Exploiting Heterogeneous Parallelism

on a Multithreaded Multiprocessor®

(Gail Alverson
Brian Koblenz

Robert Alverson

Allan Porterfield

David Callahan
Burton Smith

Tera Computer Company
Seattle, Washington USA

Abstract

This paper describes an integrated architecture, compiler,
runtime, and operating system solution to exploiting hetero-
geneous parallelism. The architecture s a pipelined multi-
threaded multiprocessor, enabling the execution of very fine
{multiple operations within an struction) to very coarse
(multiple jobs) parallel activities. The compiler and runtime
focus on managing parallelism within a job. while the oper-
ating system focuses on managing parallelism across jobs.
By considering the entire system in the design, we were able
to smoothly interface its four components. While each com-
ponent is primarily responsible for managing its own level of
parallel activity, feedback mechanisms between components
enable resource allocation and usage to be dynamically up-
dated. This dynamic adaptation to changing requirements
and available resources fosters both high utilization of the
machine and the efficient expressiou and execution of paral-
lelism.

1 Introduction

An application set contains parallelisin at many levels.
Fine grain parallelism within an application can range
from pipelined or co-scheduled operations to tightly par-
allel loops. Medium grain parallelismi, on the order of

*This research was supported by the United States Defense Ad-
vanced Research Projects Agency Information Science and Tech-
nology Office ARPA Order No. 0512/2-4: Program Code No.
OT10 issued by DARPA/CMO under Contract MIDAY72-90-C-
0075. The views and conclusions contained in this docuiment are
those of Tera Computer Company and should not be interpieted
as representing the official policies, either expressed or implied, of
DARPA or the U. S. Government.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copynght notice and the
utle of the publication and 1ts date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ICS '92-7/82/D.C., USA

©1992 ACM 0-89791-485-6/92/0007/0188...$1.50

188

hundreds of instructions, describes more general, var-
ied, and largely independent activities. Coarse grain
parallelism presents itself in the form of applications
(or large application sections) that can run simultane-
ously 1 a multiprogrammed fashion. We use the phrase
helerogeneous parallelism to refer to this spectrum of
parallelism with widely varying grain-size and resource
requirements.

This paper describes an integrated hardware and soft-
ware system designed to exploit heterogeneous paral-
lelism. Each of the hardware, compiler, runtime, and
operating system components are responsible for man-
aging parallelism at different levels. In addition, the
components cooperate to adapt to changing parallel and
resource requirements.

Briefly, the most important attribute of the hardware
is that it is multithreaded. In a multithreaded archi-
tecture, each physical processor supports some number
of instruction streams, each of which is programmed
essentially like a traditional uniprocessor. These multi-
ple streams are then multiplexed by the processor hard-
ware onto a single set of functional units. Our principle
motivation for adopting multithreaded processors is to
tolerate latency from memory units and synchroniza-
tion. Because these latencies grow with the size of the
multiprocessor, they must be tolerated for an effectively
scalable machine,

The most important attribute of the overall system is
the virtual machine it presents to the parallel program-
mer. This, in turn, largely influences how easily the par-
allel machine can be used. The virtual machine defined
by our parallel language has an unbounded number of
“processors”, each with uniform access to a shared mem-
ory. The language 1s a traditional imperative language
augmented with data and control constructs to specify
thread creation and synchronization. The fiction of an
unbounded number of processors is maintained by the
software through time-sharing when the semantics of
the program require more logical processors than avail-

able streams. The fiction of uniform access is main-
tained by the multithreading, which masks waiting in
one stream with computation in another.

We focus on answering two questions that are central
to systems that support heterogeneous parallelism.

o What is the role of each component of the system —
the hardware, operating system, compiler, and run-
time — in detecting and using parallelism within
and across applications?

¢ How can the system, as a whole, adapt to the
changing resource requirements of its applications?

The second question stems from research concern-
ing the amount of the available parallelism in pro-
grams[8, 11]. Results indicate that the parallelism in a
program can vary by orders of magnitude over relatively
short time intervals. Optimized numerical programs
also show wide and rapid variance in available paral-
lelism. Good machine utilization requires that one find
a way to smooth out these resource profiles. A dynamic
solution to resource management, in which streani re-
sources can move froni one task to another within and
across jobs, appears most reasonable and unobtrusive
to users. Intuitively, peaks of one computation can be
used to fill the valleys of another.

The Tera system, reflecting our work, is intended for
commercial use in a large scale multi-user scientific com-
puting environment. Machines will have up to 256 pro-
cessors, with approximately 32,000 streams available in
a full size machine. This paper describes how each com-
ponent of the systemn manages its particular level of par-
allelism. We also identify the information each compo-
nent must provide to the other, m order to adapt to dy-
namic changes in application parallelism and resources.
Interestingly, and in part due to our concurrent design
of the system, the set of communication channels needed
to provide this integration is small.

The next section contrasts the Tera system with other
multithreaded systems. This is followed in Section 3 by
a brief description of our architecture. Section 4 out-
lines support for very fine-grained parallelism. Section b
then discusses the special needs of compiler generated
parallelism. Section 6 describes the general runtime en-
vironment with emphasis on elficient synchromzation.
Section T outlines operating systemn concerns of allocat-
ing resources to different jobs.

