Addressing and Virtual Memory
(plus some UNIX and Mach)

Shell

* Ashellis ajob control system

— Allows programmer to create and manage a set of
programs to do some task

— Windows, MacOS, Linux all have shells

 Example: to compile a C program
cc —c sourcefilel.c
cc —c sourcefile2.c
In —o program sourcefilel.o sourcefile2.0

Windows CreateProcess

» System call to create a new process to run a
program

— Create and initialize the process control block (PCB) in
the kernel

— Create and initialize a new address space
— Load the program into the address space
— Copy arguments into memory in the address space

— Initialize the hardware context to start execution at
“start”

— Inform the scheduler that the new process is ready to
run

Windows CreateProcess API
(simplified)

if (ICreateProcess(

NULL, // No module name (use command line)
argv[1], // Command line
NULL, // Process handle not inheritable

NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE

0, // No creation flags

NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&si, // Pointer to STARTUPINFO structure

&pi) // Pointer to PROCESS INFORMATION structure

UNIX Process Management

UNIX fork — system call to create a copy of the
current process, and start it running

— No arguments!
— Returns 0 to child, child process ID to parent

UNIX exec — system call to change the
program being run by the current process

UNIX wait — system call to wait for a process
to finish

UNIX signal — system call to send a notification
to another process

UNIX Process Management

pid = fork();

if (pid == 0)
exec(...);

else
wait(pid);

..............

...............

pid = fork();

if (pid == 0)
exec(...);

else
wait(pid);

pid = fork();

if (pid == 0)
exec(...);

else
wait(pid);

...............................

...............................

main () {

Questions

e Can UNIX fork() return an error? Why?
 Can UNIX exec() return an error? Why?

 Can UNIX wait() ever return immediately?
Why?

Implementing UNIX fork

Steps to implement UNIX fork

— Create and initialize the process control block
(PCB) in the kernel

— Create a new address space

— Initialize the address space with a copy of the
entire contents of the address space of the parent

— Inherit the execution context of the parent (e.g.,
any open files)

— Inform the scheduler that the new process is
ready to run

Implementing UNIX exec

e Steps to implement UNIX fork
— Load the program into the current address space

— Copy arguments into memory in the address
space

— Initialize the hardware context to start execution
at start"

UNIX I/O

Uniformity

— All operations on all files, devices use the same set of
system calls: open, close, read, write

Open before use

— Open returns a handle (file descriptor) for use in later
calls on the file

Byte-oriented
Kernel-buffered read/write

Explicit close
— To garbage collect the open file descriptor

UNIX File System Interface

UNIX file open is a Swiss Army knife:
— Open the file, return file descriptor
— Options:

e if file doesn’t exist, return an error

* |f file doesn’t exist, create file and open it
If file does exist, return an error
If file does exist, open file

If file exists but isn’t empty, nix it then open
If file exists but isn’t empty, return an error

Interface Design Question

* Why not separate syscalls for open/create?

if (lexists(name))
create(name); // can create fail?
fd = open(name); // does the file exist?

UNIX Retrospective

Designed for computers 107-8 slower than today
Radical simplification relative to Multics

Key ideas behind the project
1. ease of programming and interactive use

2. size constraint: underpowered machine, small
memory

3. Eat your own dogfood. UNIX dev on UNIX.

Question

 We are still using UNIX (on servers, on
smartphones) because of

— its system call API?

— its simple implementation?

— Its shell can can be scripted?

— Its file directories are stored as files?

Christensen Disruption

* Attempt to answer a puzzle

— Why do very successful tech companies often miss
the most important tech shifts?

* Disruption I=
— anytime a tech company goes bankrupt
— any tech advance

e Lesson: what makes you strong kills you

Christensen Disruption

e Successful companies do what their
customers want

— Incorporate new tech, if it is “better”

* Disruptive technology design pattern
— Worse for typical user, but less expensive
— Both old and new tech improve over time
— Eventually, new tech is cheaper and good enough

Operating Systems

Lowest layer of software on the computer

Hides specifics of underlying hardware from
users, developers

— Portability => hardware as commodity
APl for developers
— Ease of use => application lock in

User facing

— User lock in

OS History

MVS Mul;[ics
MS/DOS Vh?IS VM/S?O Ul\élIX
: I
Windows BSD UNIX Mach
Windoéws NT VM\?Vare Lil:{ux NEVXT MacOS
|
Windows 8 MacE)S X
............ Influence

Descendant Android iOS

Other Examples

Internet vs. telephony

Web vs. network file systems
SQL vs. hierarchical databases
Mapreduce vs. SQL

C vs. Fortran (or assembly)
Java/Python/Go vs. C++

Address Translation

Main Points

* Address Translation Concept

— How do we convert a virtual address to a physical
address?

