
Turn Your Storage Stack into a File System

Youngjin Kwon Henrique Fingler
Simon Peter Emmett Witchel

The University of Texas at Austin

Thomas Anderson
University of Washington

Abstract
Storage hardware trends suggest a rethink of file system
design. Current and future server architectures have a
multi-layer storage topology spanning multiple orders
of magnitude in cost and performance. At the same
time, storage devices at all layers have become firmware-
managed to hide the physical shortcomings of the storage
media, but inducing hidden performance and quality of
service overheads. File systems should make use of this
wide range of performance and capacity, while being
conscious of the firmware management overheads to
provide a unified interface that delivers the best of all
worlds—performance, capacity, and quality of service.

We argue that such a multi-layer filesystem will
be simpler to implement and to use than the complex
collection of different storage systems that we have now.
This is because many storage system optimizations both
at the OS and application layers are designed to hide
access latencies. These optimizations are less important,
as devices at the top of the storage stack can provide
low-latency access efficiently in hardware.

1. Introduction
File systems were originally developed to provide a con-
venient, common abstraction on top of individual storage
devices. No matter what characteristics a storage device
had, each file system on the device would support a
hierarchical namespace, extensible and possibly sparse
flat files, metadata crash consistency, common dynamic
mount points for combining file systems across multiple
devices, etc., all while hiding the device specifics from
the user (other than device capacity) [22]. And because
storage devices became, over time, increasingly slow
relative to processors and main memory, file system de-
signers added complex implementation strategies to hide
latency, including deep operation pipelines, fine-grained
locking, deferred block allocation, and complex failure
recovery mechanisms [12, 15, 21]. Clumsy failure seman-
tics for application data, while not a design goal, became
an inevitable byproduct of the file system designer’s need
for device independent performance optimization [13].

Recent hardware developments suggest a rethink. La-
tency to persistent storage is rapidly falling. Per-node
and disaggregated flash have become nearly ubiquitous

within the cloud, providing a scalable, low latency alter-
native to disk. Even faster non-volatile devices are begin-
ning to be available, with some able to perform durable
writes within 100ns, five orders of magnitude faster than
magnetic disk. Disk retains a cost-capacity advantage
over flash, and flash over non-volatile memory, suggest-
ing future systems will have deep storage hierarchies.
Finally, many storage devices have become internally
managed due to physical constraints, such as the need for
flash wear-levelling or shingle writes to optimize mag-
netic disk density. As a result, the performance of generic
file systems on these new devices often substantially lags
the performance of the underlying hardware [25].

We believe it no longer makes sense to engineer file
systems around the assumption that file operations are
inherently slow, that the kernel intermediates every file
system metadata operation, or that each file system is
tied to a single physical device.

Some advocate that a cloud persistent block store can
take the place of file system storage for most applications,
transparently managing the various devices in the storage
hierarchy for the user. We believe, however, that file
systems still have a role to play, both in the cloud
and beyond – they are not just a vestige of an old,
forgotten time. File system namespaces provide a well-
defined and easy to understand abstraction for users,
and an interoperability layer for applications, not easily
reproduced in persistent block stores.

Nor do we think it cost-effective or performant to
layer multi-level file systems on top of per-node and per-
device file systems. Once the file system is inherently
multi-level, various parts of the storage design, including
lookup, block allocation, and persistence, can be substan-
tially simplified at lower levels and tuned to take advan-
tage of device specific properties. There is a substantial
benefit to be recouped by removing that indirection.

We present the design of MLFS, a multi-level file sys-
tem that achieves the full performance of each layer of
the storage hierarchy. The fastest layer requires kernel by-
pass in the common case for both file data and metadata,
optimizing for low latency, but recoverable, user-level
file operations. This also allows us to provide precise,
synchronous write semantics for both user data and file
system metadata. Once persistent, writes are digested by
the kernel in the background and made available to other

1 2017/1/27



Memory Latency Throughput Cost/Byte
DRAM 100 ns 80 GB/s 1000x
NVM 1 µs 10 GB/s 100x
SSD 10 µs 10 GB/s 10x
HDD 10 ms 100 MB/s 1x

Table 1. Future server memory hierarchy (figs. approx.) [30].

applications. Digests are device-aware, using block sizes
that remove device-layer garbage collection overhead,
for example, by writing full shingles on a shingle disk
and full erasure blocks on a flash device. Finally, because
data blocks vary in size across layers, digests reorganize
and compact, making lookups efficient.

