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What Is a Support Vector Machine?

1. A subset of the training examples x
(the support vectors)

2. A vector of weights for them «

3. A similarity function K (x,x") (the kernel)

Class prediction for new example x,:

f(x,) = sign (Z ;Y K (xq, ;) )

(yi € {-1,1})



e S0 SVMs are a form of instance-based learning

e But they're usually presented as a generalization
of the perceptron

e What’s the relation between perceptrons and IBL?



The Perceptron Revisited

The perceptron is a special case of weighted kNN you get
when the similarity function is the dot product:

f(zg) =sign | Y w;z,;
j

But
Wj; = Z Qi YiLij
i

f(zq) = sign Z (Z Oéi%‘%j) Tqj | = sign Z ;Y (Zq - Ti)

J

So




Another View of SVMs

Take the perceptron

Replace dot product with arbitrary similarity function
Now you have a much more powertul learner

Kernel matrix: K(x,z’) for z,z’ € Data

If a symmetric matrix K is positive semi-definite
(i.e., has non-negative eigenvalues), then K(z,z’) is
still a dot product, but in a transtormed space:

K(z,2") = ¢(x) - p(2')
Also guarantees convex weight optimization problem

Very general trick



Examples of Kernels

Linear: K(z,2') =z a2’

Polynomial: K(z,2') = (v -2')¢

Gaussian: K(z,1') = exp(—3|jz — 2’| /o)



Example: Polynomial Kernel

u = (u1,us)

v = (v1,v2)

(w-v)? = (urv1 + ugvs)?
= ujv? + usv3 + 2u1v1ugvs
— (uiu%vﬁullﬂ) | (U%,US,\/ﬁvlvg)

= ¢(u) - o(v)

e Linear kernel can’t represent quadratic frontiers

e Polynomial kernel can



Learning SVMs

So how do we:
e Choose the kernel? Black art
e Choose the examples? Side effect of choosing weights

e Choose the weights? Maximize the margin



Maximizing the Margin




The Weight Optimization Problem

Margin = min y;(w - z;)
Easy to increase margin by increasing weights!
Instead: Fix margin, minimize weights

Minimize w -w
Subject to y;(w-x;) > 1, foralls



Constrained Optimization 101
Minimize f(w)
Subject to h;(w) =0, fori=1,2,...

At solution w*, V f(w*) must lie in subspace spanned

by {Vh;(w*): i =1,2,...}

Lagrangian function:

L(w,B) = f(w) + Z@Mw)

The ;s are the Lagrange multipliers
Solve VL(w*,3*) =0



Primal and Dual Problems

Problem over w is the primal
Solve equations for w and substitute
Resulting problem over (3 is the dual

If it’s easier, solve dual instead of primal

In SVMs:
— Primal problem is over feature weights

— Dual problem is over instance weights



Inequality Constraints

Minimize f(w)
Subject to g¢;(w) <0, fori=1,2,...
hi(w)=0, fori=1,2,...

Lagrange multipliers for inequalities: o
KKT Conditions:

VL(w*,a™,3%) = 0
a; > 0

gi(w*) < 0
a;gi(w”) = 0

Complementarity: Either a constraint is active
(9;(w*) = 0) or its multiplier is zero (o = 0)

In SVMs: Active constraint = Support vector



Solution Techniques

e Use generic quadratic programming solver
e Use specialized optimization algorithm

e E.g.: SMO (Sequential Minimal Optimization)
— Simplest method: Update one o; at a time
— But this violates constraints

— Iterate until convergence:

1. Find example x; that violates KKT conditions
2. Select second example z; heuristically
3. Jointly optimize «; and «;



Handling Noisy Data




Handling Noisy Data

e Introduce slack variables ¢;

¢ Minimize w-w+C) &
Subject to y;(w-xz;) >1—¢&;, foralli



Bounds

Margin bound:

Bound on VC dimension decreases with margin

Leave-one-out bound:

E t t
Elerrorp(h)] < |# support vectors]

# examples



Support Vector Machines: Summary
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