2 Related Systems

The general need for multithreading arises whenever
there is insufficient parallelism available within a single
stream to keep the machine resources busy in the face of

189

resource latency. Resource latency includes memory la-
tency, synchronization latency, and processing latency.
Rather than simply allowing the hardware resources to
idle, they are shared among multiple streams.

A primary motivation for multithreaded architectures
is to provide scalable shared memory. Scalable means
that as the number of processors increase, the amount
of work that can be performed in a given time interval
increases proportionately. Shared memory refers to a
communication paradigm wherein parallel entities com-
municate through reading and writing locations in a sin-
gle shared address space. Ideally, shared memory pro-
vides the illusion of uniform memory access.

Miller. One of the early multithreaded designs was
the multiple-stream registerless shared-resource proces-
sor proposed by Miller in 1974 [13]. The main thrust of
the design is to use queues to hold outstanding opera-
tions at each stage in the instruction processing. At each
clock tick, an element of each queue that 1s “ready” is
processed and moved to the next queue in the pipeline.
By providing for a large number of instruction streams,
the processing elements associated with each queue are
kept busy a large fraction of the time.

HEP. The Denelcor HEP system {15], introduced in
1978, was the first commercial multithreaded multipro-
cessor. A HEP system contains up to 16 processors con-
nected by a high bandwidth switch. Each processor has
support for 16 protection domains and 128 instruction
streams. A protection domain defines a virtual address
space; each job executing on the same processor has its
own protection domain. An instruction stream is backed
by a program counter and a portion of a per-processor
sharved register file. The processor’s instruction issuing
mechanism enables fast instruction level task switching
in the hardware. In addition to multithreading, a key
feature of the HEP is its pipelining of both the memory
and ALUs to increase bandwidth. Because the active
instructions in the pipes come from different streams,
they are usually independent and interlocks are seldom
encountered.

Synchronization in the HEP is achieved with a
full/empty bit on each memory location and general
purpose register. A write to a location is implemented
by an instruction that, when empty, indivisibly writes
the location and sets it full. A read, similarly, is im-
plemented by an instruction that, when full, indivisibly
reads the location and sets it empty. When the syn-
chronization condition does not hold, the instruction 1s
reattempted on the stream’s next turn for execution.
Because the register set is shared among all streams of
a processor, the HEP includes register reservation bits
to ensure atomicity of operations on shared registers.

MASA. MASA [9]is a multithreaded architecture de-
sign that has many similarities with the HEP architec-
ture. A novel feature of MASA is its use of parallel
streams for lightweight procedure calls and traps. This
feature is supported by MASA’s bank of register sets,
which is shared in the style of register windows. As well
as having their own registers, spawned streams share
several registers with their parent. When a trap occurs,
a new stream is created as a trap handler. This cre-
ation automatically protects the context of the trapped
stream, yet allows its content to be probed by the han-
dler. Simtlarly, by creating a new stream for each proce-
dure invocation, parameters of the procedure are passed
in the shared registers automatically. New registers are
available, at no additional cost.

Horizon. The Horizon [10}, a successor of the HEP,
adds to the family of shared memory MIMD systems for
scientific computation.

Unlike the HEP, each stream of the Horizon has its
own private register set. This change eliminates the
need for full/empty and reserved bits on the registers,
allowing faster clock rates and more parallelism in regis-
ter access. The Horizon architecture is horizontal, with
each 64-bit instruction having the potential to simul-
taneously initiate a memory, an ALU, and a control
operation. Each instruction contains a 3-bit lookahead
field to allow multiple outstanding operations without
hardware register interlocks. The compiler sets looka-
head to indicate the number of subsequent instructions
that can be issued without waiting for the completion
of this instruction. A full/empty bit on memory loca-
tions 1s used for synchronization of streams. Unlike the
HEP, the Horizon proposes a hardware back-off scheme
for failed synchronized loads and stores. The purpose
of the delayed retry is to ininiinize the network traffic.
The Horizon also provides a user-level trap mechanisin,
substantially reducing the cost of traps.

Tera. The Tera architecture inherits much of its de-
sign and philosophy from the HEP and IHorizon. As
the next sections will explain, however, the Tera is cus-
tomized to better facilitate heterogeneous parallelism.
For example, the architecture includes a RESERVE oper-
ation for assuring success of streamn creation and coun-
ters for system monitoring. Hardware retry is used in
conjunction with data trap bits for two phase synchro-
nization. The CREATE operation has a new interface,
and lookahead only applies to memory operations.

The Tera software system, similarly, explicitly ad-
dresses the cooperative sharing of the machine’s parallel
resources. The management of all types of parallelism,
particularly at the coarser levels, distinguishes the Tera
system from its predecessors.

190

Alewife. The Alewife architecture [1] of MIT is an-
other recent addition to the MIMD distributed shared-
memory multithreaded community. The Alewife design
seeks to avoid memory latency, not only to tolerate it.

Alewife includes caches for shared data plus a hard-
ware maintained directory scheme for retaining co-
herency between them. Effectiveness of the caches de-
pends largely on the locality of program references.
Alewife employs coarse grain multithreading, where in-
structions from a given stream are executed until the
stream performs a remote memory request or fails in a
synchronization attempt. Stream scheduling is done in
software.