* Flexible Address Translation
— Segmentation
— Paging
— Multilevel translation
e Efficient Address Translation
— Translation Lookaside Buffers
— Virtually and physically addressed caches

Address Translation Concept

Virtual
Address Rai
ProCessor [« wwwweeeeeeeess >| Translation [Invalid - , nalse
Exception
? Valid
: Physical
S sessssssesssssssess >
' Memor
Data Physical y
: Address

Address Translation Goals

Memory protection

Memory sharing
— Shared libraries, interprocess communication

Sparse addresses

— Multiple regions of dynamic allocation (heaps/stacks)
Efficiency

— Memory placement

— Runtime lookup

— Compact translation tables

Portability

Bonus Feature

 What can you do if you can (selectively) gain
control whenever a program reads or writes a
particular virtual memory location?
 Examples:
— Copy on write
— Zero on reference
— Fill on demand
— Demand paging
— Memory mapped files

Process Regions or Segments

* Every process has logical regions or segments
— Contiguous region of process memory

— Code, data, heap, stack, dynamic library (code,
data), memory mapped files, ...

— Each region has its own protection: read-only,
read-write, execute-only

— Each region has its own sharing: e.g., code vs. data

Segmentation

 Segment is a contiguous region of virtual memory

— What if we store it in contiguous physical memory?

* Translation: per-process segment table
— Each segment has: start, length, access permission
— Instruction encoding: fewer bits of address

* Processes can share segments

— Same start, length, same/different access permissions

Segmentation

Processor’s View Implementation Physical
Memory
Virtual Base 3
Memory Stack
] Processor Base+
Virtual Bound 3
Address | Code : Virtual Segment Table
Processor| : : Address Base Bound Access
: : Base 0
--------- > »| Segment| Offset Read
: : Code
Data e, TS > . . R/W
: : : Base+
R/W Bound 0
R/W
Heap
Base 1
...... >
§ : § Physical Add : Data B
: : ySiCa ress : ase+
Stack Beasseassanvesnieasand > @ -. Bound 1
: v Raise
EUSRSSRRRRRRRRIE Y () EERRRRRD >
)(:> Exception
Base 2
Heap
Base+

Bound 2

Segment start

length

2 bit segment # code 0x4000 0x700
12 bit offset data 0 0x500

heap - -
main: 240 store #1108, r2 x: 108 abc\O
244 store pc+8, r31
248 jump 360 main: 4240 store #1108, r2
24c 4244 store pc+§, r31

4248 jump 360

strlen: 360 loadbyte (r2), r3 424c
420 jump (r31) strlen: 4360 loadbyte (r2),r3
x: 1108 abc\0 4420 jump (r31)

UNIX fork and Copy on Write

e UNIX fork

— Makes a complete copy of a process

* Segments allow a more efficient implementation
— Copy segment table into child
— Mark parent and child segments read-only
— Start child process; return to parent
— If child or parent writes to a segment (ex: stack)

e trap into kernel
* make a copy of the segment and resume

Processor’s View

Process 1's View

Processor

Process 2's View

Processor

Virtual
Address
0x0500

Virtual
Address
0x0500

Virtual
Memory

Code

Processor

Data

Heap

Stack

Implementation

Code

Processor

Data

Heap

Stack

Seg. Offset
0 500 Code
Virtual Data
Address Heap
Stack
Seg. Oﬁseté
0 500 Code
Virtual Data
Address Heap
Stack

Base

Segment Table

Bound

Access

Read

R/W

R/W

R/W

Physical Address

Segment Table

Bound

Access

Ba%e

Read

R/W

R/W

R/W

Physical
Memory

P2's
Data

P1's
Heap

P1's
Stack

P1's
Data

P2's
Heap

P1’s+
Code

P2’s
Stack

Question

* How much physical memory is needed for the
stack or heap?

Expand Stack on Reference

* When program references memory beyond
end of stack

— Segmentation fault into OS kernel

— Kernel allocates some additional memory
e How much?

— Zeros the memory
 avoid accidentally leaking information!