This paper makes the case for such a file system
design. We start by providing more background on
current storage technologies and their use in the cloud
(§2). We then provide a design sketch of our file system
(§3) and discuss several use-cases (§4).

2. Background
Fast persistence. With the introduction of high-density
flash and other non-volatile memory technologies, recent
years have seen a staggering race towards lower latency
and higher throughput. To support this performance,
many devices now make use of hardware memory and
I/O virtualization technology (SR-IOV [17] for SSDs
and the MMU for NVM) that allow for kernel-bypass.

This trend has had an impact on how file systems
achieve persistence because the old assumption of slow
storage devices no longer holds. Existing persistence
optimizations have become obsolete, while the cost of
indirection introduced by some of these optimizations,
such as kernel-mediated buffer caches, now limit rather
than help performance.
Today’s server storage hierarchy. At the same time,
storage technology has evolved from a single viable
technology (that of the hard disk drive) into a diversified
set of offerings that each fill a niche in the design
tradeoff of cost, performance, and capacity. Three storage
technologies stand out as stable contenders in the near-
future for data center servers: Non-volatile memory
(NVM), solid state drives (SSDs), and high-density hard
disk drives (HDDs). While HDDs and SSDs are already
a commodity in servers today, NVM is expected to be
added in the near future (most likely based on 3D XPoint
technology). Table 1 shows each technology and its
expected long-term place in the design space. We can see
that each trades off one design feature for another by at
least an order of magnitude.
Hardware storage management. To get the most per-
formance from their devices, hardware manufacturers
have embraced techniques that require complex firmware
management. Flash memory requires a translation layer
in order to manage erase cycles and wear. Shingled mag-

netic recording requires management to enforce sequen-
tial writing of shingle zones.

Firmware abstracts away the limitations of the hard-
ware and provides a generalized block interface to the file
system, but it does so at a cost. For example, Facebook
reports a throughput slow-down of up to 6× when data is
written randomly to an SSD due to firmware management
overhead [31]. To improve performance and predictabil-
ity, special interfaces are provided by storage controllers
for certain write patterns. For example, the NVMe in-
terface specification provides the dataset management
command allowing the user to specify I/O patterns for
regions of an SSD, such as sequential access [4]. The
SCSI and ATA interface specifications are extended with
zoned block commands for shingled disks that specify
sequential write preferred and required zones [29].

Fine-grained persistence. As storage technology
evolves, applications morph to require more fine-grained
persistence. Often, files are merely named address spaces
that contain many internal objects. This transformation
has happened both at the edge [13], as well as in the
data center through the use of key-value stores, data base
backends, such as SQLite [5] and LevelDB [3], revision
management systems, and distributed configuration soft-
ware, such as Zookeeper [1]. Due to these fine-grained
persistence requirements, applications are employing a
wide range of complex update protocols, making them
vulnerable to bugs and errors [27].

Call to arms. Existing file systems poorly address
these developments. Abstractions are required to manage
the diverse hierarchy of server storage technology, but
file systems today manage each layer of the hierarchy
independently, with specialized interfaces, no notion of
cost-per-byte trade off among the different layers, or
mechanisms to migrate data among layers. Applications
must explicitly move data among a variety of devices
and services, resulting in complex, ad hoc techniques
that need to be manually updated whenever underlying
storage or pricing conditions change.

3. MLFS Design
By designing a file system that manages data across mod-
ern storage devices, we can combine their strengths while
compensating for their weaknesses. A proper file system
requires more than simply moving objects between stor-
age layers according to replacement policies. Our file
system design spans storage devices, provides perfor-
mance superior to current file systems, and strives to
provide the following benefits that have proved difficult
to provide in previous file systems:
• Fast writes. Our file system must support fast, ran-

dom writes. An important motivation for fast writes
is supporting networked systems which must persist
data before issuing a reply.