As with the previous systems, Alewife provides a
full/empty bit on each memory location for synchro-
nization. Loads and stores that (temporarily) fail cause
a trap to occur and, potentially, the stream to be
switched.

Because Alewife uses coarse grain multithreading, the
machine may require fewer program counters than the
Tera to keep a processor busy. Because the Tera makes
no assumptions about locality, on the other hand, it
may be easier to write scalable programs on the Tera.
It appears that 1t is important for the Tera program-
mer/system to find parallelism in the application for
good performance, while it is important for the Alewife
programmer /system to find both locality in the appli-
cation and some parallelism.

TAM. The Threaded Abstract Machine (TAM) [7]
is a compiler-based approach to latency tolerance and
lightweight synchronization. TAM is an execution
model for fine grained parallelism. The model places all
synchrounization, scheduling, and storage management
under compiler control by making these operations ex-
plicit in the instruction set. The model is not a hard-
ware design; it instead can be implemented on a variety
of conventional (and unconventional) architectures. Al-
though it is difficult to compare models with architec-
tures, we contrast several general features of the TAM
with those of the Tera.

The TAM compiler schedules instruction streams.
Consequently, the scheduling policies are flexible and
can take advantage of information known about the ex-
ecuting program. The Tera runtime system provides the
same flexibility with scheduling medium-grained pro-
gram units. To minimize overhead for fine-grained par-
allelism, however, streams on the Tera are scheduled by
the hardware. At this level, given enough parallelism,
simple policies perform adequately.

TAM has another level in its scheduling hierarchy
called a “quantum”. A quantum represents a set of
threads that can be statically co-scheduled on a pro-
cessor and share a register set. Since the registers are

shared, one remote reference does not idle a register set.
In contrast, the Tera has only one program thread per
register set. However, because lookahead allows up to
eight remote references to be unresolved at once, a sin-
gle remote reference also need not idle a Tera register
set.

*T. *T [14] is a hybrid architecture, adopting char-
acteristics of both parallel von Neumann and dataflow

machines. The architecture aims to limit the cost of

remote loads and synchronization latency, particularly
that due to barriers.

Each node of *T has two asynchronous processors.
The synchronization processor directly handles mes-
sages corresponding to short activities. A common short
activity is that of a join synchronization, or a remote
memory request. The processor gqueues other messages
for the second processor: the data processor. The data
processor typically fields longer, inore compute intensive
activities, having been relieved of quick synchronization
activities by the first processor. Because the synchro-
nization processor handles all multithreading aspects,
the data processor can be a standard RISC' processor,
leveraging the high speed provided by current RISC pro-
cessors.

Similar to TAM, the *T model presents a single reg-
ister set that is shared among the streams running on a
processor. This sharing makes streams very lightweight,
which allows very fine grain parallelism to be effectively
exploited. Similar to a dataflow processor, a streamn that
performs a remote load or remote synchronization leaves
no state behind on the issuing processor. The request
contains a continuation to restart the stream when the
response is returned. Thus, remote operations do not
consume register file locations, allowing other streains
to take advantage of more registers. On the other hand,
remote operations can be more costly, since a stream
with several live values may have to store them before
issuing the load and restore them upon restarting the
continuation (after the operation completes).

Summary. There are a number of approaches to tol-
Each approach
has 1ts merits. We believe a principal strength of the
Tera system is its ability to exploit heterogeneous par-
allelism, including parallelism from simultaneous jobs.
Although other systems exploit parallelism at several
levels — generally the fine and/or mediuin grain levels
— Tera appears unique in its goal to exploit parallelism
at all levels.

erating latency with multithreading

191

3 Tera Architecture Overview

The Tera architecture implements a physically shared-
memory multiprocessor with multi-stream processors
and interleaved memory units interconnected by a
packet-switched interconnection network {3]. The net-
work looks like a pipeline from the processor’s perspec-
tive and its bandwidth is sufficient to allow arbitrary
data placement relative to the processors provided the
resulting latency can be tolerated. The network pro-
vides a bisection bandwidth which allows a request and
a response for each processor to cross the bisection plane
each clock tick.

Each processor of the Tera has support for 16 pro-
tection domains and 128 streams, A protection domain
implements a memory map with an independent set of
registers holding stream resource limits and accounting
information. Consequently, each processor can be ex-
ecuting 16 distinct applications in parallel. Although
fewer than 16 applications are usually necessary to at-
tain peak utilization of the processor, the extra domains
allow the operating system flexibility in mapping appli-
cations to processors.

Streams each have their own register set and are hard-
ware scheduled. On every tick of the clock, the proces-
sor logic selects a stream that is ready to execute and
allows it to issue its next instruction. Since instruction
interpretation is completely pipelined by the processor
and by the network and memories as well, a new in-
struction from a different stream may be 1ssued in each
tick without interfering with its predecessors. When an
instruction completes, the stream to which it belongs
thereby becomes ready to execute the next instruction.
Provided there are enough instruction streams in the
processor so that the average instruction latency is filled
with instructions from other streams, the processor is
fully utilized. Similar to the provision of protection do-
mains, the hardware provision of 128 streams per pro-
cessor is more than is necessary to keep the processor
busy at any one time. The extra streams enable run-
ning jobs to fully utilize the processor while other jobs
are swapped in and out independently; they enable a
processor to remain saturated during periods of higher
latency (for example, due to synchronization waits and
memory contention).

