
Exploiting Heterogeneous Parallelism

on a Multithreacled Multiprocessor*

Gail Alverson Rol>ert .Alvm-son Davicl Callahan

Brian Koblenz Allan Porterfielcl Burton Smith

T’era Computer company

Seattle, ll~ashin~ton USA

Abstract

This paper describes an integrated architecture, compiler,

runtime, and operating system solntion to exploiting heteLo-

geneons parallelism, The archltec I ale is (1 Ijlpc]iilcd mu!ti -

threaded multiprocessor. enabli]ls the exec II tie]] of J,ery fIHe

(multiple operations within an]nstructton) to very coarse

(multiple jobs) parallel activities. The compiler and IIIntIIILe

focus on managing parallelism within a job, while the opel-

atingsystemfocuses on managing parallelism across jobs.

By considering the entire system in the design, we were able

to smoothly interface its four componell ts. IVhile each com-

ponent is primarily responsible [or managinx its owa level of

parallel activity, feedback mechanisms between components

enable resource allocation and nsage to be dynamically u l>-

dated. This dynamic adaptation to chan~ia~ reqairemen(s

and available resources fosters ho{ 11h igli u [iliza tioa of t he

machine and the efficienl expression aad execu(ioa of para-

llelism.

1 Introduction

An application set contains parallelisln at, n~an~ levels.

Fine grain parallelism withiu an application can ra~ige

from pipeliuecl or co-scheduled operations to tightly par-

allel loops. Medium grain parallelisn~, oil the order of

*This research was support ecl by tile Unit WI S(at es DefeILw Ad.

vancecl Research Projects Agency h~forn~ari[~tl $iieli(.,e ai~d ‘le{.l-

nology Office ARP.4 Order No. b51 2/2-4: Prograll) Code Nlo.

OTI O issued by DARPA /C’MO mirlcr Cc,lit ract h] I) A972-90-C -

007,5. The views and conclusio],s cent ainwl in t 11,s docmt~en[are

those of Tera Computer Company and sI1,)uIc{ no(be int erpl et c+

as representing the offkial poli(:ies, rither expressed or i]l~pliccl, of

DARPA or the U. S. Government.

Permission to copv without fee all or part of this material is

granted prov!ded that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

t!tle of the pubhcation and Its date appear, and notice is given

that copying is by permlss!on of the Association for Computing

Machinery. To copy otherwise, or to republish, requtres a fee

andlor specific perm!sswn.

ICS ‘92-7 /92/D. C., USA

01992 ACM 0-88791 -485 -6/92 /0007 /0188 ...$1.50

hunclreds of instructions, describes more general, var-

ied, and largely independent activities, Coarse grain

parallelism presents itself in the form of applications

(or large application sections) that can run simultane-

ously in a lllllltiprograllll~led fashion. We use the phrase

heterogeneous para/lelwn to refer to this spectrum of

parallelism with widely varying grain-size and resource

require lnents.

TIlis paper clmcribes an integrated hardware and soft-

ware system designed to exploit heterogeneous paral-

lelism. Each of the hardware, compiler, runtime, and

operating system components are responsible for man-

aging parallelism at different, levels. In addition, the

components cooperate to adapt to changing parallel and

resource requirements.

Brie[ly, the most important attribute of the hardware

is that, it is multitbreacled. In a multithreaded arclli-

t,ec.ture, each physical processor supports some number

of imtruction streams, each of which is programmed

essentially Ike a traditional uniprocessor. These multi-

ple streams are then multiplexed by the processor hard-

ware onto a single set of functional units. Our principle

motivation for adopting nmltit,breaded processors is to

tolerate latency from memory units and synchroniza-

t ion. Because these lat,encies grow with the size of the

multiprocessor, they must be tolerated for an effectively

scalable machine,

Tl]e nlost, important attribute of the overall system is

the virtual machine it presents to the parallel program-

nler. This, in turn, largely influences how easily the par-

allel machine call be used. The virtual machine defined

by our parallel language has an unbounded number of

“processors”, each with uniform access to a shared mem-

ory. The language is a traditional imperative language

augmented with data and control constructs to specify

t,lwead creation and synchronization. The fiction of an

unbo(lnded number of processors is maintained by the

softl\vare through time-sharing when the semantics of

the program require more logical processors than avail-

188

able streams. The fiction of uniform access is main-

tained by the multithreading, which masks waiting in

one stream with computation in another.

We focus on answering two questions that are central

to systems that support heterogeneous parallelism.

● What is the role of each componentof tlflesysten-

the hardware, operating system, compiler, and rum

time — in detecting and using parallelism within

and across applications?

● How can the system, as a whole, adapt to the

changing resource recluirements of its applications’?

The second question stems from research concern-

ing the amount of the available parallelism in pro-

granm[8, II]. Results indicate that the parallelism in a

program can vary by orclers of magnitude over relatively

shortl time intervals. Optimized numerical programs

also show wide and rapid variance ill avai lab]e paral-

lelism. Good machine utilization requires that one find

a way to smooth out these resource plwfikw, ,f (Iynamic

solution to resource mall agenlellt, in which streall] w-

sources can move frolll one (ask to another tvi(lliu and

across jobs, appears mos[reasonable and unobtrusive

to users. Intuitively, peaks of one computation can be

used to fill the valleys of another.

The Tera system, reflecting our work, is intende(l for

commercial use in a large scale Illu Iti- user scientific tom-

puting environment. Machines \vill have up to 25(3 pro-

cessors, with approximately :32,000 strealns available in

a full size machine. This paper describes how each conl-

ponent of the systeln manages its l)articular level of par-

allelism. We also identify the ii] formation each conlpo-

nent must provide to the oth(’r,]U order to adapt to dy-

namic changes in application parallelism anct resollrces.

Interestingly, and in part due to our concurrent, design

of the system, the set of communication channels needed

to provide this integration is small.