2 2017/1/27



Data access
pattern

Storage devices

Application

Library file system

Kernel

Kernel file system

NVM

Merge

PCIe SSD HDD Amazon S3

Log
data

Log
data

… digest

Figure 1. MLFS design. Solid arrows are synchronous
I/O. Dashed arrows are asynchronous I/O. Triangles are
LSM trees, stored on the various storage devices.

• Syncless consistency. Today’s file systems create a
usability and performance problem by guaranteeing
persistence only in response to explicit programmer
action (e.g., sync, fsync, fdatasync). File sys-
tems use a variety of complicated mechanisms (e.g.,
delayed allocation) to provide performance under the
assumption of slow device persistence. Data should
be persistent after a write and MLFS can provide
that guarantee without sacrificing performance.

• Device-specific optimizations. Storage devices have
device-specific quirks that have a first-order effect
on performance, wear, and quality of service. Exam-
ples include the flash translation layer in SSDs and
the shingle size in shingled disks. Managing these
quirks allows us to reduce write amplification and
garbage collection and thus minimize their effect on
performance and wear. Further, these optimizations
are simpler once we can assume that all data being
migrated between layers is already persistent.

• Unified interface. We provide a unified file system
interface to the entire underlying storage hierarchy.
MLFS is backwards compatible to existing POSIX
applications but also allows application developers to
specify performance and cost requirements for storing
data that are managed transparently by MLFS.

Figure 1 shows a high-level overview of the MLFS
design. To achieve our design goals, we integrate a
number of design ideas.

Log-structured merge trees. MLFS structures all
data as a set of log-structured merge (LSM) trees [24].
LSM trees separate read and write paths and are a first
step to provide fast writes and syncless consistency. Ap-
plications write data to an operational log resident in
NVM for low-latency persistence (logging). Logging
naturally provides low-latency durability; it forces oper-
ations to be serialized, provides data consistency, crash
recovery and can even ensure atomicity of operations.
Logs are highly desirable for writing, but cumbersome
to search and read. Thus, MLFS periodically digests
logs into read-optimized formats. Digests happen asyn-
chronously and the log is garbage-collected.

Sequential, aligned writes. Another benefit of digest-
ing writes in bulk is that the read-optimized version can
also be written sequentially, minimizing the impact of
device management firmware, such as garbage collec-
tion. MLFS enforces all LSM writes to be sequential and
aligned to large block boundaries that are efficient for the
device, such as erasure blocks for SSDs and write zones
for shingled disks. When data is updated, old versions are
not immediately deleted and overwritten. Instead, MLFS
periodically merges multiple copies of read-only data to
reclaim free space in multiples of the device block size.

User/Kernel division of labor. MLFS has a novel di-
vision of labor between user-level code and the kernel.
In order to attain fast writes, we separate the responsibil-
ities of logging and digesting/merging and assign them
to user-level software and the kernel, respectively. User-
level applications are granted direct access to a small
private space on a device for efficient logging as well as
direct read-only access to cached portions of the global
LSM-tree space.

The kernel is responsible for digesting and merging
of read-only data. It is at the digest stage that MLFS
enforces metadata integrity and makes data available
globally. Upon a crash, the kernel is responsible for re-
covering file system state. Doing so is not different from
its regular operation. On boot it digests each applica-
tion’s log. This finds and makes globally visible each
application’s consistent state.

Hardware virtualization. To bypass the kernel effi-
ciently, we make use of the hardware virtualization ca-
pabilities available in modern SSDs and NVM. This as-
sumes that we can restrict each application’s access to
contiguous subsets of each device’s storage space, accord-
ing to access rights. The MMU trivially supports this fea-
ture for NVM, while NVMe provides it via namespaces
that can be attached to SR-IOV virtualized SSDs [4].
Bypassing the kernel moves all performance-sensitive
mechanisms of the file system into a user-level library,
where they can be customized to an application if benefi-
cial [26]. HDDs do not require kernel bypass.