— Modify segment table

— Resume process

Segmentation

* Pros?
— Can share code/data segments between processes
— Can protect code segment from being overwritten
— Can transparently grow stack/heap as needed
— Can detect if need to copy-on-write

* Cons? Complex memory management
— Need to find chunk of a particular size

— May need to rearrange memory to make room for new
segment or growing segment

— External fragmentation: wasted space between chunks

Paged Translation

* Manage memory in fixed size units, or pages
* Finding a free page is easy

— Bitmap allocation: 0011111100000001100

— Each bit represents one physical page frame

* Each process has its own page table
— Stored in physical memory

— Hardware registers
e pointer to page table start
* page table length

Processor’s View

VPage 0[
VPage 1[

VPage N[

Code

Data

Heap

Stack

Physical

Memory

E > Codd)

.......................................

e > Heap2

»>| Data0

»|Heapl

>|Codel

>Heap0

>| Datal

>|Stack1

»|StackO

Frame O

Frame M

Processor

...............

...................

Virtual
Address

.. >
Virtual et eeeeeeneencantanaens
Address
)_
e s >

Physical

Memory
Physical Erame ?
Address rame
........ >| Frame Offset
gPage Table . >
Fretfme Access
........... >
: Physical
v Address
Frame M

Process View

L 6 MmO

rxX - —

Physical Memory

Page Table

rx - —

OO ®X>» | T T m

Paging and Sharing

 Can we share memory between processes?

* Set both page tables point to same page frames

* Need core map
— Array of information about each physical page frame
— Set of processes pointing to that page frame

— When zero, can reclaim!

Paging and Copy on Write

e UNIX fork

— Copy page table of parent into child process

— Mark all pages (in new and old page tables) as read-
only

— Trap into kernel on write (in child or parent)
— Copy page

— Mark both as writeable

— Resume execution

Question

 Canlrun a program when only some of its
code is in physical memory?

Fill On Demand

Set all page table entries to invalid

When a page is referenced for first time, kernel
trap

Kernel brings page in from disk
Resume execution

Remaining pages can be transferred in the
vackground while program is running

A Case for Sparse Address Spaces

* Might want many separate segments
— Per-processor heaps
— Per-thread stacks
— Memory-mapped files
— Dynamically linked libraries

 What if virtual address space is large?
— 32-bits, 4KB pages => 500K page table entries
— 64-bits, 4KB pages => 4 quadrillion table entries (!)

Multi-level Translation

* Tree of translation tables
— Paged segmentation
— Multi-level page tables
— Multi-level paged segmentation

* All have pages as lowest level; why?

Fixed Size Pages at Lowest Level

Efficient memory allocation (vs. segments)
Efficient for sparse addresses (vs. paging)
Efficient disk transfers (fixed size units)

Easier to build translation lookaside buffers
Efficient reverse lookup (from physical -> virtual)
Variable granularity for protection/sharing

Paged Segmentation

Process memory is segmented

Segment table entry:

— Pointer to page table

— Page table length (# of pages in segment)
— Access permissions

Page table entry:

— Page frame

— Access permissions

Share/protection at either page or segment-level

Multilevel Paging

What if each page table points to a page table?

Implementation Physical
Memory
Processor
Virtual
Address
-3 Index 1 Index 2 Index 3 Offset
' ‘ : Physical :
Level 1 Address ;
Frame Offset [
................................... > ~
Level 2
e
... >
Level 3

...

Question

* Write pseudo-code for translating a virtual
address to a physical address for a system

using 3-level paging, with 8 bits of address per
level

x86 Multilevel Paged Segmentation

* Global Descriptor Table (segment table)
— Pointer to page table for each segment
— Segment length
— Segment access permissions

— Context switch: change global descriptor table register
(GDTR, pointer to global descriptor table)

* Multilevel page table
— 4KB pages; each level of page table fits in one page
— 32-bit: two level page table (per segment)
— 64-bit: four level page table (per segment)
— Omit sub-tree if no valid addresses

Multilevel Translation

* Pros:
— Allocate/fill only page table entries that are in use
— Simple memory allocation

— Share at segment or page level

* Cons:
— Space overhead: one pointer per virtual page
— Multiple lookups per memory reference

Multi-level or
hierarchical page tables

* Example: 2-level page Level 2
table Tables

— Level 1 table: each PTE
points to a page table

— Level 2 table: each PTE Level 1

points to a page
(paged in and out like Table

other data)