The next section contrasts the Tera systeln with other

multithreaded systems. This is followed in Section ;3 by

a brief description of our architecture. Section 4 out-

lines support for very fine-graine(l parallelism. !%ction 5

then discusses the special needs of compiler generated

parallelism. Section 6 describe+ the gen(ral runtime en-

vironment with emphasis on ef[iciell(syllcllr(~llizatioll.

Section 7 outlines oljeratiug systetll col)certlti of allocat-

ing resources to different jobs.

2 Related Systems

The general need for multithreading arises whe]lever

there is insufficient parallelism available within a si]tgle

stream to keep the machine resollrces blisy ill (I)c I’acf->of

resource latency. Resource latency includes memory la-

tency, synchronization latency, and processing latency.

Rather than simply allowing the hardware resources to

idle, they are shared among multiple streams.

A primary motivation for multithreaded architectures

is to provide scalable shared memory. Scalable means

that as the number of processors increase, the amount

of work that can be performed in a given time interval

increases proportionately. Shared memory refers to a

communication paradigm wherein parallel entities com-

municate through reading and writing locations in a sin-

gle shared address space. Ideally, shared memory pro-

vides the illusion of uniform memory access.

Miller. One of the early multithreaded designs was

the multiple-stream registerless shared-resource proces-

sor proposed by Miller in 1974 [13]. The main thrust of

the design is to use queues to hold outstanding opera-

tions at each stage in the instruction processing. At each

clock tick, an element of each queue that is “ready)) is

processed and moved to the next, queue in the pipeline.

fly providing for a large number of instruction streams,

the processing elements associated with each queue are

kept busy a large fraction of the time.

HEP, The Denelcor HEP system [15], introduced in

1~~~, ~vas the first commercial multithreaded multipro-

cessor. A H El> system contains up to 16 processors con-

nected by a high bandwidth switch. Each processor has

support, for 16 protection domains and 128 instruction

streams. A protection domain defines a virtual address

space; each job executing on the same processor has its

own protection clomain. An instruction stream is backed

by a program counter and a portion of a per-processor

shared register file. The processor’s instruction issuing

mechauism enables fast instruction level task switching

in the hardware. In addition to multithreading, a key

feature of the HEP is its pipeliniug of both the memory

ant] AI,lJs to increase bandwidth. Because the active

instructions in the pipes come from different streams,

they are usually independent and interlocks are seldom

encountered.

Synchronization in the HEP is achieved with a

full/empty hit on each memory location and general

purpose register, A write to a location is implemented

by an instruction that, when empty, indivisibly writes

tile location and sets it full. A read, similarly, is im-

plelnented by an instruction that, when full, indivisibly

reads the location and sets it, empty, When the syn-

chronization condition does not, hold, the instruction is

reattempted on the stream’s next turn for execution.

Because the register set is shared among all streams of

a processor, the HEP includes register reservation bits

to ensure atomicity of operations on shared registers.

189

MASA. MASA [9] is a illllltitllret~(lecl awhitecture de-

sign that has many snnilarities with the HiZP architec-

ture. A novel feature of MASA is its use of parallel

streams for lightweight procedure calls and traps. This

feature is supported by MASA’S bank of register sets,

which is shared in the style of register windows. As well

as having their own registers, spawnecl streams share

several registers with their parent. When a trap occurs,

a new stream is created as a trap handler. This cre-

ation automatically protects the context of the trapped

stream, yet allows its content, to be probed by the han-

dler. Similarly, by creating a new stream for each proce-

dure invocation, parameters of the procedure are passed

in the shared registers automatically. New registers are

available, at no additional cost.

Horizon. The Horizon [10], a successor of the HEP,

adds to the family of shared memory MIMD systems for

scientific computation.

Unlike the HEP, each strean] of the Ho~izon has its

own private register set. This change eliminates the

need for full/empty and reserved bits on the registers,

allowing faster clock rates and lnore parallelism ill regis-

ter access. The Horizon architect ure is horizontal], with

each (M-bit instruct,ioll having the potential to sinlul-

taneously initiate a memory, an AL(J, and a control

operation. Each instruction coutains a 3-bit lookahead

field to allow multiple outstanding operations }vit,hout

hardware register interlocks. The colllpiler sets looka-

head to indicate the number of subsequent, instructions

that, can be issued without waiting for (he completion

of this instruction. A full/empty blt on Iylelnory loca-

tions is used for synchronization of streams, [J nlilie the

HEP, the Horizon proposes a hard\vare I)acli-off scheme

for failed synchronized Ioacls and stores. The purpose

of the delayed retry is to lniuilnize the neti~orli traffic,

The Horizol~ also provides a user-level trap lnecllanisll~,

substantially reducing the cost of traps.

Tera. The Tera architecture inherits much of its de-

sign and philosophy from the HEP and IIorizon. AS

the next sections will explain, however, the ‘rera is cus-

tomized to better facilitate heterogeneolls parallelism,

For example, the architecture includes a RESER\~E oper-

ation for assuring success of strea]n creation and coun-

ters for system monitoring. Harclware retry is used iu

conjunction with data trap bits for two phase synchro-

nization. The CREATE operation has a new interface,

and lookahead only applies to memory operations,

The Tera software system, similarly, explicitly ad-

dresses the cooperative sharing of the machiue’s parallel

resources. The management of all types of parallelism,

particularly at the coarser levels, distinguishes the Tera

system from its preclecessors,

Alewife. The Alewife architecture [1] of MIT is an-

other recent addition to the MIMD distributed shared-

rnemory multithreaded community. The Alewife design

seeks to avoid memory latency, not only to tolerate it.

Alewife includes caches for shared data plus a hard-

ware maintained directory scheme for retaining co-

herency between them, Effectiveness of the caches de-

pends largely on the locality of program references.

Alewife employs coarse grain multithreading, where in-

structions from a given stream are executed until the

stream performs a remote memory request or fails in a

synchronization attempt. Stream scheduling is done in

soft ware.

