
1

Autumn 2006 CSE P548 1

WaveScalar: the Executive Summary

Dataflow machine
• good at exploiting ILP
• dataflow parallelism + traditional coarser-grain parallelism

• cheap thread management
• low operand latency because of a hierarchical organization
• memory ordering enforced through wave-ordered memory

• no special languages

Autumn 2006 CSE P548 2

WaveScalar

Additional motivation:
• increasing disparity between computation (fast transistors) &

communication (long wires)
• increasing circuit complexity
• decreasing fabrication reliability

2

Autumn 2006 CSE P548 3

Monolithic von Neumann Processors

A phenomenal success today.
But in 2016?

/ Performance
Centralized processing & control
Long wires
e.g., operand broadcast networks

/ Complexity
40-75% of “design” time is design
verification

/ Defect tolerance
1 flaw -> paperweight

Autumn 2006 CSE P548 4

WaveScalar’s Microarchitecture

Good performance via distributed microarchitecture ☺
• hundreds of PEs
• dataflow execution – no centralized control
• short point-to-point (producer to consumer) operand communication
• organized hierarchically for fast communication between

neighboring PEs
• scalable

Low design complexity through simple, identical PEs ☺
• design one & stamp out thousands

Defect tolerance ☺
• route around a bad PE

3

Autumn 2006 CSE P548 5

Processing Element

• Simple, small (.5M transistors)
• 5-stage pipeline (receive input

operands, match tags, instruction
schedule, execute, send output)

• Holds 64 (decoded) instructions
• 128-entry token store
• 4-entry output buffer

Autumn 2006 CSE P548 6

PEs in a Pod

• Share operand bypass network
• Back-to-back producer-consumer

execution across PEs
• Relieve congestion on intra-

domain bus

4

Autumn 2006 CSE P548 7

Domain

Autumn 2006 CSE P548 8

Cluster

5

Autumn 2006 CSE P548 9

WaveScalar Processor

Long distance
communication
• dynamic routing
• grid-based network
• 2-cycle hop/cluster

Autumn 2006 CSE P548 10

Whole Chip

• Can hold 32K instructions
• Normal memory hierarchy
• Traditional directory-based

cache coherence
• ~400 mm2 in 90 nm

technology
• 1GHz.
• ~85 watts

6

Autumn 2006 CSE P548 11

Autumn 2006 CSE P548 12

WaveScalar Instruction Placement

Place instructions in PEs to maximize data locality & instruction-level
parallelism.
• Instruction placement algorithm based on a performance model

that captures the important performance factors
• Carve the dataflow graph into segments

• a particular depth to make chains of dependent instructions
that will be placed in the same pod

• a particular width to make multiple independent chains that
will be placed in different, but near-by pods

• Snakes segments across PES in the chip on demand
• K-loop bounding to prevent instruction “explosion”

7

Autumn 2006 CSE P548 13

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Autumn 2006 CSE P548 14

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

8

Autumn 2006 CSE P548 15

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Autumn 2006 CSE P548 16

Wave-ordered Memory

• Compiler annotates memory
operations

• Send memory requests
in any order

• Hardware reconstructs the
correct order

Load
Store

Load
Store Load

Store

3
4

8

5

6
7

� Sequence #

4
?

9

6

8
8

� Successor

2
3

?

4

5
4� Predecessor

9

Autumn 2006 CSE P548 17

Store bufferWave-ordering Example

Load
Store

Load
Store Load

Store

5

6

6

8

3 42

8 9?

4

5
7 84

4 ?3
3 42

Autumn 2006 CSE P548 18

Store bufferWave-ordering Example

4 ?3

Load
Store

Load
Store Load

Store

5

6

6

8

3 42

8 9?

4

5
7 84

4 ?3
3 42

10

Autumn 2006 CSE P548 19

Store bufferWave-ordering Example

4 ?3

8 9?

Load
Store

Load
Store Load

Store

5

6

6

8

3 42

8 9?

4

5
7 84

4 ?3
3 42

Autumn 2006 CSE P548 20

Store bufferWave-ordering Example

4 ?3

7 84

8 9?

Load
Store

Load
Store Load

Store

5

6

6

8

3 42

8 9?

4

5
7 84

4 ?3
3 42

11

Autumn 2006 CSE P548 21

Wave-ordered Memory

Waves are loop-free sections of the
dataflow graph

Each dynamic wave has a wave number
Wave number is incremented between

waves

Ordering memory:
• wave-numbers
• sequence number within a wave

Autumn 2006 CSE P548 22

WaveScalar Tag-matching

WaveScalar tag
• thread identifier
• wave number

Token: tag & value

<ThreadID:Wave#:InstructionID>.value

+

<2:5>.3 <2:5>.6

<2:5>.9

12

Autumn 2006 CSE P548 23

Single-thread Performance
Performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

am
m

p

ar
t

eq
u
ak

e

g
zi

p

m
cf

tw
o
lf

d
jp

eg

m
p
eg

2
en

co
d
e

ra
w

d
au

d
io

av
er

ag
e

A
IP

C WS
OOO

Autumn 2006 CSE P548 24

Single-thread Performance per Area

Performance per area

0

0.01

0.02

0.03

0.04

0.05

a
m

m
p

a
rt

eq
u
a
ke

g
zi

p

m
cf

tw
o
lf

d
jp

eg

m
p
eg

2
en

co
d
e

ra
w

d
a
u
d
io

a
ve

ra
g
e

A
IP

C
/

m
m

2

WS
OOO

13

Autumn 2006 CSE P548 25

Multithreading the WaveCache

Architectural-support for WaveScalar threads
• instructions to start & stop memory orderings, i.e., threads
• memory-free synchronization to allow exclusive access to data

(thread communicate instruction)
• fence instruction to force all previous memory operations to fully

execute (to allow other threads to see the results of this one’s
memory ops)

Combine to build threads with multiple granularities
• coarse-grain threads: 25-168X over a single thread; 2-16X over

CMP, 5-11X over SMT
• fine-grain, dataflow-style threads: 18-242X over single thread
• combine the two in the same application: 1.6X or 7.9X -> 9X

Autumn 2006 CSE P548 26

Creating & Terminating a Thread

14

Autumn 2006 CSE P548 27

Thread Creation Overhead

Autumn 2006 CSE P548 28

Performance of Coarse-grain Parallelism

15

Autumn 2006 CSE P548 29

CMP Comparison

0

2

4

6

8

10

12

14

16

18

20

ws
sc

m
p

sm
t8

cm
p4

cm
p2 ws

sc
m
p

sm
t8

cm
p4

cm
p2

ec
km

an ws
sc

m
p

ec
km

an

S
p

e
e
d

u
p

 v
s

1
-t

h
re

a
d

 s
ca

la
r

C
M

P

32 threads

16 threads

8 threads

4 threads

2 threads

1 thread

lu fft radix

Autumn 2006 CSE P548 30

Performance of Fine-grain Parallelism

Relies on:
Cheap synchronization
Load once, pass data (not load/compute/store)

16

Autumn 2006 CSE P548 31

Building the WaveCache

RTL-level implementation
• some didn’t believe it could be built in a normal-sized chip
• some didn’t believe it could achieve a decent cycle time and load-

use latencies
• Verilog & Synopsis CAD tools

Different WaveCache’s for different applications
• 1 cluster: low-cost, low power, single-thread or embedded

• 42 mm2 in 90 nm process technology, 2.2 AIPC on Splash2
• 16 clusters: multiple threads, higher performance: 378 mm2 , 15.8

AIPC

Board-level FPGA implementation
• OS & real application simulations

