Lecture 2, Problemset 2

Virtual Memory

1/13

Agenda

1. X86 Virtual Memory
2. Xv6 Code Reading
3. Discussion of Problemset

2 /13

X86 Virtual Memory Overview

« MMU supports:
o Small pages (4 KBytes)

o Large pages (4 MBytes)

e 2 level page table
o Page directory (top level)

o Page table (bottom level)

3/13

X86 Virtual Memory Translation

Virtual address

10 10 12
VPN3 VPN4 VPO
Page Page
Directory Tabl

CR3— —

20 |

12

PPN

PPO

Physical address

4/13

X86 4KB Page Translation

CR3 register }ZD ‘ Address of page directory ‘ SBZ |

© PDEindex | PTEindex

Virtual address H>

Address of PDE %D

Note: addresses
in physical memory!

PDE Page table base address Access control |1|

Address of PTE

>
i
.
i

Small page base address | Access control |1|
Physical |

Small page base address Offset
address - l |

5/13

X86 Page Directory Entry

Empty

4MB page

Page table

e Each PD has 1024 entries, 32 bits each

Ignored
Bits 31:22 of address PIPIUR
of 4MB page frame 0 Ign C\w|/|/
i D|IT|S|W
P|P|U|R
Bits 31:12 of address of page table lgn ciwl/|/
D|T|SW

« 4 KBytes total size

e #define PTE_* In mmu.h for xvé

6/13

X86 Page Table Entry

Empty

4KB page

e Each PT has 1024 entries, 32 bits each

Ignored

Bits 31:12 of address of page frame

Ign

e}
- S o
~

« 4 KBytes total size

e #define PTE_* In mmu.h for xv6

7/13

X86 Translation Lookaside Buffer (TLB)

CPU caches translation results after page walk
o Cache is partially transparent, adding entries
automatically

o But does not track changes to page table

Kernel needs to invalidate TLB manually
o Only required when unmapping or changing permissions

Two mechanisms for invalidation:
o Flush: reloading cr3 (page directory base pointer)

o invlpg instruction invalidates individual page

Harder with multi-threaded processes on
multiple cores

8/13

X86 Page fault

e Causes trap 14
e Also includes error code:

Bit#|Label Meaning

0 |P Page table entry was valid

1 (W Caused by write access

2 (U Caused by user space access

3 R Page table entry with reserved bits set
4 | Caused by instruction fetch

9/13

xv6 Address Space Layou

Virtual

4 Gig —s
Device memory
0xFEO00000—
Unused if less than 2 Gig
of physical memory
Free memory
end
Kernel data
Kernel text
+ 0x100000
KERNBASE
Program data & heap
PAGESIZE User stack
User data
User text
0

RW-

RWU

RWU

RWU

\

At most 2 Gig |

0x100000 —»

Physical

Memory-mapped
32-bit 1/0 devices

Unused if less than 2 Gig
of physical memory

Extended memory

1/0 space

640K" —»

Base memory

10/13

Code reading

e Kernel startup

e VM page table manipulation (vm.c)
e Page fault handling

e exec implementation

11/13

Problem set: Question 1

e Implement very simple mmap and munmap

mmap(addr, length, rw, fd, offset)
munmap(addr, length)

e Map files into memory
o Applications can read and write file using memory
operations

e Implement the simplest case
o Everything aligned, application picks address, file only
mapped in one process

e Don't forget cleanup on exit

12 /13

Problem set: Question 2

e Add demand paging for mmap

» Load pages "lazily" when accessed
o Speeds up mapping large files

e You'll need to handle (some) page faults
o And recover from them

e In problem set 4 you'll share files between
processes

13/13