Data access pattern API. To provide a unified inter-
face that takes advantage of the entire storage hierarchy’s
performance and capacity, the kernel transparently mi-
grates data among different storage layers. Because the
kernel is bypassed at the top layer, MLFS exports an
API that applications use to communicate access patterns
to the kernel. Hot blocks are kept in higher-performing
devices. The kernel gathers access patterns and can pri-
oritize it fairly according to administrator-set application
priorities and allotted storage quotas. Applications can
misuse the APIs but doing so only harms their own per-
formance.

3 2017/1/27



EXT4-DAX (SYNC) EXT4-DAX MLFS
Write seq. 26.5 3.7 2.3
Write rand. 26.4 4.2 3.4
Overwrite 26.5 4.0 3.3
Read seq. 0.9 0.9 0.8
Read rand. 2.4 2.4 2.3
Read hot 1.7 1.6 1.5

Table 2. Latency [µs] for LevelDB benchmarks. SYNC
means synchronous writes. Read hot is a workload that
reads 1% of the hot data in a database in random order.

Data access leases. While we expect fine-grained shar-
ing to continue to be mediated by the kernel, sequen-
tial sharing can be managed by leases. Similar to their
function in distributed file systems [14], leases allow an
application exclusive access to the blocks specified in
the lease. As long as a lease is held, an application may
write to these blocks without kernel mediation, while
operations from other applications are serialized before
or after the lease period. Leases can expire and may be
revoked by the kernel at any time. It is the application’s
responsibility to revert written state in this event.

4. Use cases
This section explores MLFS’s potential to significantly
enhance the performance and robustness of a number of
important cloud applications.

Big data. Data-intensive applications, such as graph
processing, read and write petabytes of data, yet demand
the highest-performance access to their data sets. The
simple act of writing or scanning a large file at the highest
possible speed, while storing it at the lowest possible cost
requires coordinated access to all levels of the storage
hierarchy.

Current file system designs do not abstract the entire
storage hierarchy, leading to complicated application-
level mechanisms that allocate and migrate data among
the different storage tiers. Less complex applications
simply choose one storage tier for all data storage and
live with a bad tradeoff between performance and cost.

Embedded databases and key-value stores. Embed-
ded databases like SQLite [5] and key-value stores like
LevelDB [3] use the file system for data storage, but
export interfaces that allow applications to process and
query structured data. Applications built on these inter-
faces make extensive use of the underlying file system,
and therefore present an opportunity for MLFS.

Table 2 shows the latency of several LevelDB mi-
crobenchmarks when run on an early prototype of MLFS
that supports logging and digesting and EXT4-DAX, a
version of ext4 that directly maps non-volatile memory to
user-space. EXT4-DAX is run in both synchronous and
asynchronous modes (where synchronous mode provides

the same persistence guarantees as MLFS). The under-
lying storage device is DRAM, which does not have the
same timing as NVM, but all configurations use the same
device. This is favorable for EXT4-DAX, because EXT4-
DAX has many random writes that are not penalized by
management firmware overhead.

The table shows that MLFS has the lowest latency for
all operations. For writes, MLFS is up to 38% faster than
EXT4-DAX with asynchronous I/O—while providing
much stronger durability guarantees—and up to 11.5×
faster than EXT4-DAX with synchronous I/O.

Our experiment demonstrates that a file system with a
simple, synchronous I/O interface can provide high per-
formance (if the underlying storage device is fast). It is far
easier to do crash recovery when writes are synchronous
and in-order. Modern applications struggle to make logi-
cally consistent updates that are crash recoverable [27].
MLFS can help such systems by providing simple re-
covery semantics. SQLite must call fsync repeatedly
to persist data to its log and to persist its data file so it
can reclaim the log. Many or all of these fsyncs would
become unnecessary if data is written synchronously.

Fast RPC. Many data center server applications rely
on fast remote procedure calls (RPC) to work efficiently.
Key-value stores, distributed consensus mechansisms,
and web servers are just a few examples. In each of
these cases, the applications also need to access persistent
storage within the execution timeframe of the RPC. For
example, distributed consensus mechanisms, such as
Paxos, must locally persist consensus outcomes across
several nodes before acknowledging the consensus. Low
latency storage is often the determining performance
factor in these applications. By providing low-latency,
synchronous I/O semantics, MLFS reduces the need for
complex latency hiding techniques while speeding up
RPC-based systems at the same time.

