Dynamic Scheduling

Why go out of style?
* expensive hardware for the time (actually, still is, relatively)
» register files grew so less register pressure
» early RISCs had lower CPIs

Autumn 2006 CSE P548 - R10000 Register
Renaming

Dynamic Scheduling

Why come back?
* higher chip densities
« greater need to hide latencies as:
« discrepancy between CPU & memory speeds increases
» branch misprediction penalty increases from superpipelining

» dynamic scheduling was generalized to cover more than floating
point operations

* handles branches & hides branch latencies
* hides cache misses

* can be implemented with a more general register renaming
mechanism

* commits instructions in-order to preserve precise interrupts
* processors now issue multiple instructions at the same time
* more need to exploit ILP

2 styles: large physical register file & reorder buffer

(MIPS-style) (Pentium-style)

Autumn 2006 CSE P548 - R10000 Register
Renaming

Register Renaming with A Physical Regqister File

Register renaming provides a mapping between 2 register sets
» architectural registers defined by the ISA
» physical registers implemented in the CPU
 hold results of the instructions committed so far

 hold results of subsequent instructions that have not yet
committed

« more of them than architectural registers

* ~issue width * # pipeline stages between register
renaming & commit

Autumn 2006 CSE P548 - R10000 Register
Renaming

Register Renaming with A Physical Regqister File

How does it work?:

* an architectural register is mapped to a physical register during a
register renaming stage in the pipeline

« destination registers create mappings
* source registers use mappings
» operands thereafter are called by their physical register number

* hazards determined by comparing physical register numbers,
not architectural register numbers

Autumn 2006 CSE P548 - R10000 Register
Renaming

A Register Renaming Example

Code Segment Register Mapping Comments
1d r7,0(r6) r7 -> pl p1is allocated
add r8, r9, r7 r8 -> p2 use p1, notr7

p3 is allocated
sub r7, r2, r3 r7 -> p3 p1 is deallocated
when sub commits

Autumn 2006 CSE P548 - R10000 Register
Renaming

Register Renaming with A Physical Regqister File

Effects:
» eliminates WAW and WAR hazards (false name dependences)
* increases ILP

Autumn 2006 CSE P548 - R10000 Register
Renaming

An Implementation (R10000)

Modular design with regular hardware data structures

Structures for register renaming

* 64 physical registers (each, for integer & FP)

* map tables for the current architectural-to-physical register
mapping (separate, for integer & FP)

* accessed with an architectural register number
» produces a physical register number

- source operands refer to the latest defined destination register, i.e.,
the current mappings

» adestination register is assigned a new physical register number
from a free register list (separate, for integer & FP)

Autumn 2006 CSE P548 - R10000 Register

Renaming

An Implementation (R10000)

Instruction “queues” (integer, FP & data transfer)
» contains decoded & mapped instructions with the current
physical register mappings
« instructions entered into free locations in the IQ
« sit there until they are dispatched to functional units

» somewhat analogous to Tomasulo reservation stations
without value fields or valid bits

* used to determine when operands are available

» compare each source operand of instructions in the IQ
to destination values just computed

» determines when an appropriate functional unit is available
« dispatches instructions to functional units

Autumn 2006 CSE P548 - R10000 Register

Renaming

An Implementation (R10000)

active list for all uncommitted instructions
« the mechanism for maintaining precise interrupts
« instructions entered in program-generated order
« allows instructions to complete in program-generated order
* instructions removed from the active list when:
* an instruction commits:
« the instruction has completed execution
« all instructions ahead of it have also completed
* branch is mispredicted
* an exception occurs
« contains the previous architectural-to-physical destination register
mapping
» used to recreate the map table for instruction restart after an
exception

« instructions in the other hardware structures & the functional units
are identified by their active list location

Autumn 2006 CSE P548 - R10000 Register 9
Renaming

An Implementation (R10000)

busy-register table (integer & FP):
« indicates whether a physical register contains a value
* somewhat analogous to Tomasulo’s register status
* used to determine operand availability

 bit is set when a register is mapped & leaves the free list (not
available yet)

» cleared when a FU writes the register (now there’s a value)