\

e Level 1 table staysin

memory

* Level 2 tables might be
paged in and out

16
Sign

X86-64 Paging

Virtual address

9 9 9 9 12
VPN1 VPN2 VPN3 VPN4 VPO
Page
Directory
Page Map Pointer Page Page
Level 4 Table Directory Table
> PMALE > PDPE - PDE - PTE]

CR3—

36
PPN

12

PPO

Physical address

Features

Saves memory for mostly-empty address spaces
— But more memory references required for lookup

Natural support for superpages
— “Early termination” of table walk

Frequently implemented in hardware (or
microcode...)
— x86, ARM (and others)

Also the generic page table “abstraction” in Linux
and Windows

Problems with
hierarchical page tables

* Depth scales with size of virtual address space

— 5-6 levels deep for a full 64-bit address space
— X86-64 (48-bit virtual address) needs 4 levels

* A sparse address-space layout requires lots of
memory for (mostly empty) tables

— Not a big problem for the traditional UNIX
memory model

x86-32 page tables

* MMU supports:
— Large pages (4 MBytes)
— Small pages (4 KBytes)
e 2-level hierarchical page table:

— Page directory
— Page table

X86-32 Paging

20
PPN

Virtual address

10 10 12
VPN3 VPN4 VPO
Page Page
Directory Table
> PDE > PTE]
CR3—

v

12

PPO

Physical address

Empty

4MB page

Page table

Page directory entries

lgnored
Bits 31:22 of address PIPlUR
of 4MB page frame 0 lgn CIW/|/
i D T| S| W
P|P|UR
Bits 31:12 of address of page table lgn clW/|/
D T| S| W

Empty

4KB page

Page table entries

lgnored

Bits 31:12 of address of page frame

O T©

< O
S~
S~

Small page translation

CR3 register Address of page directory SBZ
Virtual address % PDE index PTE index Offset
Address of PDE Address of page directory PDE index |00/«
\\
~~ Note: addresses

PDE Page table base address Access control |1 / in physical memory!
Address of PTE Page table base address PTE index |0 0’/

PTE Small page base address Access control |1

O $

Zzzlileci }ZD Small page base address Offset

Page table for small pages

Base address
R

] 1024 entries 4kB page
4kB

7

. | ' Page table
1024 entries

4kB

Translates VA[21:12]

4kB page

1

Page directory

VA[11:0] = offset in page

Translates VA[31:22]

Page table

Page Translation in the OS

 OS’s need to keep their own data structures
— List of memory objects (segments)
— Virtual page -> physical page frame
— Physical page frame -> set of virtual pages
* An option: Inverted page table
— Hash from virtual page -> physical page
— Space proportional to # of physical pages
* Why not just reuse the hardware page tables?

Efficient Address Translation

* Translation lookaside buffer (TLB)

— Cache of recent virtual page -> physical page
translations

— If cache hit, use translation

— If cache miss, walk multi-level page table

e Cost of translation =

Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup

TLB and Page Table Translation

Virtual Virtual
Address Address i
Processor greseeeeees > TLB M|SS ,,,,,,,,,,,,,, > Page |nval|d > aise .
: Exception

Table

: Hit

Valid

Frame Frame

Offset é’_) Physical

. % eeceec0000c00s0sccrsestenteccesseesete s > (G o) IS >

: Memor

Physical y

Address

Data

Virtual

Address

Page#

Offset

..........

TLB Lookup

..

.....

Translation Lookaside Buffer (TLB)

Virtual Page
Page Frame

Access Physical :

.
.
.
e coedecencanns

Address

v

Offset

.
.
.
.
....)@...
.
.

Page Table
)@ ” Lookup

Physical
Memory

Question

 What happens on a context switch?
— Reuse TLB?
— Discard TLB?

e Solution: Tagged TLB
— Each TLB entry has process ID
— TLB hit only if process ID matches current process

Implementation Physical

Memory
Processor p
age
Virtual Fre?me
Address
e >| Page# Offset
: Translation Lookaside Buffer (TLB)
Process ID - rrreeeeeereeeeeeess > E
: Process ID Page Frame Access Physical :
)@ Address v
Matching Entry)@ ... > Frame Offset

Page Table
)@ ” Lookup

MIPS Software Loaded TLB

* Software defined translation tables
— If translation is in TLB, ok
— If translation is not in TLB, trap to kernel
— Kernel computes translation and loads TLB
— Kernel can use whatever data structures it wants

* Pros/cons?

Question

e What is the cost of a TLB miss on a modern
processor?