Public Cloud. In the public cloud, multiple tenants
operate on shared physical storage, often via NFS-like
file systems. In these scenarios, quality of service (QoS)
guarantees and device longevity are important assets
to the cloud provider, keeping tenants isolated while
reducing cost.

Current cloud storage stacks do not provide a good
handle on either QoS or device wear, as both are impacted
by write amplification and garbage collection. This leads
cloud providers to under-utilize their storage media to
minimize contention among tenants and to use complex
cost-models to predict it [28]. By writing aligned, era-
sure and shingle-sized blocks, MLFS can minimize de-
vice write amplification. This allows the cloud to better
enforce QoS under shared operation even under high
utilization. It also allows the provider to transparently
migrate data among similar storage options to equalize
wear, leading to lower total cost of ownership.

4 2017/1/27



Transactions. Because MLFS synchronously updates
a write-ahead log, it can naturally support transactions
for file state because operations can be recovered after a
crash. Transactions are a programmer-friendly abstrac-
tion for querying and updating structured data because
they provide easy-to-program, crash-consistent seman-
tics. Version control systems like git and Mercurial store
their data in the file system using a variety of techniques
(e.g., lock files, logging, manifest). It is currently diffi-
cult for these systems to make crash-consistent updates
to their state. Transactions would make it easy. Finally,
consider an editor that must create a temporary copy of
a file being edited so it can atomically rename the tem-
porary file to its permanent location when the user saves
the file. Transactions eliminate the need to copy the file.

MLFS transactions would have some natural limita-
tions. Their size would be limited by the capacity of the
fastest storage tier. Also, application logs are not shared,
so MLFS supports transactions between multiple threads,
but not multiple processes.

5. Related Work
Managed storage designs. All storage hardware tech-
nologies require a certain level of software manage-
ment to achieve good performance. Classic examples
include elevator scheduling [2] and log-structured file
systems [7]. Modern examples include log-structured
merge trees [24] (LSM-trees), used by the Anvil [20]
modular storage system. All of these systems rely on a
particular layout of the stored data to optimize read or
write performance or (in the case of LSM-trees) both. We
build on this work to optimize data layout for the storage
technologies of today’s data center servers.

File system API. A number of approaches propose to
redesign the file system interface to provide additional
performance to certain applications. Rethink the sync
[23] proposes the concept of external synchrony, whereby
all file system operations are internally (to the applica-
tion) asynchronous. The operating system tracks when
file system operations become externally visible (to the
user) and synchronizes operations at this point. While
this worked well in the personal computing world, where
a single operating system controls all user-visible output,
it is prohibitively complex to realize in today’s vastly
distributed world of cloud applications. Optimistic crash
consistency [8] introduces a new API to separate ordering
of file system operations from their persistence, enabling
file system consistency in the face of crashes with asyn-
chronous operations. Aerie [32] proposes a file system
architecture that supports application-defined APIs for
better efficiency to storage-class memory. We build on
Aerie’s approach and also support application-defined
APIs, while avoiding problems with asynchrony by re-
quiring synchronous operations.

NVM/Flash optimized file systems. Much recent
work proposes specialized storage solutions for emerg-
ing non-volatile memory technologies. BPFS [9] is a
file system for non-volatile memory that uses an opti-
mized shadow-paging technique for crash consistency.
PMFS [11] is a hardware/software co-designed file sys-
tem that explores how to best exploit existing memory
hardware to make efficient use of this type of byte-
addressable memory. EXT4-DAX [6] extends the Linux
ext4 file system to allow direct mapping of non-volatile
memory, bypassing the buffer cache. NOVA [33] is
a log-structured file system based on the EXT4-DAX
framework. F2FS [18] is a log-structured file system de-
sign for flash memory that provides good performance on
the medium. We take inspiration from these systems to
provide a file system that can efficiently support multiple
layers of diverse storage technologies simultaneously.