As with the previous systems, Alewife provides a

full/enlpty bit on each memory location for synchro-

nization. Loads and stores that (temporarily) fail cause

a trap to occur and, potentially, the stream to be

switched.

Because Alewife uses coarse grain multithreading, the

machine may require fewer program counters than the

Tera to keep a processor busy. Because the Tera makes

no assumptions about locality, on the other hand, it

may be easier to write scalable programs on the Tera.

It appears that it is important for the Tera program-

nler/syst,em to find parallelism in the application for

good performance, while it is important for the Alewife

programnler/system to find both locality in the appli-

cation and some parallelism.

TAM. The Tllreadecl Abstract Machine (TAM) [7]

is a compiler-based approach to latency tolerance and

lightweight synchronization. TAM is an execution

model for fine grained parallelism. The model places all

synchronization, schecluling, and storage management

under compiler control by making these operations ex-

plicit, in the instruction set, The model is not a hard-

ware clesign; it, imtead can be implemented on a variety

of conventional (and unconventional) architectures. Al-

though it is difilcult to compare models with architec-

tures, we contrast several general features of the TAM
with those of the Tera,.

The TAM compiler schedules instruction streams,

Consequently, the scheduling policies are flexible and

can take advantage of information known about the ex-

ecuting program. The Tera runtirne system provides the

same flexibility with scheduling medium-grained pro-

gram units. To minimize overhead for fine-grained par-

allelism, however, streams on the Tera are scheduled by

the hardware. At this level, given enough parallelism,

simple policies perform adequately.

TAM has another level in its scheduling hierarchy

called a “quantum”. A quantum represents a set of

threads that, can be statically co-scheduled on a pr~

cessor and share a register set. Since the registers are

190

shared, one remotle referellcf? does not, idle a register set,.

In contrast, the Tera has only one progranl thread per

register set. However, because lookahead allows up to

eight remote references to be unresolved at, once, a sin-

gle remote reference also need not, idle a Tera register

set.

*T. *T [14] is a hybrid architecture, adopting char-

acteristics of both parallel von Neumann and dat,afiow

machines. The architecture aims to limit the cost of’

remote loads and syllcllrollizatrioll latency, particularly

that due to barriers.

Each node of *T ha,, two asynchronous processors.

The synchronization processor directly handles mes-

sagescorrespondingt oshort activities. A c,ommonshort,

activity is that of a join syllcl~rollizat,ioll, or a remote

memory request. The processor quelles other messages

for the second processor: the data processor. The data

processor typically fields longer, lilc)r{~collll) {iteilltt~llsive

activities, having been relieved of quick synch rouizatio]]

activities by the first, processor. 13ecause the synchron-

ization processor hal)dles all lllllltitllr(’aclillg aspects,

the data processor can be a standard I{ISC processor

leveraging the high speed provi(led by currea(RIS(’ ptc)-

cessors,

SimilartoTAiM, the *T n~oclel presents asingle reg-

ister set that is shared among the streams running on a

processor. Tllissllarillg lllakess trealllsve ryligllt\v(~igllt,

which allows \’ery fine grain parallelism to be effectively

exploited. Similar to a dataflow processor, a streatn that

performs a remote load or remote synchronimtion Iraves

no state behind on the issuing processor. The request,

contains a continuation to ~est,art, the S(real]) when t,hf>

response is returned. Thus, remote operations do not,

consume register file locations, allowing other streains

to take advantage of more registers. OU the other hand,

remote operations can be more costly, since a stream

with several live values may have to store them before

issuing the load and restore them upon restarting the

continuation (after the operation completes),

Summary. There are a n u lnher of approaches to tol-

erating latency with IIlllltitl]reacli]lg k;ach approach

has its merits, We believe a principal strtng’tll of the

Tera system is its ability to exploit heterogeneous par-

allelism, including parallelism from simu It,aneous jobs.

Although other systems exploit parallelism at several

levels — generally the fine and/or medium grain levels

— Tera appears LlniqLle in its goal to exploit])ara]lelism

at all levels,

3 Tera Architecture Overview

The Tera architecture implements a physically shared-

memory multiprocessor with multi-stream processors

and interleaved memory units interconnected by a

packet-switched interconnection network [3]. The net-

work looks like a pipeline from the processor’s perspec-

tive and its bandwidth is sufficient to allow arbitrary

data placement relative to the processors provided the

resulting latency can be tolerated. The network pro-

vides a bisection bandwidth which allows a request and

a response for each processor to cross the bisection plane

each clock tick.

Each processor of the Tera has support for 16 pro-

tection clolnains and 128 streams, A protection domain

implements a memory map with an independent set of

registers holding stream resource limits and accounting

information. Consequently, each processor can be ex-

ecuting 16 distinct, applications in parallel. Although

fewer than 16 applications are usually necessary to at-

tain peak uti]izationo ftheprocessor, theextradornains

allow the operating system flexibility in mapping appli-

cations Lo processors.

Streams each have their own register set and are hard-

ware scheduled. on every tick of the clock, the proces-

sor logic selects a stream that is ready to execute and

allows it to issue its next instruction. Since instruction

interpretation is completely pipelined by the processor

ancl by the network and memories as well, a new in-

struction from a different stream may be issued in each

tick without, interfering with its predecessors. When an

instruction completes, the stream to which it belongs

thereby becomes ready to execute the next instruction.

Provided there are enough instruction streams in the

processor so that the average instruction latency is filled

willh instructions from other streams, the processor is

full y utilized. Similar to the provision of protection do-

mains, the hardware provision of 128 streams per pro-

cessor is more than is necessary to keep the processor

busy at any one time. The extra streams enable run-

ning jobs to fully utilize the processor while other jobs

are swapped in and out, independently; they enable a

processor to remain saturated during periods of higher

latency (for example, duetosynchronizatio nwait sand

nlelnory contention).