— Cost of multi-level page table walk

— MIPS: plus cost of trap handler entry/exit

Intel i7

' IntegratediMembry Controller-13iCh DDR3

_ Core0. Corel Core 2 . Core3

Shared L3 Cache

Memory Hierarchy

Cache Hit Cost Size
1st level cache/first level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100us 100GB
Local disk 10ms 1TB
Data center disk i0ms 100PB
Remote data center disk 200 ms 1 XB

i7 has 8MB as shared 39 |evel cache; 2" |evel cache is per-core

Question

e What is the cost of a first level TLB miss?
— Second level TLB lookup

e What is the cost of a second level TLB miss?
— x86: 2-4 |level page table walk

* How expensive is a 4-level page table walk on
a modern processor?

Virtually Addressed vs. Physically
Addressed Caches
* Too slow to first lookup TLB to find physical

address, then look up address in the cache
* |nstead, first level cache is virtually addressed

* In parallel, lookup TLB to generate physical
address in case of a cache miss

Processor

Virtually Addressed Caches

Virtual
Address

........... gecssccccns

Virtual
Cache

Hit

Data

Virtual
Address
M|SS >

TLB

Hit

Virtual
Address
M|SS >

..

Physical
Address

Invalid ----++----

Physical
Memory

...

R Raise
Exception

Processor

Physically Addressed Cache

Virtual
Address

Virtual
Cache

Hit

Data

Virtual
Address
M'SS >

Offset

TLB

Hit

Virtual
Address
MISS >

Physical
Address

Physical
Cache

Hit

s Raise
Exception

MISS >
Physical
Address

Physical
Memory

When Do TLBs Work/Not Work?

Video Frame Buffer
Video Frame Buffer: P

32 bits x 1K x 1K = :
AMB :

15t level TLB = 100
entries

1021
1022
1023

Superpages

* On many systems, TLB entry can be
— A page
— A superpage: a set of contiguous, aligned pages
e x86: superpage is set of pages in one page table
— One page: 4KB
— One page table: 2MB
— One page table of page tables: 1GB

— One page table of page tables of page tables: 0.5TB

Virtual
Address
Page# Offset
SP Offset

..................

Matching Entry

Matching
Superpage

.o

Page Table : - s
)@ ~~~~~~~~~~~ > Lookup SF OffSGt >

Superpages

..

..

Translation Lookaside Buffer (TLB)

Superpage Superframe
(SP) or (SF) or

Page# Frame Access | Physical :
o Address :
3 o

P PO O S ..g. > Frame Offset

..............................

Physical
Memory

When Do TLBs Work/Not Work, part 2

* What happens when the OS changes the
permissions on a page?
— For demand paging, COpy on write, Zero on reference,
 TLB may contain old translation
— OS asks hardware to purge TLB entry
— Possibly lazy or batched

* On a multicore: TLB shootdown
— OS asks each CPU to purge TLB entry
— Possibly lazy or batched

Processor 1 TLB

Processor 2 TLB

Processor 3 TLB

TLB Shootdown

Process
ID VirtualPage PageFrame Access
0 0x0053 0x0003 R/W
1 0x40FF 0x0012 R/W
0 0x0053 0x0003 R/W
0 0x0001 0x0005 Read
1 0x40FF 0x0012 R/W
0 0x0001 0x0005 Read

Virtual Cache Shootdown

e Do we also need to shoot down the contents of
the virtual cache on every CPU?

e Lazy shootdown of the virtual cache contents:

— Lookup virtually addressed cache and TLB in parallel
— Use the TLB to verify virtual address is still valid!
— Evict entry from cache if not

Virtual Cache Aliases

e Alias: two (or more) virtual cache entries that
refer to the same physical memory

— A consequence of a tagged virtually addressed cache!
— A write to one copy needs to update all copies

e Solution:

— Virtual cache keeps both virtual and physical address
for each entry

— Lookup virtually addressed cache and TLB in parallel

— Check if physical address from TLB matches any other
entries, and update/invalidate those copies

X86 caches

64 byte line size
Physically indexed

Physically tagged
Write buffer

Hardware address translation
IS a power tool

* Kernel trap on read/write to selected addresses
— Copy on write
— Fill on reference
— /ero on use
— Demand paged virtual memory
— Memory mapped files
— Modified bit emulation
— Use bit emulation

Demand Paging

Illusion of (nearly) infinite memory, available to
every process

Multiplex virtual pages onto a limited amount of
physical page frames

Pages can be either

— resident (in physical memory, valid page table entry)
— non-resident (on disk, invalid page table entry)

First reference to non-resident page, copy into
memory, replacing some resident page

— From the same process, or a different process

Virtual Page B

Virtual Page A

Demand Paging (Before)

Page

Frame

Table

Access

Frame for B

Invalid

...........