Autumn 2006 CSE P548 - R10000 Register 10
Renaming

=

Instruction Cache Predecode
Unit

Integer Registers - : FP Registers
64 = 64 bits B 64 x 64 bits

=

Y
Main TLB
64 entries

Data Cache
32K, two-way associative

et

Autumn 2006

CSE P548 - R10000 Register
Renaming

Autumn 2006

R10000 Die Photo

R10K die size 16.6mm x 17.9mm

Hi==

st s qdr

CSE P548 - R10000 Register
Renaming

The R10000 in Action 1

— 1d 23, #(req) arch register
peotential multi-cycle
add 24, A3, reg arch register
zub A3, req, reg arch register A3 redefined
name dependence
or 25, A3, reg arch register A3 used
map table
Instruction Gueue A%ﬁve List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
Autumn 2006 CSE P548 - R10000 Register 13
Renaming
The R10000 in Action 2
—p 1d A3, #l(req) arch register
potential multi-cycle
add 24, A3, reg
sub 43, reg, reg
or 25, A3, reg
map table
0
!
4
1R
/31
Instruction Quevie / Active List
Ins | S1 | Avail | Dest| AL tag Dest | Arch | Done bit
#Px |[A3 |notdone
Autumn 2006 CSE P548 - R10000 Register 14

Renaming

The R10000 in Action 3

1d 23, #(reqg) arch register
potential multi-cycle

— add 24, A3, reg
sub 23, reg, reg

or A5, A3, reg
map table

0

:
a reelist
3B

/31

Instruction Queue / Active List

Ins | S1 | Avail |Dest| AL tag Dest |Arch | Done bit
«Px |A3 |notdone

i

i
T =4

Autumn 2006 CSE P548 - R10000 Register 15
Renaming

The R10000 in Action 4

1d 23, #(reg) arch register
potential multi-cycle
add 24, A3, reg arch register

— sub A3, reqg, reg

or 5, A3, reg

map table

W

31
- . .
Instruction Queue Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
#Px |A3 |notdone
Fe—tnrk Pag «Py |A4 |notdene
add P21 1
Autumn 2006 CSE P548 - R10000 Register 16

Renaming

The R10000 in Action 5

1d 23, #(req) arch register
peotential multi-cycle
add 24, A3, reg arch register

zub A3, req, reg arch register A3 redefined
name dependence

— or 25, A3, reg
map table

Instruction Queue / Active List

Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit

e SO h & 2 APx |A3 [notdone
Feb—ru & «Py |A4 |notdone

A3 |done
add 1 P21 1
Autumn 2006 CSE P548 - R10000 Register 17
Renaming

The R10000 in Action 5 : Interrupts 1

1d 23, #(req) arch register
potential multi-cycle
add a4, A3, reg arch register

sub 23, reg, reg arch register A3 redefined
name dependence

— or &5, A3, reg

map table

Instruction Gueue / Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
: X f—h22 2 APx [A3 [notdone
Freb—rtiri & +Py |A4 |not done
A3 |[done
add 1 P21 1
Autumn 2006 CSE P548 - R10000 Register 18

Renaming

The R10000 in Action: Interrupts 2

1d 23, #(req) arch register
peotential multi-cycle
add 24, A3, reg arch register

— sub A3, reg, reg arch register A3 redefined
name dependence

or 25, A3, reg arch register A3 used
map table

0

-

4 (21

5 |Pz

/31
Instruction Gueue A%ﬁve List
Ins ‘ 51 | Avail |Dest‘ AL tag Dest | Arch | Done bit
} : #Px |A3 |notdene
Fet }m..'. i & i Pg } +Py |A4 |notdone
add[Pzo| 1 [P21 | 1
Autumn 2006 CSE P548 - R10000 Register 19
Renaming

The R10000 in Action: Interrupts 3

1d 23, #(reg) arch register
potential multi-cycle
—p add 24, A3, reg arch register

sub A3, reg, reg arch register A3 redefined
name dependence

or a5, &3, reg arch register A3 used

map table

L% R~ N FY) (=

Instruction Gueue A%:tive List

Ins | S1 | Awail [Dest] AL tag Dest | Arch | Dane bit
. B = Px A3 not dene

I Pl a I
e ik I | I

Autumn 2006 CSE P548 - R10000 Register 20
Renaming

The R10000 in Action: Interrupts 4

— 1d 23, #(req) arch register
peotential multi-cycle
add 24, A3, reg arch register

zub A3, req, reg arch register A3 redefined
name dependence

or 25, A3, reg arch register A3 used

map table

Instruction Gueue A%ﬁve List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
Autumn 2006 CSE P548 - R10000 Register 21
Renaming

R10000 Execution

In-order issue (have already fetched instructions)
* rename architectural registers to physical registers via a map table

» detect structural hazards for instruction queues (integer, memory &
FP) & active list

* issue up to 4 instructions to the instruction queues
Out-of-order execution (to increase ILP)

* reservation-station-like instruction queues that indicate when an
operand has been calculated

» each instruction monitors the setting of the busy-register table
« set busy-register table entry for the destination register
» detect functional unit structural & RAW hazards
« dispatch instructions to functional units
In-order commit (to preserve precise interrupts)
» this & previous program-generated instructions have completed
» physical register in previous mapping returned to free list
« rollback on interrupts

Autumn 2006 CSE P548 - R10000 Register 22
Renaming

11