Tera associates four state bits with each memory

word: a forwarding bit,, a, full/empty bit,, and two data

trap bits. Two of these, the full/empty bit and one

of the data trap bits, are used for lightweight synchro-

Ilizatioll. Access to a word is controlled by the pointer

(the instruction) used to access the memory location

and the values of the tag bits. Regardless of the state

of the full/empty bit, if either of the data trap bits is

set aud not disabled by the pointer, the memory access

191

fails and the issuing stream tral)s

Tera supports three nlocles of’ interacting with the

full/empty bit, where again, the lnode is selected by

the pointer.

(Normal) Read and write the memory worcl regardl-

ess of the state of the full/empty bit; writes set the

bit to full.

(Future) Read and writ,e the word onl’y when the

cell is full; leavethe bit full,

(Synchronized) Reacl only when the word is full and.-
set the bit to empty. lVrite only when the worcl is

empty and set the bit to full.

\Wlen a memory access fails it is retried several times

in the hardware before the stream that issued theoper-

ation traps. The retries are done in the, memory fLlllC-

tional unit and do not interfere with other streams is-

suing instructions.

Otherfeatureso ftJle Tera z]rcllitt?ctllre,il ~cl~i{lillgits

wide instructions, support, for process creation, cclun-

ters, and trap mechanisms, ~vill be defined as they are

encountered in the follo!ving sections,

4 Very Fine-grained Parallelism

The wide instructions and nlultiple pipelines of the Tera

architecture support parallelism at a very fine grain.

Because it is tedious to program, reasonably easy to

detect, and present, in even the most sequential applica-

tion, the Tera. compiler is solely responsible for cletecting

and scheduling this level of an apljlication’s parallelisln.

Tera instructions are packec] with three oprrat.io]ls:

Memory, Arithmetic, and control (MA~). A typical k-

op is a. LOAD, a typical A-op is a F1,OAT-.ADDm1UL, and a

typical C-op is a JUMP, l’he ~~-op slot is flexible. It can

also house simple integer and Iloatillg poin(, arithmetic

operations which allows ac]dressing calculations to be

performed in parallel with floating point computation.

A three operation Tera instruction cm issue iu each

clock tick.

The hardware guarantees that, the results of A and ~

operations will be available (or b~paw:cl) when npeclcc]

by a succeeding instruction However, M-op depen-

dence are handled through a a 3-hit dependence looka-

head field in the instruc tioll. The harclware allows each

stream up to eight silll~llt,ai~(+o~]sly ouLstal)cling inenlory

operations where the val~ie of tile Iookalleacl field colI-

trols this degree of parallelislll. Tile n]:ljor benefit of

lookaheacl is that it allows nwmory Iat$ellcy to I.)e tolel-

ated within a stream. It also allows instructions froln

the same stream to be cc)-residellt in tile pipeline, han-

dles register dependence on loacls, ant] hancllm any sort

of dependence bet, weeu memory operations. Making de-

pendence explicit in the instruction allows the hardware

to plan aheacl, scheduling streams with satisfied depen-

dence constraints rather than finding out too late and

sta~ling the pipeline. The lookahead value is set by the

compiler and can differ for each instance of a memory

operation.

The Tera hardware also supports very fine-grain par-

allelism in the functional unit pipelines. Whereas con-

ventional pipelines are filled with instructions from one

instruction stream, the Tera pipelines may hold instruc-

tions from several streams, As seen with the HEP, hav-

ing multiple streams filling the pipelines often increases

their utilization.

5 Fine-grained Parallelism

The Tera compiler and hardware work together to au-

tomatically detect ancl exploit fine-grained parallelism.

Bef’or(> we descn be the compiler’s actions, it is useful to

define tile critical harclware features that it employs.

Tera provides operations that allocate, activate and

Cleallocate streams on a single processor: RESERVE,

CREATE, ancl QUIT. The RESERVE instructions are

novel, ancl were introduced to assist with the automatic

parallelization of programs. The instructions reserve the

right, to issue CREATE instructions, which activate idle

streaws and assign them program counters and data en-

vironments. The QUIT instruction returns a stream to

the iclle state.

Significant amounts of parallelism can be automati-

cally extracted from existing scientific programs using

c.urren t compiler technology. The dominant, form of

parallelism exploited by compilers is “loop level par-

allelism” —- para]lelism obtained by executing separate

iterations of a loop concurrently. Additional parallelism

is found by detecting when separate blocks of code can

be executed concurrently. (lolmpilers are also capable of

inserting explicit synchronization to achieve a form of

clata pipelining[12].

The optimal mapping of this parallelism onto the tar-

get architecture is often dependent on parameters not

known at compile-time. In particular, for a given num-

ber of processors, the number of iterations and the exe-

cution times of various tasks influences how parallelism

is implen lented, e.g. how loops are scheduled and what

parallelism is deemecl “not useful” and executed serially.

011 lllllltitllreaclecl architectures in which the physical

processor is sharecl with other parallel activities from

the salne ancl other jobs, the static mapping problem

is furt]ler complicated by uncertain dynamic resources.

Consicler an isolated parallel loop:

192

DOK = l,N
X(K)= Q + Y(K)*(R*ZX(K+1O) + T*ZX(K+ll))

ENDDO

The compiler might implement this loop so that s – 1

additional streams are “created” and each stream per-

forms approximately N/s iterations. However, if there

are not, s — 1 idle streams at the moment. this loop begins

execution then this illlplel~lelltatioll will not execute all

iterations of the loop.

A solution is to have the compiler generate code that

does not require additional streams hut can exploit,

them if available. This approach has been used 01) sev-

eral of the mini-super computers such as Alliant and

convex, where it is considered important that executa-

ble be independent of machine configuration. Our nlo-

tivation is to allow very dynamic allocation of resources

from one parallel activity to another. even across jobs,

so that the system is very responsive to changes in avail-

able parallelism.