Tera associates four state bits with each memory
word: a forwarding bit, a full/empty bit, and two data
trap bits. Two of these, the full/empty bit and one
of the data trap bits, are used for lightweight synchro-
nization. Access to a word is controlled by the pointer
(the instruction) used to access the memory location
and the values of the tag bits. Regardless of the state
of the full/empty bit, if either of the data trap bits is
set and not disabled by the pointer, the memory access

fails and the issuing stream traps

Tera supports three modes of interacting with the
full/empty bit, where again, the mode is selected by
the pointer.

e (Normal) Read and write the memory word regard-
less of the state of the full/empty bit; writes set the
bit to full.

¢ (Future) Read and write the word only when the
cell is full; leave the bit full.

o (Synchronized) Read only when the word is full and
set the bit to empty. Write only when the word is
empty and set the bit to full.

When a memory access fails it is retried several times
in the hardware before the stream that issued the oper-
ation traps. The retries are done in the memory func-
tional unit and do not interfere with other streams is-
suing instructions.

Other features of the Tera architecture, including its
wide instructions, support for process creation, coun-
ters, and trap mechanisms, will be defined as they are
encountered in the following sections.

4 Very Fine-grained Parallelism

The wide instructions and multiple pipelines of the Tera
architecture support parallelism at a very fine grain.
Because it is tedious to program, reasonably easy to
detect, and present in even the most sequential applica-
tion, the Tera compiler is solely responsible for detecting
and scheduling this level of an application’s parallelisin.

Tera instructions are packed with three operations:
Memory, Arithmetic, and Control (MAC). A typical M-
opis aLOAD, a typical A-op isa FLOAT.ADD.MUL, and a
typical C-op is a JuMP, The C-op slot is flexible. 1t can
also house simple integer and floating point arithmetic
operations which allows addressing calculations to be
performed in parallel with floating point computation.
A three operation Tera instruction can issue in each
clock tick.

The hardware guarantees that the results of A and C
operations will be available (or bypassed) when needed
by a succeeding instruction However, M-op depen-
dences are handled through a a 3-bit dependence looka-
head field in the instruction. The hardware allows each
stream up to eight simultaneously outstanding memory
operations where the value of the lookaliead field con-
trols this degree of parallelism. The major benefic of
lookahead is that it allows memory latency o be toler-
ated within a stream. It also allows instructions from
the same stream to be co-resident in the pipeline, han-
dles register dependence on loads, and handles any sort

192

of dependence between memory operations. Making de-
pendence explicit in the instruction allows the hardware
to plan ahead, scheduling streams with satisfied depen-
dence constraints rather than finding out too late and
stalling the pipeline. The lookahead value is set by the
compiler and can differ for each instance of a memory
operation.

The Tera hardware also supports very fine-grain par-
allelism in the functional unit pipelines. Whereas con-
ventional pipelines are filled with instructions from one
instruction stream, the Tera pipelines may hold instruc-
tions from several streams, As seen with the HEP, hav-
ing multiple streams filling the pipelines often increases
their utilization.

5 Fine-grained Parallelism

The Tera compiler and hardware work together to au-
tomatically detect and exploit fine-grained parallelism.
Before we describe the compiler’s actions, it is useful to
define the critical hardware features that it employs.

Tera provides operations that allocate, activate and
deallocate streams on a single processor: RESERVE,
CRFEATE, and QuUIT. The RESERVE Instructions are
novel, and were introduced to assist with the automatic
parallelization of programs. The instructions reserve the
right to issue CREATE instructions, which activate idle
streams and assign them program counters and data en-
vironments. The QUIT instruction returns a stream to
the 1dle state.

Significant amounts of parallelism can be automati-
cally extracted from existing scientific programs using
current compiler technology. The dominant form of
parallelism exploited by compilers is “loop level par-
allelism™ — parallelism obtained by executing separate
iterations of a loop concurrently. Additional parallelism
is found by detecting when separate blocks of code can
be executed concurrently. Compilers are also capable of
tnserting explicit synchronization to achieve a form of
data pipelining[12].

The optimal mapping of this parallelism onto the tar-
get architecture is often dependent on parameters not
known at compile-time. In particular, for a given num-
ber of processors, the number of iterations and the exe-
cution times of various tasks influences how parallelism
is implemented, e.g. how loops are scheduled and what
parallelism is deemed “not useful” and executed serially.

On multithreaded architectures in which the physical
processor is shared with other parallel activities from
the same and other jobs, the static mapping problem
is further complicated by uncertain dynamic resources.
Consider an isolated parallel loop:

DOK = 1,N
X(K)= Q + Y(K)*(R*ZX(K+10) + T*ZX(K+11))
ENDDO

The compiler might implement this loop so that s — 1
additional streams are “created” and each stream per-
forms approximately N/s iterations. However, if there
are not s—1 idle streams at the moment this loop begins
execution then this implementation will not execute all
iterations of the loop.

