Lecture 1, Problemset 1

1/14



Agenda

1. X86 Refresher
2. Xv6 Code Reading
3. Discussion of Problemset

2/14



X86: Basics

e Up to 3 operating modes: Real Mode (16 bit),
Protected Mode (32 bit), Long Mode (64 bit)

4 Privilege rings: 0 (highest), 1, 2, 3

8 32-bit general purpose registers: eax, ebx, ecx,
edx, esi, edi, ebp, esp

6 segment registers: cs, ds, es, fs, gs, ss

2 special purpose registers: eip, eflags

Calling convention: arguments passed on stack

3/14



X86: Privileged Features

e Mostly controlled with control registers: cro, cri,
cr2,cr3,cr4
o All memory accesses are relative to a segment
o Can be implicit or explicit
o Controlled by General Descriptor Table (GDT):

» segment offset, length, privileges

o Additional special task state segment

e 256 Trap vectors for Interrupts, Exceptions and

Syscalls

o Controlled by Interrupt Descriptor Table (IDT):
= handler, type (int or trap), privileges

o Some differences between user and kernel space

4/14



X86: Traps

e From kernel for vector n:
1. Fetch nth descriptor from IDT

2. Push eflags, cs, eip

3. For some exceptions: push error code

4. Clear some flags in eflags (including IF if int gate)
5. Set cs and eip to values from descriptor

5/14



X86: Traps (contd)

« From user space for vector n:

1.
2.

© D U~ W

Fetch nth descriptor from IDT

If SW interrupt: check descriptor privilege level (DPL) >=

current privilege level (CPL)
= otherwise general protection fault

Remember esp, ss

. Load esp[DPL], ss[DPL] from task state segment (TSS)
. Push old esp, 0ld ss, eflags, cs, eip
. For some exceptions: push error code

Clear some flags in eflags (including IF if int gate)

. Set c¢s and eip to values from descriptor

6/14



X86: Trap Return

e iret instruction used to return from trap
o As well as initially entering user space

 Partially inverts what CPU does on trap
1. Pop eip, cs, eflags

2. If change to lower privilege: pop ss, esp

7/14



Code Reading

1. Makefile

2. Bootloader and initialization
3. Trap handling

4. SKim exec implementation

8/14



Debugging

e GDB example
o Some useful commands: break foo, si, c, finish, info
registers, ...

https://courses.cs.washington.edu/courses/cse451/16au/labs/tools.html#gdb

e Qemu:
o Logs: make QEMUEXTRA='-d int -D gemu.log' gemu-nox-gdb

o Console: Ctrl + A C, then info registers, info tlb, ...

9/14


https://courses.cs.washington.edu/courses/cse451/16au/labs/tools.html#gdb

Problem set: Code reading questions

« 1) Identify the first line of xv6 code that is
executed in the kernel when a system call
occurs, when an interrupt occurs, and
when an exception occurs.

e 2) A system call, such as UNIX open,
ultimately leads to a trap into the operating
system kernel. Find where in xv6 the
system call is invoked.

10/14



Problem set: Questions 3, 4

e 3) Why can’t we use the native C compiler
libraries to build user programs to run on
xv6? Likewise, why can’t we use those
libraries in xv6 kernel mode?

e 4) xv6 provides a C library printf function
for use by the xv6 applications, and a
separate cprintf function for use by the
kernel. Why?

11/14



Problem set: Code reading questions (contd)

e 5) Where is the first line of code for
constructing an xv6 trapframe? How large
is an xv6 trapframe? Why?

e 6) In xv6, when a user program (such as the
shell) returns from main, what is done with
the value it returns?

12 /14



Problem set: Debugging questions

e 7) Do xv6 chapter 1, problem 1.

e 8) Add a tracing utility to xv6 to print (to
the console) every system call as it occurs
and its return value.

13/14



Problem set: Question 9

e 9) Add an upcall mechanism to xv6 to call
up to user space. Add a system call,
alarm(procptr, interval), that sets up a
periodic upcall to procptr every interval
time ticks, in other words, the user-level
equivalent of a hardware timer.

Some more details and hints:
http://courses.cs.washington.edu/courses/cse451/16au/exercises/alarm.html

14/14


http://courses.cs.washington.edu/courses/cse451/16au/exercises/alarm.html