One strategy of the compiler for a simple parallel loop

is to use up to 30 streillnsl ant] divide [II(> loop evenly

among however many streams are acquired. If the pro-

cessor is busy and no addit)ou al streams are amilab k>,

then the loop executes serially will} s = 1 streaills after

only a few instructions of overhead:

11:

reserve.upto s rO
S+=l

kO = cei.ling(n/s)

store CHUNK, kO
store DONE$, s
k = kO-1
while (--s > O) {

create 11 k=k
k+=ko}

k=-1
load kO, CHUNK

n = tnin(kO+k,n)
while (++k < n) {

29

sp=sp n=n

I/ usual scalar optimlzatlons apply. . .

X(k)= Q + Y(k)*(R*ZX(k+lO) + T*ZX(k+ll))

1
d = DONE$--
if(d > 1) quit

The Tera instruction set includes the i~-op Rl;-

SERVE-UPTO t u st where (and u ar(! registers and .st

is an immediate constant. This instruc tioll attempts to

reserve as many streams as are avail al)ie, lip to u + .sl,

for use by the current protection do]llain. ‘Ille llulllber

‘ As few as 10or asn)any asSOstrea]~~scfJLIlfl}x: needed t<>saturate
the processor, depending on t lie Progran}.

of’ streams successfully reserved is stored into register t.

llegister rO is always O.

The CREATE instruction is pa.rameterized by a pc-

relati~’e jump target and three registers passed to the

new stream. In this example, the CREATE instruction

is simply sliipped if the RESERVE fails to allocate any

streams.

Variables in upper case are in memory and variables

with a $ indicate uses of the full/empty bit to provide

ultra-lightweight synchronization. Each read is a read-

t+~l~ell-f~lll-set, -elllpty, and each write is a write-when-

empty-set-full. The shared variable DONE$ holds the

number of streams involved in the loop. Each stream

decrements the variable as it completes its share of the

loop and each stream except the last QUITS. Note that

as soou as a stream quits one such loop, it is ready to be

reserved and applied to another loop possibly in a dif-

ferent job. Se\reral independent instancesof such loops

should present a fairly uniform demand on the proces-

sor.

The hardware provides two counters for each job

loaded in a processor. One holds the current numberof

active streams in the job and the other holds the number

of Streallls reserved for that job. WheIl a CREATE in-

struction is issued, a fault, occurs if the reserved count is

not, larger than the current, count. Otherwise, the cur-

rrut count, is incremented. The RESERVE instructions

are usvd to increase the value of the reserved counter

to allow streams to be CREATEd. The QUIT instruction

decrements both the current counter and the reserved

counter. The cocle fragment above depends on following

the soft~vare convention that a create is only issued af-

ter a successful reserve. Violating this convention may

cause incorrect, behavior in the errant job but will not

affect other jobs.

For Inany forms of parallelism this approach is very

effective, having low overhead in both time and code-

space. Some forms of parallelism are best implemented

~~ith a specific numbe~ of streams. In addition to the

RESERVLUPTO operation, we also support the opera-

tion RESERVE t u St that attempts to reserve u + St

streanls but does not reserve any unless u-i- st are avail-

al~le. It also has a –TEST variant that sets a condition

code indicating whether streams were reserved. The

compiler must generate code to handle the case when

the RESERVE fails. one approach is to generate two

versions of the cocle, a parallel one and a serial one and

use the collclitioa code to select at run time which ver-

sion to run. Since this may be costly in terms of code

size, an alternative is to have a more expensive but re-

liable software allocation mechanism to fall back on. It

is expected that the reserve rarely will fail and so the

expected cost of acquiring streams is still low.

193

6 Medium- Grained Parallelism

Tera’s medium grain parallelism generally has a granu-

larity of greater than 100 instructions and can he spec-

ified by the user, discovered by the compi]er, or a com-

bination of both.

A general-purpose parallel language should encour-

age the programmer to express the parallelism of an

apphcation wherever it is natural. It should hide fronl

the programmer, as much as possible, configuration cle-

tails of the hardware and implementation cletails of the

system. Together, these goals imply that a parallel lan-

guage should:

Support an unbounded number of parallel activities
— so that an application’s parallelism need not be

dependent on a certain number of resources and

can be discovered and generated incrementally;

Achieve efficient, processor utilization through au-

tomatic loacl balancing — so that, the programmer

need not be concerned with scheduling issues:

Support lightweight synchI’onization — so that

communication between activities can be used

when needed, and used lvithout penal (ies that lnay

influence the algorithm or decrease i[s parallellsln.

To illustrate how the ‘“lka system addresses these prop-

erties, the remainder of this sectfiol] describes several

straightforward language extensions al)d LHheir inlple-

mentation on our hardwale.

6.1 Expressing Parallelism

Explicit parallel programming is fostered througl] future

variables and future statements. A future variable de-

scribes a location that will eventually receive the result

of a computation. In our extended (;,? these variables

may have any primitive type (e.g. char, illt, fioat$, or

pointer) and are identified with the future type (lual-

ifier [6], A future statement is used to create a new

parallel activity and clirect its result to a future vari-

able.

When a future statement, starts, the future variable

is marked as unavailable (the full/empty bit associated

with the memory cell is set, to empt,y) aikd any ;ubse-

quent reads of the unavailable value block, Il%en the

future completes, the appropriate vallle is written to the

future variable and the location is lnarked available (tile

‘Though the discussim] of future~ uses a varial][01’ C, we l]avc
tmnslitemted our language extensio]ls t o FORTRAN. 111 addit io]].

the paratld activity scltedufing (lwcrI xcI ~I llf:re is il]clcp{>llclcnt of
language construct and coutcl l)e aserl t 0 supporl ~lcla 1asking or
concurrent tlweacls syst,ems SUC1las PRESTO[.5] or lJi,l&[2].

full/clnpty bit, is toggled to full). Any parallel activities

that, were blocked waiting for the result may now pro-

ceed.