A solution is to have the compiler generate code that
does not require additional streams but can exploit
them if available. This approach has been used on sev-
eral of the mini-super computers such as Alliant and
Convex, where it is considered important that executa-
bles be independent of machine configuration. Our mo-
tivation is to allow very dynamic allocation of resources
from one parallel activity to another. even across jobs,
so that the system is very responsive to changes in avail-
able parallelism.

One strategy of the compiler for a simple parallel loop
is to use up to 30 streams! and divide the loop evenly
among however many streams are acquired. If the pro-
cessor is busy and no additional streams are available,
then the loop executes serially with s = [streams after
only a few instructions of overhiead:

reserve_upto s r0 29
s += 1
k0 = ceiling(n/s)
store CHUNK, kO
store DONES$, s
k = k0-1
while (--s > 0) {
create 11 k=k sp=sp n=n
k += kO }
k=-1
11: load kO, CHUNK
n = min(kO0+k,n)
while (++k < n) {
// usual scalar optimizations apply...
X(kK)= Q + Y(k)*(R*ZX(k+10) + T*ZX(k+11))
}
d = DONE$--
if(d > 1) quit

The Tera instruction set includes the A-op RE-
SERVE.UPTO ¢ u st where t and u are registers and s¢
is an immediate constant. This instruction attempts to
reserve as many streams as are avallable, up to u + sf,
for use by the current protection domain. The number

I Asfew as 10 or as many as 80 streams could be needed to saturate
the processor, depending on the program.

193

of streams successfully reserved is stored into register {.
Register r0 is always 0.

The CREATE instruction is parameterized by a pe-
relative jump target and three registers passed to the
new stream. In this example, the CREATE instruction
is simply skipped if the RESERVE fails to allocate any
streams.

Variables in upper case are in memory and variables
with a $ indicate uses of the full/empty bit to provide
ultra-lightweight synchronization. Each read is a read-
when-full-set-empty, and each write is a write-when-
empty-set-full. The shared variable DONE$ holds the
number of streams involved in the loop. Each stream
decrements the variable as it completes its share of the
loop and each stream except the last QuiTs. Note that
as sool as a stream quits one such loop, it is ready to be
reserved and applied to another loop possibly in a dif-
ferent job. Several independent instances of such loops
should present a fairly uniform demand on the proces-
sor.

The hardware provides two counters for each job
loaded in a processor. One holds the current number of
active streams in the job and the other holds the number
ol streams reserved for that job. When a CREATE in-
struction is 1ssued, a fault occurs if the reserved count is
not larger than the current count. Otherwise, the cur-
rent count is incremented. The RESERVE instructions
are usced to Increase the value of the reserved counter
to allow streams to be CREATEd. The QUIT instruction
decrements both the current counter and the reserved
counter. The code fragment above depends on following
the software convention that a create is only issued af-
ter a successful reserve. Violating this convention may
cause incorrect behavior in the errant job but will not
alfect other jobs.

For many forms of parallelism this approach is very
effective, having low overhead in both time and code-
space. Some forms of parallelism are best implemented
with a specific number of streams. In addition to the
RESERVE_UPTO operation, we also support the opera-
tion RESERVE ¢ u st that attempts to reserve u -+ st
streams but does not reserve any unless u+ st are avail-
able. It also has a _TEST variant that sets a condition
code indicating whether streams were reserved. The
compiler must generate code to handle the case when
the RESERVE fails. Onmne approach is to generate two
versions of the code, a parallel one and a serial one and
use the condition code to select at run time which ver-
ston to run. Since this may be costly in terms of code
size, an alternative is to have a more expensive but re-
liable software allocation mechanism to fall back on. It
is expected that the reserve rarely will fail and so the
expected cost of acquiring streams is still low.

6 Medium-Grained Parallelism

Tera’s medium grain parallelism generally has a granu-
larity of greater than 100 instructions and can be spec-
ified by the user, discovered by the compiler, or a com-
bination of both.

A general-purpose paralle] language should encour-
age the programmer to express the parallelism of an
application wherever it is natural. It should hide from
the programmer, as much as possible, configuration de-
tails of the hardware and implementation details of the
system. Together, these goals imply that a parallel lan-
guage should:

¢ Support an unbounded number of parallel activities
— so that an application’s parallelisin need not be
dependent on a certain number of resources and
can be discovered and generated incrementally;

¢ Achieve efficient processor utilization through au-
tomatic load balancing — so that the programmer
need not be concerned with scheduling issues:

e Support lightweight synchronization — so that
communication between activities can be used
when needed, and used without penallies that may
influence the algorithm or decrease its parallelism.

To illustrate how the Tera system addresses these prop-
erties, the remainder of this section describes several
straightforward language extensions and their imple-
mentation on our hardware.

6.1 Expressing Parallelism

Explicit parallel programming is fostered through future
variables and future statements. A future variable de-
scribes a location that will eventually receive the result
of a computation. In our extended €. these variables
may have any primitive type (e.g. char, int, float, or
pointer) and are identified with the future type qual-
ifier [6]. A future statement is used to create a new
parallel activity and direct its result to a future vari-
able.