.....................

Frame for A

Physical Memory
Page Frames

............

Disk

Page A
Page B

Page A

Virtual Page B

Virtual Page A

Demand Paging (After)

Page

Frame

Table

Access

Frame for B

...........

.....................

Frame for A

Invalid

Physical Memory
Page Frames

............

Disk

Page A
Page B

Page B

Demand Paging Questions

How does the kernel provide the illusion that all
pages are resident?

Where are non-resident pages stored on disk?
How do we find a free page frame?

Which pages have been modified (must be
written back to disk) or actively used (shouldn’t
be evicted)?

Are modified/use bits virtual or physical?

What policy should we use for choosing which
page to evict?

/.

o Uk wWwhe

Demand Paging on MIPS

TLB miss

Trap to kernel

Page table walk
Find page is invalid
Locate page on disk

Allocate page frame
— Evict page if needed

Initiate disk block read
into page frame

8. Disk interrupt when
DMA complete

9. Mark page as valid
10. Load TLB entry

11. Resume process at
faulting instruction

12. Execute instruction

hd

7.

Demand Paging

TLB miss
Page table walk

Page fault (page
invalid in page table)

Trap to kernel
Locate page on disk

Allocate page frame
— Evict page if needed

Initiate disk block read
into page frame

8. Disk interrupt when
DMA complete

9. Mark page as valid

10. Resume process at
faulting instruction

11. TLB miss

12. Page table walk to
fetch translation

13. Execute instruction

Locating a Page on Disk

* When a page is non-resident, how do we
know where to find it on disk?
 Option: Reuse page table entry
— If resident, page frame
— If non-resident, disk sector
* Option: Use file system
— Code pages: executable image (read-only)

— Data/Heap/Stack: per-segment file in file system,
offset in file = offset within segment

Allocating a Page Frame

Select old page to evict
Find all page table entries that refer to old page

— If page frame is shared (hint: use a coremap)
Set each page table entry to invalid

Remove any TLB entries (on any core)
— Why not: remove TLB entries then set to invalid?

Write changes on page back to disk, if necessary
— Why not: write changes to disk then set to invalid?

Has page been modified/recently used?

* Every page table entry has some bookkeeping

— Has page been modified?
» Set by hardware on store instruction
* In both TLB and page table entry

— Has page been recently used?

* Set by hardware on in page table entry on every TLB miss
* Bookkeeping bits can be reset by the OS kernel
— When changes to page are flushed to disk

— To track whether page is recently used

Tracking Page Modifications (Before)

TLB

Frame Access Dirty

R/W No

Physical Memory
Page Frames

Virtual Page B

Virtual Page A

Page Table
Frame Access Dirty
Frame for B Invalid
Frame for A R/W No

Disk

— 5

Old Page A
Old Page B

Page A

i

Tracking Page Modifications (After)

TLB

Frame Access Dirty

R/W Yes

Physical Memory
Page Frames

Virtual Page B

Virtual Page A

Page Table
Frame Access Dirty
Frame for B| Invalid
Frame for A R/W Yes

Disk

— 3

Old Page A
Old Page B

New Page A

~

Modified/Use Bits are (often) Virtual

* Most machines keep modified/use bits in the
page table entry (not the core map) — why?

* Physical page is
— Modified if any page table entry that points to it is
modified
— Recently used if any page table entry that points
to it is recently used

* On MIPS, ok to keep modified/use bits in the
core map (map of physical page frames)

Use Bits are Fuzzy

* Page-modified bit must be ground truth

— What happens if we evict a modified page without
writing the changes back to disk?

* Page-use bit can be approximate
— What happens if we evict a page that is currently
being used?