Future variables provide a powerful form of syn-

chronization for “software pipelining” but do not work

well for mutual exclusion and bounded buffer pro-

ducer/consumer situations. To address this need we

have added a sync type qualifier which also can be

combined with any primitive type. These “synchro-

nized” variables provide direct access to the hardware

full/enlpty bit. A read from an empty synchronized

variable blocks until the variable becomes full and then

resets the variable’s state to empty. Similarly a write to

a full synchronized variable blocks until the variable be-

comes empty and then resets the state to full. Synchro-

nized variables provide a very powerful base on which

more complex structures can be created.

6.2 Implementing Parallelism

The combination of futures and synchronized variables

presents a virtual machine that satisfies the afore-

mentioned language goals. It remains to describe an

illlplelllelltat,ioll that accomplishes load balancing and

lightweight synchronization.

Since parallel activities are created dynamically and

execute for an unpredictable amount of time, a static

scheduling policy is impractical. Instead, we use a dy-

namic self-scheduling approach and rely on the fact that

the decision of which parallel activity to execute next is

not crucial. If a parallel activity blocks shortly after it is

started due to synchronization constraints, an efficient

synchronization strategy can get a new parallel activity

running.

We call each mediun-grain parallel activity a chore.

Again, chores can be created either by the compiler

or through future statements. On creation, chores are

placed in a ready pool, which corresponds to an un-

ordered collection of ready-to-execute continuations.

TIIe runt.ime environment uses a work-pool style

strategy for executing chores from the ready pool.

\Yhen a job starts executing, the runtime reserves some

number of instruction streams, called mrtual processors,

to work on the job. Virtual processors repeatedly select

and run chores from the ready pool. Executing a chore

may result in the allocation of additional instruction

streams for finer-grained parallelism and in the genera-

tion of new chores.

Changing the Parallel Resource Allocation. The

Tera runtime ainls to react to the dynamic needs of an

application by adjusting its resources to these needs.

The runtime can dynamically increase and decrease

the number of virtual processors it employs. This func-

194

tionality is us~ful as the average size of the ready pool

can vary significantly over the lifetime of the progranl,

Reasonably, a large ready pool merits more virtual pro-

cessors than a small ready pool for its timely execution.

Resources acquired for a period of high parallelism, in

contrast, should be released during a period of low par-

allelism to limit their inefficient use. Theruntime mon-

itors the ratio of the number of chores waiting to run

relative to the number of virtual processors and acts

accordingly.

On any given processor, additional streams (for use

as virtual processors) can be bound by the use of RE-

SERVE and CREATE hardware instructions, Streams can

be released with the QI_]IT instruction. Until the ruuti]ne

reaches a stream limit imposed by the operating sys-

tem, it can thus grow and shrink its stream resources by

communicating directly with the hardware. The limit,

ensures that the opera.t,iug system controls large-grain

fairness in resource allocatiml between jobs,

Interaction with the operating systen] is required

when the runtime seeks to adcl new streams running on a

different physical processor. A group of streams cooper-

ating on a processor is called a tealn, While the run[, ime

can grow (shrink) a tleam indepeudentlly of the operating

system (through RESERVE and CRl~A’TE illstructious), it,

must interact with the operating system to acqllire (re-

lease) new teams, This is because teal n creation reqllires

resources such as protection donlai IH tlIal I uust be glob-

ally controlled and initialized. Tile runtlime interaction

takes the form of al) operating system cal] that, iike RE,-

SERVE, must be checkeci for success. hlore ou the nat~lre

of the call (team allocation) and the counters {hat the

operating system uses to decide whether the additional

resources should be granted is detailed in Section 7.

6.3 Efficient Synchronization

A chore may block because it is waiting for a future

statement to complete or because it, is trying to access a

synchronized variable which is in the wrong state. ,Since

there may be many chores executilig and accessing data

in a variety of ways it is Ilecessary to sllplmrt efficient)

synchronization and blocking, Our goals for sytlchro-

nization are the following:

● If the synchronization will soon succeecl, then a

busy-wait should be used so that, the cost of syn-

chronizing will be little more than tl)e cost of a

normal memory reference.

● If the synchronization will uot succeed for a Iollg

periocl of time, then a heavier weight, non busy-

waiting strategy is desirable.

Synchronization is accolnpiished in the “rera t hrougi the

use of the full/enlpty bit associal ed)vitll each wor(l of

memory. If the bit is in the desired state, the synchro-

nization takes place immediately. If not, the hardware

and software tdie action using a novel retry-then-trap

scheme.

Our scheme is tuned for optimistic synchronization -

the assumption that most synchronization attempts will

either succeed immediately or be waiting a short while.

When a synchronizing memory access is made and the

full/empty bit is in the wrong state, the request returns

to the processor with a failed status. The hardware

places the recluest in a retry queue and automatically

retries it. Retry requests are interleaved with new mem-

ory requests at a fixed rate. Interleaving requests avoids

flooding the communication network with requests that

recently failed but at the same time enables a quick

retry. By retrying automatically in hardware, no addi-

tional instruction issues are required; the processor can

continue issuing instructions at the normal rate of one

per tick.

A retry limit register is associated with each protec-

tion domain. Each time a syuchronizat ion attempt fails,

its retry count, is incremented. When the retry count

reaches the protection domain’s limit, the stream traps

using the lightweight, trap handling facility. The retry

limit value is set to balance the cost of saving and later

restoring the state of the blocked chore which is neces-

sary to ilnplemeut the blocking synchronization.

WThen a stream s traps because of a retry failure,

the program counter and register state of the chore be-

ing executed by the stream are saved. The values are

placed on a list associated with the synchronization ad-

dress and the memory cell has one of its data trap bits

set. When a second stream t attempts to access the

memory location, it immediately takes a trap. The trap

handler finds the c.ontiuuation for the chore that failed

to synchronize, often placing it back in the ready (un-

blocked) pool for another virtual processor to execute.