When a future statement starts, the future variable
is marked as unavailable (the full/empty bit associated
with the memory cell is set to empty) aind any subse-
quent reads of the unavailable value block. When the
future completes, the appropriate value is written to the
future variable and the location is inarked available (the

2Though the discussion of futures uses a variant of ¢, we have
transliterated our language extensions to FORTRAN. In addition,
the parallel activity scheduling described here is independent of
language construct and could be used to support Ada tasking or
concurrent threads systems such as PRESTO([5] or Linda[2)].

194

full/empty bit is toggled to full). Any parallel activities
that were blocked waiting for the result may now pro-
ceed.

Future variables provide a powerful form of syn-
chronization for “software pipelining” but do not work
well for mutual exclusion and bounded buffer pro-
ducer/consumer situations. To address this need we
have added a sync type qualifier which also can be
combined with any primitive type. These “synchro-
nized” variables provide direct access to the hardware
full/empty bit. A read from an empty synchronized
variable blocks until the variable becomes full and then
resets the variable’s state to empty. Sumilarly a write to
a full synchronized variable blocks until the variable be-
comes empty and then resets the state to full. Synchro-
nized variables provide a very powerful base on which
more complex structures can be created.

6.2 Implementing Parallelism

The combination of futures and synchronized variables
presents a virtual machine that satisfies the afore-
mentioned language goals. It remains to describe an
implementation that accomplishes load balancing and
lightweight synchronization.

Since parallel activities are created dynamically and
execute for an unpredictable amount of time, a static
scheduling policy is impractical. Instead, we use a dy-
namic self-scheduling approach and rely on the fact that
the decision of which parallel activity to execute next is
not crucial. If a parallel activity blocks shortly after it is
started due to synchronization constraints, an efficient
synchronization strategy can get a new parallel activity
running.

We call each medium-grain parallel activity a chore.
Again, chores can be created either by the compiler
or through future statements. On creation, chores are
placed in a ready pool, which corresponds to an un-
ordered collection of ready-to-execute continuations.

The runtime environment uses a work-pool style
strategy for executing chores from the ready pool.
When a job starts executing, the runtime reserves some
number of instruction streams, called wrtual processors,
to work on the job. Virtual processors repeatedly select
and run chores from the ready pool. Executing a chore
may result in the allocation of additional instruction
streams for finer-grained parallelism and in the genera-
tion of new chores.

Changing the Parallel Resource Allocation. The
Tera runtime aims to react to the dynamic needs of an
application by adjusting its resources to these needs.
The runtime can dynamically increase and decrease
the number of virtual processors it employs. This func-

tionality is useful as the average size of the ready pool
can vary significantly over the lifetime of the program.
Reasonably, a large ready pool merits more virtual pro-
cessors than a small ready pool for its timely execution.
Resources acquired for a period of high parallelism, in
contrast, should be released during a period of low par-
allelism to limit their inefficient use. The runtime mon-
itors the ratio of the number of chores waiting to run
relative to the number of virtual processors and acts
accordingly.

On any given processor, additional streams (for use
as virtual processors) can be bound by the use of RE-
SERVE and CREATE hardware instructions. Streams can
be released with the QUIT instruction. Until the runtime
reaches a stream limit imposed by the operating sys-
tem, it can thus grow and shrink its stream resources by
communicating directly with the hardware. The limit
ensures that the operating system controls large-grain
fairness in resource allocation between jobs.

Interaction with the operating system is required
when the runtime seeks to add new streams running on a
different physical processor. A group of streams cooper-
ating on a processor is called a teain. While the runtime
can grow (shrink) a team independently of the operating
system (through RESERVE and CREATE instructions), it
must interact with the operating system to acquire (re-
lease) new teams. This is because teain creation requires
resources such as protection domains that must be glob-
ally controlled and initialized. The runtime interaction
takes the form of an operating system call that, like RE-
SERVE, must be checked for success. More on the nature
of the call (team allocation) and the counters that the
operating system uses to decide whether the additional
resources should be granted is detailed in Section 7.

6.3 Efficient Synchronization

A chore may block because it is waiting for a future
statement to complete or because it is trying to access a
synchronized variable which is in the wrong state. Since
there may be many chores executing and accessing data
in a variety of ways it is necessary to support efficient
synchronization and blocking. Our goals for synchro-
nization are the following:

e If the synchronization will soon succeed, then a
busy—-wait should be used so that the cost of syn-
chromizing will be little more than the cost of a

normal memory reference.

o If the synchronization will not succeed for a long
period of time, then a heavier weight, non busy-
waiting strategy is desirable.

Synchronization is accomplished in the Tera through the
use of the full/empty bit associated with each word of

195

memory. If the bit is in the desired state, the synchro-
nization takes place immediately. If not, the hardware
and software take action using a novel retry-then-trap
scheme.

Our scheme is tuned for optimistic synchronization —
the assumption that most synchronization attempts will
either succeed immediately or be waiting a short while.
When a synchronizing memory access is made and the
full /empty bit is in the wrong state, the request returns
to the processor with a failed status. The hardware
places the request in a retry queue and automatically
retries it. Retry requests are interleaved with new mem-
ory requests at a fixed rate. Interleaving requests avoids
flooding the communication network with requests that
recently failed but at the same time enables a quick
retry. By retrying automatically in hardware, no addi-
tional instruction issues are required; the processor can
continue issuing instructions at the normal rate of one
per tick.

