
Support Vector Machines



Preview

• What is a support vector machine?

• The perceptron revisited

• Kernels

• Weight optimization

• Handling noisy data



What Is a Support Vector Machine?

1. A subset of the training examples x

(the support vectors)

2. A vector of weights for them α

3. A similarity function K(x, x′) (the kernel)

Class prediction for new example xq:

f(xq) = sign

(

∑

i

αiyiK(xq, xi)

)

(yi ∈ {−1, 1})



• So SVMs are a form of instance-based learning

• But they’re usually presented as a generalization
of the perceptron

• What’s the relation between perceptrons and IBL?



The Perceptron Revisited

The perceptron is a special case of weighted kNN you get
when the similarity function is the dot product:

f(xq) = sign
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Another View of SVMs

• Take the perceptron

• Replace dot product with arbitrary similarity function

• Now you have a much more powerful learner

• Kernel matrix: K(x, x′) for x, x′ ∈ Data

• If a symmetric matrix K is positive semi-definite
(i.e., has non-negative eigenvalues), then K(x, x′) is
still a dot product, but in a transformed space:

K(x, x′) = φ(x) · φ(x′)

• Also guarantees convex weight optimization problem

• Very general trick



Examples of Kernels

Linear: K(x, x′) = x · x′

Polynomial: K(x, x′) = (x · x′)d

Gaussian: K(x, x′) = exp(− 1

2
‖x − x′‖/σ)



Example: Polynomial Kernel

u = (u1, u2)

v = (v1, v2)

(u · v)2 = (u1v1 + u2v2)
2
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= φ(u) · φ(v)

• Linear kernel can’t represent quadratic frontiers

• Polynomial kernel can



Learning SVMs

So how do we:

• Choose the kernel? Black art

• Choose the examples? Side effect of choosing weights

• Choose the weights? Maximize the margin



Maximizing the Margin



The Weight Optimization Problem

• Margin = min yi(w · xi)

• Easy to increase margin by increasing weights!

• Instead: Fix margin, minimize weights

• Minimize w · w
Subject to yi(w · xi) ≥ 1, for all i



Constrained Optimization 101

• Minimize f(w)
Subject to hi(w) = 0, for i = 1, 2, . . .

• At solution w∗, ∇f(w∗) must lie in subspace spanned
by {∇hi(w

∗): i = 1, 2, . . .}
• Lagrangian function:

L(w, β) = f(w) +
∑

i

βihi(w)

• The βis are the Lagrange multipliers

• Solve ∇L(w∗, β∗) = 0



Primal and Dual Problems

• Problem over w is the primal

• Solve equations for w and substitute

• Resulting problem over β is the dual

• If it’s easier, solve dual instead of primal

• In SVMs:

– Primal problem is over feature weights

– Dual problem is over instance weights



Inequality Constraints

• Minimize f(w)
Subject to gi(w) ≤ 0, for i = 1, 2, . . .

hi(w) = 0, for i = 1, 2, . . .

• Lagrange multipliers for inequalities: αi

• KKT Conditions:

∇L(w∗, α∗, β∗) = 0

α∗

i ≥ 0

gi(w
∗) ≤ 0

α∗

i gi(w
∗) = 0

• Complementarity: Either a constraint is active
(gi(w

∗) = 0) or its multiplier is zero (α∗

i = 0)

• In SVMs: Active constraint ⇒ Support vector



Solution Techniques

• Use generic quadratic programming solver

• Use specialized optimization algorithm

• E.g.: SMO (Sequential Minimal Optimization)

– Simplest method: Update one αi at a time

– But this violates constraints

– Iterate until convergence:

1. Find example xi that violates KKT conditions
2. Select second example xj heuristically
3. Jointly optimize αi and αj



Handling Noisy Data



Handling Noisy Data

• Introduce slack variables ξi

• Minimize w · w + C
∑

i ξi

Subject to yi(w · xi) ≥ 1 − ξi, for all i



Bounds

Margin bound:

Bound on VC dimension decreases with margin

Leave-one-out bound:

E[errorD(h)] ≤ E[# support vectors]

# examples



Support Vector Machines: Summary

• What is a support vector machine?

• The perceptron revisited

• Kernels

• Weight optimization

• Handling noisy data