This i]nplelllelltatioll is similar to that, adopted for the

split-phase transactions of I-Structure storage [4]. The

use of the data trap bit avoids the need to either poll

the memory location or to explicitly program a check

on each memory reference that could unblock another

stream.

7 Coarse-Grain Parallelism

The operating system schedules coarse grain parallelism

resources —- fa>t!:s, scheds, and teams — leaving the

scheduling of fine graiu parallelism resources — streams

-– fully under the control of the compiler and runtime.

A task is the system-wide unit, of resource assignment.

It provides all execution environment for running a pro-

gram, Each task consists of one or more scheds. A sched

195

is the operating system’s smallest individually sclledula-

ble unit. The distinction between task and sc.hed helps

separate the function of resource allocation from that

of scheduling. Each sched includes oue or more teallls,

where a team is a group of stlrean~s tlhat exec utle on the

same processor, (More specifically, a Lealll is a group

of streams that execute withil~ a single protectioil do-

main.) The following diagram illustrates the Tera sys-

tem resource model.

TASK A

/\
SCHED 1 SCHED 2

/\
TEAM 1-1 TEAM 1-2

\
TEAM 2-1

Task A contaius two schecis, SCIIWI 1 and Schecl ?. These

am units of A that can be schwl uled separately. Sched 1

coatains two teims, Tearll l-~ and ‘~cilrl) l-~. ‘~[1[> (C!.iills

may be on the same processor bul typically are ou differ-

ent processors. Each team owus a dynamically sized set or

streams of its processor. sched J contai]ls OIIe t,eam, Teanl

~-1. Team 2.1 nlay I>e 011 the same or a di(fC>r(Jat pI’oceswl

than Teams 1-1 ancf/or I-?.

Tera exploits coarse-grain parallelislll by concilrreu{ly

executing indepelldrllt tasks (:111].)lictlti<llls). \\’c argo(’d

in the introduction that, parallel isln within a siliglc t,[~~li

can rise and fall. ~iivell lllis dyaalnic behavior, it is

desirable to share physical processors iJet\veel] diff’ereut

tasks so that processor resollrces can nligrat,e rapid]}

from taslis with decreasing parallelism to taslw with in-

creasing parallelism. To foster sharing between tasks —

without, costly software context switclliug -– ‘l’era pro-

vicles 16 protection clomains per processor. This allows

up to 15 user tlaSliS to run ill parallel, with the last, de

main reservecl for systeln ac t,ivit, ies, I{psources of a task

are expanded and decreasec I using tll~ finwgraill illl(l

coarser-grain techniques described ill t~arlirr sect, ions.

Schecluling of the protection dotllaills anlollgs[tht s(’(

of ready applications is lla IIdlI~d by t]vo scl Irdulc’rs, a I)ig

sched scheduler (1]1.)-scll(scl{ll(~r) and a slll~ill sclled sched-

uler (ps-scheduler). The schedulers correspond to the

operating system’s characterization of al]plica,tions as

big sc,hed tasks or little sched tasks. B{g .sc/Icd t,aslis are

long lived, resource consuming, paral]cl applications: for

example, jobs submitted wa a renlo(e job elllry hatch

system. Sn~all sched applicat, ions iIre short, lived, iise

fewer resources, are not< ver) para]lf>l, ai]d o[(en denland

quick turnaround time: for exall)ple, sI1(JII col]]nlands, A

Ilarc(l I)etweell theprocessor’s protection domai lLS am >

pb-scheduler and the ps-scl]fdlller. F’vry g(-]lorall}, tlte

pb-scheduler plac~~s as many teams from big sched tasks

on a processor as that, processor can support. The ps-

schedu Ier then absorbs the slack; it uses the remaining

protection domains for small sched jobs. Because small

schecl jobs typically have one (or few) threads, their

stream utilization is more predictable and they serve

as a guaranteed loacl for the processor.

Except, for swapping scheds, the Tera operating sys-

tem is unobtrusive. It will not add or remove resources

from a running task unless given permission by the

task’s runtime. Typically the permission is in the form

of a request, from the runtime to add (or remove) a

team to the current, task. The runtime can ask for a

team to be added immediately, or for a team to be

added sometime in the near future. It can ask to be

swapped out if the team is not granted, as it cannot

make progress otherwise. To assist the operating sys-

tem in decisions about granting requests (and swap-

ping slow, collt,ellt, ioll-fillecl, or otherwise cumbersome

sc beds), the system monitors the parallelism of active

sc beds. ‘he Tera architecture provides several account-

ing ancl performance monitors for this purpose. The

moni t,ors permit the operating system to track stream

usage and processor usage within and across tasks.

Thr simplest performance counter is a user accessi-

ble tilne-of-day clocli, which is incremented every clock

cycle. ‘l”]vcJ per-protection-domain counters are used to

ac(ount, for resource usage. The issue counter tracks

the I]umber of instructions issued by streams in a pr~

tection domain. By sampling this over time and scaling

I)J the tillle clelta, the fraction of the processor load due

to each team is obtained. The sfretim counter can be

similarly used to obtain the average number of streams

used by each team on a processor; it is advanced every

tick by the number of active streams associated with the

protection domain.

l\% ad dltiona] per-processor counters are used to

measure processor utilization. A phantom counter

counts the number of issue slots in which no stream was

ready to isslte due to long memory requests or pipeline

hazards. One minus the ratio of this value divided by a

time [luantum provicles a precise measure of processor

utilization. Tile ready counter is incremented every tick

hy the n~tmber of strean~s which are ready to issue. This

value divided by the time quantum provides a measure

of average excess parallelism.

The operating system uses the counters to influence

dynamic changes in resource allocations. For instance,

when the operating system determines that a proces-

sor is u ncleruti Iized, it may add or move a team to that

processor for some curreutly active task in the system.

A ddi tiolla]ly, the operating system uses the counters to

illflliencc placement, of teams when new jobs are initial-

lzmi or rrsulned after a swap.