A retry limit register is associated with each protec-
tion domain. Each time a synchronization attempt fails,
its retry count is incremented. When the retry count
reaches the protection domain’s limit, the stream traps
using the lightweight trap handling facility. The retry
limit value is set to balance the cost of saving and later
restoring the state of the blocked chore which is neces-
sary to inplement the blocking synchronization.

When a stream s traps because of a retry failure,
the program counter and register state of the chore be-
ing executed by the stream are saved. The values are
placed on a list associated with the synchronization ad-
dress and the memory cell has one of its data trap bits
set. When a second stream ¢ attempts to access the
memory location, it immediately takes a trap. The trap
handler finds the continuation for the chore that failed
to synchronize, often placing it back in the ready (un-
blocked) pool for another virtual processor to execute.
This implementation is similar to that adopted for the
split-phase transactions of [-Structure storage [4]. The
use of the data trap bit avoids the need to either poll
the memory location or to explicitly program a check
on each memory reference that could unblock another
stream.

7 Coarse-Grain Parallelism

The operating system schedules coarse grain parallelism
resources — {fasks, scheds, and teams —— leaving the
scheduling of fine grain parallelism resources — streams
-— fully under the control of the compiler and runtime.
A task is the system-wide unit of resource assignment.
It provides an execution environment for running a pro-
gram. DBach task consists of one or more scheds. A sched

is the operating system’s smallest individually schedula-
ble unit. The distinction between task and sched helps
separate the function of resource allocation from that
of scheduling. Each sched includes one or more teas,
where a team is a group of streams that execute on the
same processor. (More specifically, a teani is a group
of streams that execute within a single protection do-
main.) The following diagram illustrates the Tera sys-
tem resource model.

TASK A
SCHED 1 SCHED 2
TEAM 1-1 TEAM 1-2 TEAM 2-1

Task A contains two scheds, Sched 1 and Sched 2. These
are units of A that can be scheduled separately. Sched 1
contains two teams, Team 1-1 and Team 1-2. The tcams
may be on the same processor but typically are on differ-
ent processors. Each team owus a dvnamically sized set of
streams of its processor. Sched 2 contains one team, Team
2-1. Team 2-1 may be on the same or a different processor
than Teams 1-1 and/or 1-2.

Tera exploits coarse-grain parallelism by concurrently
executing independent tasks (applications). We argued
in the introduction that parallelism within a single task
can rise and fall. Given this dynamic behavior, it is
desirable to share physical processors between different
tasks so that processor resources can migrate rapidly
from tasks with decreasing parallelism to tasks with in-
creasing parallelism. To foster sharing between tasks —
without costly software context switching — Tera pro-
vides 16 protection domains per processor. This allows
up to 15 user tasks to run in parallel, with the last do-
main reserved for system activities. Resources of a task
are expanded and decreased using the fine-grain and
coarser-grain techniques described in earlier sections.

Scheduling of the protection doniaing amongst the set
of ready applications is handled by two schedulers, a big
sched scheduler (ph-scheduler) and a small sched sched-
uler (ps-scheduler). The schedulers correspond to the
operating system’s characterization of applications as
big sched tasks or little sched tasks. Big sched tasks are
long lived, resource consuming, parallel applications: for
example, jobs submitted via a remote job entry batch
system. Small sched applications are short lived, use
fewer resources, are not very parallel, and often demand
quick turnaround time; for example, shell conmmands, A
processor’s protection domains are shared between the
pb-scheduler and the ps-schieduler. Very generally, the

196

ph-scheduler places as many teams from big sched tasks
on a processor as that processor can support. The ps-
scheduler then absorbs the slack; it uses the remaining
protection domains for small sched jobs. Because small
sched jobs typically have one (or few) threads, their
stream utilization 1s more predictable and they serve
as a guaranteed load for the processor.

Except for swapping scheds, the Tera operating sys-
tem is unobtrusive. It will not add or remove resources
from a running task unless given permission by the
task’s runtime. Typically the permission 1s in the form
of a request from the runtime to add (or remove) a
team to the current task. The runtime can ask for a
team to be added immediately, or for a team to be
added sometime in the near future. It can ask to be
swapped out if the team is not granted, as it cannot
make progress otherwise. To assist the operating sys-
tem in decisions about granting requests (and swap-
ping slow, contention-filled, or otherwise cumbersome
scheds), the system monitors the parallelism of active
scheds. The Tera architecture provides several account-
ing and performance monitors for this purpose. The
monitors permit the operating system to track stream
usage and processor usage within and across tasks.

The simplest performance counter is a user accessi-
ble time-of-day clock, which is incremented every clock
cycle. Two per-protection-domain counters are used to
account for resource usage. The issue counter tracks
the number of instructions issued by streams in a pro-
tection domain. By sampling this over time and scaling
by the time delta, the fraction of the processor load due
to each team is obtained. The stream counter can be
similarly used to obtain the average number of streams
used by each team on a processor; it is advanced every
tick by the number of active streams associated with the
protection domain.

