Homework #3

CSEP 546: Machine Learning
Prof. Byron Boots
Due: Wednesday Dec 1, 2021 11:59pm Pacific Time

Please review all homework guidance posted on the website before submitting to GradeScope. Reminders:

— Please provide succinct answers and supporting reasoning for each question. Similarly, when dis-
cussing experimental results, concisely create tables and/or figures when appropriate to organize the
experimental results. All explanations, tables, and figures for any particular part of a question must
be grouped together.

— Please typeset your submission in a pdf file. Failure to do so may result in a points deduction.
— For every problem involving generating plots, please include the plots as part of your PDF submission.

— When submitting to Gradescope, please link each question from the homework in Gradescope to the
location of its answer in your homework PDF. Failure to do so may result in deductions of up to /5
points] . For instructions, see https://www.gradescope.com/get_started#student-submission.

— If you collaborate on this homework with others, you must indicate who you worked with on your
homework. Failure to do so may result in accusations of plagiarism.

— For every problem involving code, please include the code as part of your PDF for the PDF submission
in addition to submitting your code to the separate assignment on Gradescope created for code. Not
submitting all code files will lead to a deduction of [1 point] .

— Please indicate your final answer to each question by placing a box around the main result(s). To do
this in TEX, one option is using the boxed command.

Not adhering to these reminders may result in point deductions.


https://www.gradescope.com/get_started#student-submission

Conceptual Questions

1. The answers to these questions should be answerable without referring to external materials. Briefly
justify your answers with a few words.

2
a. [2points] Consider training kernel ridge regression with a Gaussian RBF kernel (K (u,v) = exp (— lu=vll ) ).

202
It seems to underfit the training set: should you increase or decrease o7

b. /2 points] True or False: Training deep neural networks requires minimizing a non-convex loss func-
tion, and therefore gradient descent might not reach the globally-optimal solution.

c. [2 points] True or False: It is a good practice to initialize all weights to zero when training a deep
neural network.

d. /2 points] True or False: We use non-linear activation functions in a neural network’s hidden layers
so that the network learns non-linear decision boundaries.
e. [2 points] True or False: Given a neural network, the time complexity of the backward pass step

in the backpropagation algorithm can be prohibitively larger compared to the relatively low time
complexity of the forward pass step.

What to Submit:

— Writeup: For each part a-e, 1-2 sentences containing your answer.

Coding
Introduction to PyTorch

2. PyTorch is a great tool for developing, deploying and researching neural networks and other gradient-
based algorithms. In this problem we will explore how this package is built and re-implement some of its
core components. First start by reading README.md file provided in intro_pytorch subfolder. A lot of
problem statements will overlap between here, readmes and comments in functions.

a. [10 points/ You will start by implementing components of our own PyTorch modules. You can find
these in folders: layers, losses and optimizers. Almost each file there should contain at least one
problem function, including exact directions for what to achieve in this problem. Finally, you should
implement functions in train.py file.

b. /5 points] Next we will use the above module to perform hyperparameter search. Here we will also
treat loss function as a hyper-parameter. However, because cross-entropy and MSE are different, we
are going to use two different files: crossentropy_search.py and mean_squared_error_search.py.
For each you will need to build and train (in the provided order) 5 models:

— Linear neural network (Single layer, no activation function)
— NN with one hidden layer (2 units) and sigmoid activation function after the hidden layer
— NN with one hidden layer (2 units) and ReLU activation function after the hidden layer
— NN with two hidden layer (each with 2 units) and Sigmoid, ReLU activation functions after first
and second hidden layers, respectively
— NN with two hidden layer (each with 2 units) and ReLU, Sigmoid activation functions after first
and second hidden layers, respectively
For each loss function, submit a plot of losses from training and validation sets. All models should
be on the same plot (10 lines per plot), with two plots total (1 for MSE, 1 for cross-entropy).



c. [5 points] For each loss function, report the best performing architecture (best performing is defined
here as achieving the lowest validation loss at any point during the training), and plot it’s guesses on
test set. You should use function plot_model_guesses from train.py file. Finally, report accuracy
of that model on a test set.

d. [3 points] Is there a big gap in performance between between MSE and Cross-Entropy models? If
so, explain why it occurred? If not explain why different loss functions achieve similar performance?
Answer in 2-4 sentences.