Multi-layer storage systems. These systems typically
investigate tailored approaches to caching among dif-
ferent storage technologies. For example, RIPQ [31] is
a novel caching algorithm that minimizes write ampli-
fication when moving data between DRAM and flash.
FlashStore [10] is a key-value store designed to use flash
as a fast cache between DRAM and HDD by minimiz-
ing the number of reads/writes done to the flash cache.
Nitro [19] is a SSD caching system that uses data dedupli-
cation and compression to increase capacity. We expand
these ideas to include support for efficient data migration
among different storage layers.

NVM/Flash optimized applications/OSes. Researchers
have also investigated optimizing both operating systems
and applications for an underlying storage technology.
For example, PASTE [16] proposes integrating network
and storage stacks for faster persistence of network-
initiated storage operations. Our approach provides ap-
plication integration through customized APIs so that
applications can be co-designed with the underlying
storage technology.

6. Conclusion
Ongoing storage hardware trends are moving towards a
multi-layer storage topology spanning multiple orders of
magnitude in cost and performance. As these storage
devices have become firmware-managed to hide the
physical shortcomings of the storage media, hidden
performance overheads can impact access performance
and quality of service.

File systems that make use of this wide range of
performance and capacity, while being conscious of the
firmware management overheads, can provide a simpler
interface to applications that delivers the best of all
worlds—high performance, high capacity, and strong
quality of service guarantees.

5 2017/1/27



References
[1] Apache ZooKeeper. https://zookeeper.apache.

org. [January, 2017].

[2] Elevator algorithm. https://en.wikipedia.org/
wiki/Elevator_algorithm. [January, 2017].

[3] LevelDB. http://leveldb.org. [January, 2017].

[4] NVM Express 1.2.1. http://www.nvmexpress.
org/wp-content/uploads/NVM_Express_1_
2_1_Gold_20160603.pdf. [January, 2017].

[5] SQLite. https://sqlite.org. [January, 2017].

[6] Supporting filesystems in persistent memory. https://
lwn.net/Articles/610174/. [September, 2014].

[7] The Sprite Operating System. https://www2.
eecs.berkeley.edu/Research/Projects/
CS/sprite/sprite.html. [January, 2017].

[8] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Optimistic crash consistency. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 228–243,
New York, NY, USA, 2013. ACM.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through byte-
addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, pages 133–146, New York, NY,
USA, 2009. ACM.

[10] B. Debnath, S. Sengupta, and J. Li. Flashstore: High
throughput persistent key-value store. Proc. VLDB En-
dow., 3(1-2):1414–1425, Sept. 2010.

[11] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System software
for persistent memory. In Proceedings of the Ninth
European Conference on Computer Systems, EuroSys ’14,
pages 15:1–15:15, New York, NY, USA, 2014. ACM.

[12] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,
S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized
file system dependencies. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 307–320, New York, NY,
USA, 2007. ACM.

[13] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. A file is not a file: Under-
standing the i/o behavior of apple desktop applications.
In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 71–83,
New York, NY, USA, 2011. ACM.

[14] T. Haynes and D. Noveck. Network file system (nfs) ver-
sion 4 protocol, Mar. 2015. https://tools.ietf.
org/html/rfc7530.

[15] D. Hitz, J. Lau, and M. Malcolm. File system design
for an nfs file server appliance. In Proceedings of the
USENIX Winter 1994 Technical Conference on USENIX
Winter 1994 Technical Conference, WTEC’94, pages 19–
19, Berkeley, CA, USA, 1994. USENIX Association.

[16] M. Honda, L. Eggert, and D. Santry. Paste: Network stacks
must integrate with nvmm abstractions. In Proceedings
of the 15th ACM Workshop on Hot Topics in Networks,
HotNets ’16, pages 183–189, New York, NY, USA, 2016.
ACM.

[17] P. Kutch. PCI-SIG SR-IOV primer: An introduction to
SR-IOV technology. Intel application note, 321211–002,
Jan. 2011.

[18] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2fs: A new
file system for flash storage. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies,
FAST’15, pages 273–286, Berkeley, CA, USA, 2015.
USENIX Association.