Two additional per-processor counters are used to
measure processor utilization. A phantom counter
counts the number of issue slots in which no stream was
ready to issue due to long memory requests or pipeline
hazards. One minus the ratio of this value divided by a
time quantum provides a precise measure of processor
utilization. The ready counter is incremented every tick
by the number of streams which are ready to issue. This
value divided by the time quantum provides a measure
of average excess parallelism.

The operating system uses the counters to influence
dvnamic changes in resource allocations. For instance,
when the operating system determines that a proces-
sor Is underutilized, it may add or move a team to that
processor for some currently active task in the system.
Additionally, the operating system uses the counters to
influence placement of teams when new jobs are initial-
1zed or resumed after a swap.

8 Summary

The Tera system is an integrated solution to exploiting
heterogeneous parallelism. The multithreaded architec-
ture includes fast stream switching, memory and func-
tional unit pipelines, memory synchronization bits, per-
formance counters, and user access to stream resources.
Using this platform, the compiler detects and statically
schedules parallelism at the very fine grain and fine grain
levels: parallelism ranging from packing operations in
an instruction to exploiting parallel loops. Similarly, the
runtime supports and augments parallelism generated
by the compiler with coarser grain activities: activities
that are programmed explicitly, or are less uniform. The
operating system concurrently shares the machine’s re-
sources among multiple tasks. Sharing resources fosters
high machine utilization, as the temporary shortage of
parallelism in one task can be compensated by the par-
allelism of another.

A key feature of the Tera system Is its system inte-
gration. Examples include: the ability of the compiler
and runtime to directly reserve and release stream re-
sources; the runtime’s requests to the operating systeim
to Increase or decrease its number of virtual processors,
and the operating systemn’s monitoring of processor uti-
lization, which places (or moves) applications onto pro-
cessors that are lightly loaded. We helieve that by com-
municating with other components of the system, each
component can better do its particular job.

The Tera system is now in its carly development.
A preliminary compiler, runtime system, and related
tools exist, along with portions of the operating sys-
tem. A growing set of applications are running on the
Tera hardware simulator. Multithreaded processors
having the ability to mask the latency of one stream
with the activity of another -~ even more than tradi-
tional single threaded processors, appear to give us the
flexibility needed to effectively support heterogeneous
parallelism.

References

[1] A. Agarwal, D. Chaiken. K. Jolmson, D. Nianz, J. Ku-
biatowicz, K. Kurthara, 3. Lim., (. Maa. and). Nuss-
baum. The MIT Alewile machme:
distributed-memory multiprocessor. In Scalable Shared

A large-scale

Memory Multiprocessors. Kluwer Academic Publishers,
1991.

[2] S. Ahuja, N. Carriero, and D. Gelernter. Linda and
friends. IEEFE Compuler, 19(8), August 1986.

[3] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera computer sys-
tem. In 1990 International Conforence on Supercom-
puting, June 1990,

197

[4] Arvind and R.A. lannucci. A critique of multiprocess-
ing von Neumann style. In Proceedings of the 10th An-
nual International Symposium on Computer Architec-
ture, June 1983.

[5] B. Bershad, E. Lazowska, H. Levy, and D. Wagner.
An open environment for building parallel program-
ming systems. In ACM/SIGPLAN PPEALS 1988, New
Haven, Conn., September 1988.

[6

—

D. Callahan and B. Smith. A future-based language for
a general-purpose highly-parallel computer. In D. Gel-
ernter, A. Nicolau, and D. Padua, editors, Languages
and Compiers for Parallel Computing. MIT Press,
1990.

[7] D. Culler, A. Sah, K. Schauser, T. von Eicken, and
J. Wawrzynek. Fine-grain paralielism with minimal
hardware support: a compiler-controlled threaded ab-
stract machine. In Proceedings of Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, CA,
April 1991.

[8] D. E. Culler and Arvind. Resource requirements of
dataflow programs. In Proceedings of the 15th An-
nual International Symposium on Computer Architec-
ture, Honolulu, Hawaii, May 1988.

[9) R. Halstead Jr. and T. Fujita. MASA: A multithreaded
processor architecture for parallel symbolic computing.
In Proceedings of the 15th Annual International Sym-
posium on Computer Architecture, Honolulu, Hawaii,
May 1988.

[10] LT. Kuehn and B.J. Smith. The Horizon supercomput-
ing svstem: Architecture and software. In Proceedings
of Supercomputing 1988, Orlando, Florida, November
1988,

[11] M. Kumar. Effect of storage allocation / reclamation
methods on parallelism and storage requirements. In
Proceedings of the 14th International Symposium on
Computer Architecture, May 1987.

[12) S. P. Midkiff and D. A. Padua. Compiler generated
synchronization for DO loops. In Proceedings of the
1986 International Conference on Parallel Processing,
Aungust 1986.

[13] E.F. Miller Jr. A multiple stream registerless shared-
resource processor. IEFE Transactions on Computers,
C-23(3), March 1974.

[14] R. Nikhil, G. Papadopoulos, and Arvind. *T: A multi-
threaded massively parallel architecture. Technical Re-
port Computation Structures Group 325-1, MIT Labo-
ratory for Computer Science, November 1991,

[15] B. 1. Smith. A pipelined, shared resource MIMD com-
puter. In Proceedings of the 1978 International Confer-
ence on Parallel Processing, 1978.