196

8 Summary

The Tera system is an integrated solution to exploiting

heterogeneous parallelism. The lnu] tithreaded arcl~itec-

ture includes fast stream switching, memory and [Unc-

tional unit pipelines, memory syncllronizatiou bitls, per-

formance counters, and user access to st,rean] resources,

Using this platform, the conlpi]er cletfectls ant] statically

scheclu]es parallelism at the very flue graiu and fine grail]

levels: parallelism ranging from packing operations in

an instruction to exploiting parallel loops. Similarly, the

runtlime supports and augments parallelism generated

by the compiler with coarser grain activities: actliviLies

that are programmed explicitly, or are less uniform. The

opera.tmg system concurrently shares the machine ‘S re.

sources among multiple tasliS. Sharing resources fosters

high machine ut ilizatiou, as the tenlporary shortage of

parallelism in one task call be compensated by tbe par-

allelism of anot<ller.

A key feature of’ the ‘1’kra systelll is ith sysWI]I inte-

gration. Examples inclutle: the al]ility of’ tile collqjiler

and ruutime to directly reserve and release stream re-

sources; the ruut<ime’s mqurst<s to the operating systmn

to increase or decrease its aulnber of \ irtlial processors,

and the operating systleln’s nlonitorillg of processor utli-

lizatiou, wbicb places (or moves) applications onto pro-

cessors that are lightly loaded. \f7r hclieve that by com-

municating with other components of tllle systeul, each

component can better do its IJart,icu]ar job,

The Tera systenl is Iio\v ill ifs e;ir]y development,

A preliminary conlpiler, rul)tin)e syste] l), and related

tools exist, along with portions of the operating sys-

tem, A growing set of applicatio]ls are rullllil)g ou t,llf.

Tera hardware silnulator, ~l(lltitllrt?:icl(’cl l)rocessors
having the ability to mask tile]ateucy of’ one stream

with the activity of another --- I?VPU nlort’ than tradit-

ional single threaded processors, al)pear to give m the

flexibility needed to effectively support Ileterogelieous

parallelisnl.

References

[1]

[~1

[3]

A. Agarwal, D. Chaikell. Ii. .Johnson, D. Kiauz, J. Ku-

biatowicz, Ii, Iiurihara, l). I,iin, G, Mad. and 1). Nas>-

Imum. ‘l’lie hll’1’ Ale\vite IUaCIIIUe: A lii,r~(,-~~iil(~

Clistri l>uted-lllel?lory II)UIti processor, [a Sc(llo W shrt W(I

Memory flfttltij)roce.ss~}rs. Jiltlwer Acadenlic F’ablishcrs,

1991.

S. Ahuja, N. Carricro, and D. (.;clc,rll~r~. Lin(l.i Z1lICI

friends. IEEE (“~on]pu!c r, 19(8), August 1986.

R. Alverson, I). Callahan D. (;linlluill~s, H. Iiohlenz,

A. Porterfield, and B. Smith. The “[’era computer SYS.

ten]. In 1990 lnlera,i(foaol (~ot,jf rr ,,rt- o,, .5’ulwrmn,-

pufino, June 1990.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[1’2]

[11]

[14]

[15]

Arvincl ancl R.A. Iannucci. A critique of multiprocess-

ing vou Neumann style. In Proceedings oj the I(M An.

nual Internc(tional Syrnpostum on Computer Archdec.

tvre, June 1983.

B. Bershad, E, Lazowska, H. Levy, and D. Wagner.

An open euviroumeut for building parallel program-

ming systems. In A CM/SIGPLAN PPEALS 1988, New

Haven, Corm., September 1988.

D. Callahan and B. Smith. A future-based language for
a general-purpose highly-parallel computer. In D. Gel-

erut.er, A. Nicolau, and D. Padua, editors, Longuage$

onit Compdcrs for Parallel Computing. MIT Press,
1990.

D. Culler, A. Sah, K. Schauser, T. von Eicken, and

J. Wawrzynek, Fine-grain parallelism with minimal

harclware support: a compiler-controlled threaded ab-

stract machine. In Proceedings oj Fourth International

Conjere,ux on A rchitecturcd Support for Programming

Langt(c{ges avicl Operoting Systems, Santa Clara, (2A,

fipril 1991.

J). E. Chdler and Arvind. Resource requirements of

cla tailow programs. In Proceedings of the 15th An-

nual International Syn)l]os~unl on Computer Architec.

ture, Honolulu, Hawaii, May 1988.

R. Halstead Jr. and T. Fujita. MASA: A mnltithreaded

processor architecture for parallel symbolic computing.

In Pvoceeding$ of the 1.5th Annual International Symp-

osium on Conrputm .4rchitectuve, Honolulu, Hawaii,

May 1988.

J,T. Iiuehu anct J3. J. Smith. The Horizon supercomput-

ing s)~stem: Architecture and software. In Proceedings

of Sapercompu t tng I %38, Orlando, Florida, November

1$)~~

Al. Knmar. Effect of storage allocation / reclamation

methods on parallelism and storage requirements, In

Proceedings of the 1.4th International Symposium on

Comptder A rchitw-twe, May 1987.

S. P. Midkiff and l). A. Padua. Compiler generated

synchronization for DO loops, In Proceedings of the

1936 Into-nat?orwl Conference on Parallel Processing,

August 1986.

E. F. Miller Jr, A multiple stream registerless shared-

I’esoarce processor. IEEE Transactions on Computers,

C-2:3(3), March 1974.

R. Nikhil, G. Papadopoulos, and Arvind. *T: A multi-

threadecl massively parallel architecture. Technical Re-

port, C!omput ation Structures (2roup 325-1, MIT Labo-

ratory for C;omput.er Science, November 1991.

B. J. Smith, A pipeliued, shared resource MIMD com-

puter. In Proctedzngs of the 197’8 International/ Confer-

rwce OILl-’urollel l>voce~sing, 1978,

197