— “Evict any page not used for a while” is nearly as
good as “evict the single page not used for the
longest”

Emulating Modified/Use Bits w/
MIPS Software Loaded TLB

MIPS TLB entries can be read-only or read-write

On a TLB read miss:

— If page is clean (in core map), load TLB entry as read-only
— if page is dirty, load as read-write

— Mark page as recently used in core map

On TLB write miss:
— Mark page as modified/recently used in core map
— Load TLB entry as read-write

On a TLB write to an unmodified page:
— Mark page as modified/recently used in core map
— Reset TLB entry to be read-write

Emulating a Modified Bit
(Hardware Loaded TLB)

 Some processor architectures do not keep a
modified bit per page
— Extra bookkeeping and complexity
* Kernel can emulate a modified bit:
— Set all clean pages as read-only
— On first write to page, trap into kernel
— Kernel set modified bit in core map
— Kernel set page table entry as read-write
— Resume execution
* Kernel needs to keep track
— Current page table permission (e.g., read-only)
— True page table permission (e.g., writeable, clean)

Emulating a Recently Used Bit
(Hardware Loaded TLB)

 Some processor architectures do not keep a
recently used bit per page

— Extra bookkeeping and complexity
 Kernel can emulate a recently used bit:
— Set all pages as invalid
— On first read or write, trap into kernel
— Kernel set recently used bit in core map
— Kernel mark page table entry as read or read/write
— Resume execution
* Kernel needs to keep track
— Current page table permission (e.g., invalid)
— True page table permission (e.g., read-only, writeable)

Models for Application File I/O

* Explicit read/write system calls
— Data copied to user process using system call
— Application operates on data
— Data copied back to kernel using system call

* Memory-mapped files
— Open file as a memory segment

— Program uses load/store instructions on segment
memory, implicitly operating on the file

— Page fault if portion of file is not yet in memory

— Kernel brings missing blocks into memory, restarts
process

Advantages to Memory-mapped Files

Programming simplicity, esp for large files

— Operate directly on file, instead of copy in/copy out

Zero-copy |/O

— Data brought from disk directly into page frame

Pipelining

— Process can start working before all the pages are
populated

Interprocess communication

— Shared memory segment vs. temporary file

Implementing Memory-Mapped Files

* Memory mapped file is a (logical) segment
— Per segment access control (read-only, read-write)
* File pages brought in on demand
— Using page fault handler
 Modifications written back to disk on eviction,
file close
— Using per-page modified bit
* Transactional (atomic, durable) updates to
memory mapped file requires more mechanism

From Memory-Mapped Files to
Demand-Paged Virtual Memory

* Every process segment backed by a file on disk
— Code segment -> code portion of executable
— Data, heap, stack segments -> temp files
— Shared libraries -> code file and temp data file
— Memory-mapped files -> memory-mapped files
— When process ends, delete temp files

* Unified memory management across file
buffer and process memory

Mach VM

* Goals
— Portability: many different machine types
— Small, simple machine dependent layer
— Feature-rich machine independent layer

* Abstractions
— Address space
— Memory objects (permanent storage area)

— Bind portions of objects to portions of address
space

— User-level handlers

Mach VM Implementation

* Resident page table (OSPP core map)
— indexed by physical page number (PPN)

 Each PPN in multiple lists
— Per-object list of resident pages
— Allocation queues (e.g., global LRU list)
— Hash table map <object, VPN> -> PPN

Mach VM Implementation

 Address map (one per address space)
— Linked list of of memory regions/objects

* Memory object
— Information about permanent storage (e.g., file)

* Pmap (one per address space)
— Machine-dependent map of VPN -> PPN

— Operations:
* Make a PPN addressable at a VPN
* Unmap a VPN
* Load context: use this pmap for CPU execution
* Change protection of a VPN

Mach VM Innovations

III

“real” information is machine-independent
data structures

— Page tables can be discarded

Machine-independent code only depends on
machine-independent data structures

Shadow obijects (e.g., for copy on write)

Memory objects and user-level pagers
— See later: scheduler activations

Cache Replacement Policy

* On a cache miss, how do we choose which
entry to replace?

— Assuming the new entry is more likely to be used
in the near future

— In direct mapped caches, not an issue!

* Policy goal: reduce cache misses
— Improve expected case performance
— Also: reduce likelihood of very poor performance

FIFO in Action

Reference A B C D E A B € D E

1 A E D

2 B A E
3 C B

4 D C

Worst case for FIFO is if program strides through
memory that is larger than the cache

MIN, LRU, LFU

* MIN

— Replace the cache entry that will not be used for the
longest time into the future

— Optimality proof based on exchange: if evict an entry
used sooner, that will trigger an earlier cache miss

e Least Recently Used (LRU)

— Replace the cache entry that has not been used for
the longest time in the past

— Approximation of MIN

e Least Frequently Used (LFU)

— Replace the cache entry used the least often (in the
recent past)

LRU/MIN for Sequential Scan

LRU
Reference A B C€C D E A B C D E A B C D
1 A E D C
2 B A E D
3 C B A
4 D C B
MIN

1
2
3 C + D +
4

LRU

Reference A

1
2
3

A

FIFO

H @ N

—

L\

Question

* How accurately do we need to track the least
recently/least frequently used page?

