
Lecture 2, Problemset 2

Virtual Memory

1 / 13



Agenda
1. X86 Virtual Memory

2. xv6 Code Reading

3. Discussion of Problemset

2 / 13



X86 Virtual Memory Overview
MMU supports:

Small pages (4 KBytes)

Large pages (4 MBytes)

2 level page table
Page directory (top level)

Page table (bottom level)

3 / 13



X86 Virtual Memory Translation

4 / 13



X86 4KB Page Translation

5 / 13



X86 Page Directory Entry

Each PD has 1024 entries, 32 bits each

4 KBytes total size

#define PTE_* in mmu.h for xv6

6 / 13



X86 Page Table Entry

Each PT has 1024 entries, 32 bits each

4 KBytes total size

#define PTE_* in mmu.h for xv6

7 / 13



X86 Translation Lookaside Buffer (TLB)
CPU caches translation results after page walk

Cache is partially transparent, adding entries
automatically

But does not track changes to page table

Kernel needs to invalidate TLB manually
Only required when unmapping or changing permissions

Two mechanisms for invalidation:
Flush: reloading cr3 (page directory base pointer)

invlpg instruction invalidates individual page

Harder with multi-threaded processes on
multiple cores

8 / 13



X86 Page fault
Causes trap 14

Also includes error code:

Bit# Label Meaning
0 P Page table entry was valid
1 W Caused by write access
2 U Caused by user space access
3 R Page table entry with reserved bits set
4 I Caused by instruction fetch

9 / 13



xv6 Address Space Layout

10 / 13



Code reading
Kernel startup

VM page table manipulation (vm.c)

Page fault handling

exec implementation

11 / 13



Problem set: Question 1
Implement very simple mmap and munmap

mmap(addr, length, rw, fd, offset)
munmap(addr, length)

Map files into memory
Applications can read and write file using memory
operations

Implement the simplest case
Everything aligned, application picks address, file only
mapped in one process

Don't forget cleanup on exit

12 / 13



Problem set: Question 2
Add demand paging for mmap

Load pages "lazily" when accessed
Speeds up mapping large files

You'll need to handle (some) page faults
And recover from them

In problem set 4 you'll share files between
processes

13 / 13




