Readers/Writers Lock w/o Starvation

Take 2
// check in // check out
lock.Acquire(); lock.Acquire();
myPos = numWriters++; AW--;
while (AW + AR>0 || nextToGo++;
myPos > nextToGo){ if (WW >0) {

WW++; okToWrite.Signal(&lock);

okToWrite.Wait(&lock); }else if (WR > 0)

WW--; okToRead.Bcast(&lock);
) lock.Release();

AW++;
lock.Release();

Readers/Writers Lock w/o Starvation

Take 3

// check in // check out

lock.Acquire(); lock.Acquire();

myPos = numWriters++; AW--;

myCV = new CV; nextToGo++;

writers.Append(myCV); if (WW >0){

while (AW + AR>0 || cv = writers.Front();

myPos > nextToGo) { cv.Signal(&lock);

WW++; } else if (WR > 0)
myCV.Wait(&lock); okToRead.Broadcast(&lock);
WW--; lock.Release();

}

AW++;

delete myCV;

lock.Release();

Mesa vs. Hoare semantics

* Mesa
— Signal puts waiter on ready list
— Signaller keeps lock and processor

* Hoare

— Signal gives processor and lock to waiter

— When waiter finishes, processor/lock given back
to signaller

— Nested signals possible!

FIFO Bounded Buffer
(Hoare semantics)

get() { put(item) {
lock.acquire(); lock.acquire();
if (front == tail) { if ((tail — front) == MAX) {

empty.wait(&lock); full. wait(&lock);

} }
item = buf[front % MAX]; buf[last % MAX] = item;
front++; last++;
full.signal(&lock); empty.signal(&lock);
lock.release(); // CAREFUL: someone else ran
return item; lock.release();

} }

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

FIFO Bounded Buffer
(Mesa semantics)

Create a condition variable for every waiter
Queue condition variables (in FIFO order)
Signal picks the front of the queue to wake up
CAREFUL if spurious wakeups!

Easily extends to case where queue is LIFO,
priority, priority donation, ...

— With Hoare semantics, not as easy

FIFO Bounded Buffer
(Mesa semantics, put() is similar)

get() { delete self;
lock.acquire(); item = buf[front % MAX];
myPosition = numGets++; front++;
self = new Condition; if (next = nextPut.remove()) {
nextGet.append(self); next->signal(&lock);
while (front < myPosition }
| | front == tail) { lock.release();
self.wait(&lock); return item;
} }

Initially: front = tail = numGets = 0; MAX is buffer capacity
nextGet, nextPut are queues of Condition Variables

Semaphores

 Semaphore has a non-negative integer value

— P() atomically waits for value to become > 0, then
decrements

— V() atomically increments value (waking up waiter if
needed)

* Semaphores are like integers except:
— Only operations are P and V

— Operations are atomic
e If valueis 1, two P’s will result in value 0 and one waiter

 Semaphores are useful for
— Unlocked wait/wakeup: interrupt handler, fork/join

Semaphore Implementation

Semaphore::P() { Semaphore::V() {
oldIPL=setInterrupts(OFF); oldIPL=setInterrupts(OFF);
spinLock.acquire(); spinLock.acquire();
if (value == 0) { if (lwaiting.Empty()) {

waiting.add(myTCB); next = waiting.remove();
suspend(&spinlock); sched.makeReady(next);
}else { } else {
value--; value++;
! }
spinLock.release(); spinLock.release();
setinterrupts(oldIPL); setinterrupts(oldIPL);

Semaphore Bounded Buffer

get() { put(item) {
fullSlots.P(); emptySlots.P();
mutex.P(); mutex.P();
item = buf[front % MAX]; buf[last % MAX] = item;
front++; last++;
mutex.V(); mutex.V();
emptySlots.V(); fullSlots.V();
return item; }

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0;

Implementing Condition Variables
using Semaphores (Take 1)

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();
}

signal() {
semaphore.V();

J

Implementing Condition Variables

using Semaphores (Take 2)

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();

}
signal() {
if (semaphore is not empty)
semaphore.V();

Implementing Condition Variables

using Semaphores (Take 3)

wait(lock) {
semaphore = new Semaphore;
queue.Append(semaphore); // queue of waiting threads
lock.release();
semaphore.P();
lock.acquire();

}
signal() {
if ('queue.Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter

}
J

Communicating Sequential Processes
(CSP/Google Go)

 Threads communicate through channels
— Bounded buffer: put/get

* Good match for data flow processing

— Producer/consumer

* No memory races!

CSP/Google Go

 What about general computation?
— Is CSP as powerful as locks/condition variables?

* Athread per shared object
— Only thread allowed to touch object’s data

— To call a method on the object, send thread a
message with method name, arguments

— Thread waits in a loop, get msg, do operation

Bounded Buffer (CSP)

while (cmd = getNext()) {
if (cmd == GET) {

if (front < tail) { }else {// cmd == PUT
// do get if ((tail — front) < MAX) {
// send reply // do put
// if pending put, do it // send reply
// and send reply // if pending get, do it
} else // and send reply
// queue get operation } else
} // queue put operation

Locks/CVs vs. CSP

Create a lock on shared data
= create a single thread to operate on data

Call a method on a shared object
= send a message/wait for reply

Wait for a condition

= queue an operation that can’t be completed just
yet

Signal a condition
= perform a queued operation, now enabled

Remember the rules

Use consistent structure
Always use locks and condition variables

Always acquire lock at beginning of
procedure, release at end

Always hold lock when using a condition
variable

Always wait in while loop
Never spin in sleep()

