
Lecture 1, Problemset 1

1 / 14



Agenda
1. X86 Refresher

2. xv6 Code Reading

3. Discussion of Problemset

2 / 14



X86: Basics
Up to 3 operating modes: Real Mode (16 bit),
Protected Mode (32 bit), Long Mode (64 bit)

4 Privilege rings: 0 (highest), 1, 2, 3

8 32-bit general purpose registers: eax, ebx, ecx,
edx, esi, edi, ebp, esp

6 segment registers: cs, ds, es, fs, gs, ss

2 special purpose registers: eip, eflags

Calling convention: arguments passed on stack

3 / 14



X86: Privileged Features
Mostly controlled with control registers: cr0, cr1,
cr2, cr3, cr4

All memory accesses are relative to a segment
Can be implicit or explicit

Controlled by General Descriptor Table (GDT):
segment offset, length, privileges

Additional special task state segment

256 Trap vectors for Interrupts, Exceptions and
Syscalls

Controlled by Interrupt Descriptor Table (IDT):
handler, type (int or trap), privileges

Some differences between user and kernel space

4 / 14



X86: Traps
From kernel for vector n:

1. Fetch nth descriptor from IDT

2. Push eflags, cs, eip

3. For some exceptions: push error code

4. Clear some flags in eflags (including IF if int gate)

5. Set cs and eip to values from descriptor

5 / 14



X86: Traps (cont'd)
From user space for vector n:

1. Fetch nth descriptor from IDT

2. If SW interrupt: check descriptor privilege level (DPL) >=
current privilege level (CPL)

otherwise general protection fault

3. Remember esp, ss

4. Load esp[DPL], ss[DPL] from task state segment (TSS)

5. Push old esp, old ss, eflags, cs, eip

6. For some exceptions: push error code

7. Clear some flags in eflags (including IF if int gate)

8. Set cs and eip to values from descriptor

6 / 14



X86: Trap Return
iret instruction used to return from trap

As well as initially entering user space

Partially inverts what CPU does on trap
1. Pop eip, cs, eflags

2. If change to lower privilege: pop ss, esp

7 / 14



Code Reading
1. Makefile

2. Bootloader and initialization

3. Trap handling

4. Skim exec implementation

8 / 14



Debugging
GDB example

Some useful commands: break foo, si, c, finish, info
registers, ...

https://courses.cs.washington.edu/courses/cse451/16au/labs/tools.html#gdb

Qemu:
Logs: make QEMUEXTRA='-d int -D qemu.log' qemu-nox-gdb

Console: Ctrl + A C, then info registers, info tlb, ...

9 / 14

https://courses.cs.washington.edu/courses/cse451/16au/labs/tools.html#gdb


Problem set: Code reading questions
1) Identify the first line of xv6 code that is
executed in the kernel when a system call
occurs, when an interrupt occurs, and
when an exception occurs.

2) A system call, such as UNIX open,
ultimately leads to a trap into the operating
system kernel. Find where in xv6 the
system call is invoked.

10 / 14



Problem set: Questions 3, 4
3) Why can’t we use the native C compiler
libraries to build user programs to run on
xv6? Likewise, why can’t we use those
libraries in xv6 kernel mode?

4) xv6 provides a C library printf function
for use by the xv6 applications, and a
separate cprintf function for use by the
kernel. Why?

11 / 14



Problem set: Code reading questions (cont'd)
5) Where is the first line of code for
constructing an xv6 trapframe? How large
is an xv6 trapframe? Why?

6) In xv6, when a user program (such as the
shell) returns from main, what is done with
the value it returns?

12 / 14



Problem set: Debugging questions
7) Do xv6 chapter 1, problem 1.

8) Add a tracing utility to xv6 to print (to
the console) every system call as it occurs
and its return value.

13 / 14



Problem set: Question 9
9) Add an upcall mechanism to xv6 to call
up to user space. Add a system call,
alarm(procptr, interval), that sets up a
periodic upcall to procptr every interval
time ticks, in other words, the user-level
equivalent of a hardware timer.

Some more details and hints:
http://courses.cs.washington.edu/courses/cse451/16au/exercises/alarm.html

14 / 14

http://courses.cs.washington.edu/courses/cse451/16au/exercises/alarm.html