[19] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and
G. Wallace. Nitro: A capacity-optimized ssd cache for
primary storage. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 501–512, Berkeley, CA, USA,
2014. USENIX Association.

[20] M. Mammarella, S. Hovsepian, and E. Kohler. Modu-
lar data storage with anvil. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Prin-
ciples, SOSP ’09, pages 147–160, New York, NY, USA,
2009. ACM.

[21] M. K. McKusick and G. R. Ganger. Soft updates: A tech-
nique for eliminating most synchronous writes in the fast
filesystem. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’99, pages
24–24, Berkeley, CA, USA, 1999. USENIX Association.

[22] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for UNIX. ACM Trans. Comput. Syst.,
2(3):181–197, Aug. 1984.

[23] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and
J. Flinn. Rethink the sync. In Proceedings of the 7th
Symposium on Operating Systems Design and Implemen-
tation, OSDI ’06, pages 1–14, Berkeley, CA, USA, 2006.
USENIX Association.

[24] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (lsm-tree). In Acta Informatica,
1996.

[25] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang.
Sdf: Software-defined flash for web-scale internet stor-
age systems. In Proceedings of the 19th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages
471–484, New York, NY, USA, 2014. ACM.

[26] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Kr-
ishnamurthy, T. Anderson, and T. Roscoe. Arrakis: The
operating system is the control plane. In Proceedings of
the 11th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’14, pages 1–16, Berkeley,
CA, USA, 2014. USENIX Association.

[27] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-
Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. All file systems are not created equal: On the
complexity of crafting crash-consistent applications. In

6 2017/1/27

https://zookeeper.apache.org
https://zookeeper.apache.org
https://en.wikipedia.org/wiki/Elevator_algorithm
https://en.wikipedia.org/wiki/Elevator_algorithm
http://leveldb.org
http://www.nvmexpress.org/wp-content/uploads/NVM_Express_1_2_1_Gold_20160603.pdf
http://www.nvmexpress.org/wp-content/uploads/NVM_Express_1_2_1_Gold_20160603.pdf
http://www.nvmexpress.org/wp-content/uploads/NVM_Express_1_2_1_Gold_20160603.pdf
https://sqlite.org
https://lwn.net/Articles/610174/
https://lwn.net/Articles/610174/
https://www2.eecs.berkeley.edu/Research/Projects/CS/sprite/sprite.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/sprite/sprite.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/sprite/sprite.html
https://tools.ietf.org/html/rfc7530
https://tools.ietf.org/html/rfc7530


Proceedings of the 11th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’14, pages
433–448, Berkeley, CA, USA, 2014. USENIX Associa-
tion.

[28] D. Shue and M. J. Freedman. From application requests
to virtual iops: Provisioned key-value storage with libra.
In Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, pages 17:1–17:14, New
York, NY, USA, 2014. ACM.

[29] C. E. Stevens, editor. Information technology - Zoned
Block Commands (ZBC). dpANS American National
Standard, Jan. 2016. Project T10/BSR INCITS 536.

[30] I. Stoica. Challenges in big data (talk). In Workshop on
System Design for Cloud Services, Redmond, WA, USA,
July 2016. Microsoft Research.

[31] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li.
Ripq: Advanced photo caching on flash for facebook. In
Proceedings of the 13th USENIX Conference on File and
Storage Technologies, FAST’15, pages 373–386, Berkeley,
CA, USA, 2015. USENIX Association.

[32] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan,
P. Saxena, and M. M. Swift. Aerie: Flexible file-system
interfaces to storage-class memory. In Proceedings of
the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 14:1–14:14, New York, NY, USA,
2014. ACM.

[33] J. Xu and S. Swanson. Nova: A log-structured file
system for hybrid volatile/non-volatile main memories.
In Proceedings of the 14th Usenix Conference on File and
Storage Technologies, FAST’16, pages 323–338, Berkeley,
CA, USA, 2016. USENIX Association.

7 2017/1/27


	Introduction
	Background
	MLFS Design
	Use cases
	Related Work
	Conclusion