What to Submit:
— Part b: 2 plots (one per loss function), with 10 lines each, showing both training and validation loss
of each model. Make sure plots are titled, and have proper legends.

— Part c: Names of best performing models (i.e. descriptions of their architectures), and their accuracy
on test set.

— Part c: 2 scatter plots (one per loss function), with predictions of best performing models on test
set.

— Part d: 2-4 sentence written reponse to provided questions.

— Code on Gradescope through coding submission

Resources

For the next question you will use a lot of PyTorch. Please feel free to reference PyTorch Documentation,
when needed.

If you do not have access to GPU, you might find Google Colaboratory useful. It allows you to use a cloud
GPU for free. To enable it make sure: “Runtime” — “Change runtime type” — “Hardware accelerator”
is set to “GPU”. When submitting please download and submit a .py version of your notebook.

Neural Networks for MNIST

3. In previous homeworks, we used ridge regression for training a classifier for the MNIST data set.
Similarly in previous homework, we used logistic regression to distinguish between the digits 2 and 7.

In this problem, we will use PyTorch to build a simple neural network classifier for MNIST to further
improve our accuracy.

We will implement two different architectures: a shallow but wide network, and a narrow but deeper net-
work. For both architectures, we use d to refer to the number of input features (in MNIST, d = 282 = 784),
h; to refer to the dimension of the i-th hidden layer and & for the number of target classes (in MNIST,
k = 10). For the non-linear activation, use ReLU. Recall from lecture that

z, x>0
0, z<0.

ReLU(x) = {

Weight Initialization

Consider a weight matrix W € R™*™ and b € R™. Note that here m refers to the input dimension and n
to the output dimension of the transformation z — Wz + b. Define a = \/% Initialize all your weight

matrices and biases according to Unif(—a, ).


https://pytorch.org/docs/stable/index.html
https://colab.research.google.com/

Training

For this assignment, use the Adam optimizer from torch.optim. Adam is a more advanced form of
gradient descent that combines momentum and learning rate scaling. It often converges faster than
regular gradient descent in practice. You can use either Gradient Descent or any form of Stochastic
Gradient Descent. Note that you are still using Adam, but might pass either the full data, a single
datapoint or a batch of data to it. Use cross entropy for the loss function and ReLLU for the non-linearity.

Implementing the Neural Networks

a. [10 points] Let Wy € R*>d by € R W, € R¥*" b € R¥ and o(z): R — R some non-linear
activation function applied element-wise. Given some z € R?, the forward pass of the wide, shallow

network can be formulated as:
F1($) = Wlo'(W()IE + bo) + bl

Use h = 64 for the number of hidden units and choose an appropriate learning rate. Train the
network until it reaches 99% accuracy on the training data and provide a training plot (loss vs.
epoch). Finally evaluate the model on the test data and report both the accuracy and the loss.

b. [10 poin,l,s] Let Wy € Rhon, by € Rho’ Wy € RthhO, by € Rhl, Wy € Rthl, by € R* and
o(z) : R — R some non-linear activation function. Given some x € R?, the forward pass of the
network can be formulated as:

Fo(x) = Wao(Wro(Wox + bg) + b1) + be

Use hg = hy = 32 and perform the same steps as in part a.

c. [5 points] Compute the total number of parameters of each network and report them. Then compare
the number of parameters as well as the test accuracies the networks achieved. Is one of the approaches
(wide, shallow vs. narrow, deeper) better than the other? Give an intuition for why or why not.

Using PyTorch: For your solution, you may not use any functionality from the torch.nn module except
for torch.nn.functional.relu, torch.nn.functional.cross_entropy, torch.nn.parameter.Parameter
and torch.nn.Module. You must implement the networks F; and F5 from scratch.

What to Submit:

— Parts a-b: Provide a plot of the training loss versus epoch. In addition evaluate the model trained
on the test data and report the accuracy and loss.

— Part c: Report the number of parameters for the network trained in part (a) and for the network
trained in part (b). Provide a comparison of the two networks as described in part in 1-2 sentences.

— Code on Gradescope through coding submission.

Administrative

[2 points] About how many hours did you spend on this homework? There is no right or wrong answer :)