— |f miss cost is low, any approximation will do
* Hardware caches
— |f miss cost is high but number of pages is large,
any not recently used page will do
* Main memory paging with small pages
— If miss cost is high and number of pages is small,
need to be precise
 Main memory paging with superpages

Clock Algorithm: Estimating LRU

Page Frames

Hardware sets 0- use:0
use bit

Periodically, OS
sweeps through
all pages

If page is unused,
reclaim

1-use:1

2-use:0
3-use:0
4-use:0

5-use:1
If page is used,
mark as unused

-~ 8-use:0 7-use:T

Nth Chance: Not Recently Used

* |[nstead of one bit per page, keep an integer
— notInUseSince: number of sweeps since last use

* Periodically sweep through all page frames
if (page is used) {
notinUseForXSweeps = 0;
} else if (notInUseForXSweeps < N) {
notlnUseForXSweeps++;
}else {
reclaim page; write modifications if needed

Implementation Note

* Clock and Nth Chance can run synchronously

— In page fault handler, run algorithm to find next page to
evict

— Might require writing changes back to disk first

* Or asynchronously

— Create a thread to maintain a pool of recently unused,
clean pages

— Find recently unused dirty pages, write mods back to disk

— Find recently unused clean pages, mark as invalid and
move to pool

— On page fault, check if requested page is in pool!
— If not, evict page from the pool

Recap

* MIN is optimal

— replace the page or cache entry that will be used
farthest into the future

* LRU is an approximation of MIN

— For programs that exhibit spatial and temporal
locality

* Clock/Nth Chance is an approximation of LRU

— Bin pages into sets of “not recently used”

Working Set Model

* Working Set: set of memory locations that
need to be cached for reasonable cache hit
rate

* Thrashing: when system has too small a
cache

— For set of processes running concurrently

Hit Rate

100%

75%

90%

25%

0%

Cache Working Set

2 4 8
Cache Size (KB)

16

Hit Rate

100%

75%

90%

25%

0%

Phase Change Behavior

L WW

|

Time

Zipf Distribution

* Caching behavior of many systems are not
well characterized by the working set model
* An alternative is the Zipf distribution

— Popularity ~ 1/k”c, for kth most popular item,
1<c<?2

Popularity

Zipf Distribution

xX|=
Q

Rank

Zipf Examples

 Web pages

* Movies

e Library books
 Words in text
e Salaries

* City population

Common thread: popularity is self-reinforcing

Cache Hit Rate

Zipf and Caching

.001% .01% 1% 1% 10% all

Cache Size (Log Scale)

Implementing LFU

* First time an object is referenced, is it:

— Unpopular, so evict quickly?

— New and possibly popular, so avoid evicting?
 Compute frequency from first observation

— # of references/time since first loaded into cache
* Ordering changes dynamically, even when

there are no misses
— re-prioritize each time we need to evict a page?

More complexities

* What if object size can vary

— Evict bigger objects to make room for more
smaller ones?

 What if cost of refetch can vary
— Cost of fetch from flash vs. fetch from disk
— If item needs computation

* Replacement algorithm can be very complex

Power of Choices

Pick k objects at random

Evaluate (using any function) which is best
object to replace

— Evict that one!

Keep next best 2-3 objects in pool for next
Iteration

If k ~ 10, better than a 10" chance list!

Cache Lookup: Fully Associative

address value

match at any address?

return value

Cache Lookup: Direct Mapped

address value

hash(address)

—

=7 match at hash(address)?

return value

Cache Lookup: Set Associative

hash(address)

o

address value address value
0x0053 0x120d
=? match at hash(address)? =? match at hash(address)?

return value

return value

Page Coloring

* What happens when cache size >> page size?
— Direct mapped or set associative
— Multiple pages map to the same cache line

* OS page assighment matters!
— Example: 8MB cache, 4KB pages
— 1 of every 2K pages lands in same place in cache

e What should the OS do?

Page Coloring

Memory
Vlrtual 0
Address
Processors |-«+++++:
Address Cache
MOd K Qeovrecsssecsscscccsssccncnes
.................................. >3 2::::::::::::::::::::::::::::............_ K

