Rule Induction

Learning Sets of Rules

Rules are very easy to understand; popular in data mining.

e Variable Size. Any boolean function can be represented.
e Deterministic.

e Discrete and Continuous Parameters.

Learning algorithms for rule sets can be described as

e Constructive Search. The rule set is built by adding rules; each rule is constructed by

adding conditions.
e Fager.

e Batch.

Rule Set Hypothesis Space

e Each rule is a conjunction of tests. Fach test has the form z; = v, z; < v, or

x; > v, where v is a value for ; that appears in the training data.

21 =8Sunny AN 29 <% =y=1

e A rule set is a disjunction of rules. Typically all of the rules are for one class (e.g.,

y = 1). An example is classified into y = 1 if any rule is satisfied.

z1=Sunny N 2o <75% = y=1
x1 = QOvercast = y=1
z1=Rain N z3<20 = y=1

Relationship to Decision Trees

Any decision tree can be converted into a set of rules. The previous set of rules corresponds to

this tree:

Outlook
Sunny Overcast Rain
Hum;{ Yes \\V?nd
> 75%A<: 15% > 20/\<= 20

/ N\ / N

No Yes No Yes

Relationship to Decision Trees

A small set of rules can correspond to a big decision tree, because of the Replication Problem.

1 N xy=>y=1 zs N zg=>y=1 x5 N zg=>y=1
x1
x2 x3
1 x3 x4 x5
/\ ‘/X\ 1 x5 x6 0
1 x5 x6 0 x;/\() ;A:)
x6 0 1 0 A

Learning a Single Rule

We grow a rule by starting with an empty rule and adding tests one at a time until the rule

“covers” only positive examples.

GROWRULE(S)

R={}

repeat
choose best test 2;0v to add to R, where © € {=,#, <, >}
S := 85— all examples that do not satisfy RU {z;0v}.

until S contains only positive examples.

Choosing the Best Test

e Current rule R covers mg negative examples and m; positive examples.

e Proposed rule RU {z,;0v} covers m; and m) examples.

Let p’ = _IELF

m0+m1)

e Gain =m|[(—plgp) — (—p'lgp’)]

We want to reduce our surprise (to the point where we are certain), but we also want the rule

to cover many examples. This formula tries to implement this tradeoft.

Learning a Set of Rules
(Separate-and-Conquer)

GROWRULESET(S)

A={}
repeat

R = GROWRULE(S)

Add Rto A

S = 5— all positive examples that satisfy R.
until S is empty.

return A

More Thorough Search Procedures

All of our algorithms so far have used greedy algorithms. Finding the smallest set of rules is
NP-Hard. But there are some more thorough search procedures that can produce better rule

sets.

e Round-Robin Replacement. After growing a complete rule set, we can delete the
first rule, compute the set S of training examples not covered by any rule, and one or more
new rules, to cover S. This can be repeated with each of the original rules. This process

allows a later rule to “capture” the positive examples of a rule that was learned earlier.

e Backfitting. After each new rule is added to the rule set, we perform a few iterations
of Round-Robin Replacement (it typically converges quickly). We repeat this process
of growing a new rule and then performing Round-Robin Replacement until all positive

examples are covered.

e Beam Search. Instead of growing one new rule, we grow B new rules. We consider
adding each possible test to each rule and keep the best B resulting rules. When no more
tests can be added, we choose the best of the B rules and add it to the rule set.

Probability Estimates From Small Numbers

When mg and m, are very small, we can end up with
e mg + My

being very unreliable (or even zero).

Two possible fixes

e Laplace Estimate. Add 1/2 to the numerator and 1 to the denominator:

mo+mq+1

This is essentially saying that in the absence of any evidence, we expect p = 1/2, but our

belief is very weak (equivalent to 1/2 of an example).

e General Prior Estimate. If you have a prior belief that p = 0.25, you can add any
number k to the numerator and 4k to the denominator.
my + k
B mg + mq + 4k

p

The larger k& is, the stronger our prior belief becomes.

Many authors have added 1 to both the numerator and denominator in rule learning cases

(weak prior belief that p = 1).

Learning Rules for Multiple Classes

What if rules for more than one class?

Two possibilities:
e Order rules (decision list)

e Weighted vote (e.g., weight = accuracy X coverage)

Learning First-Order Rules

Why do that?

e Can learn sets of rules such as

Ancestor(zx,y) «— Parent(z,y)
Ancestor(x,y) «— Parent(x, z) A\ Ancestor(z,y)

e The PROLOG programming language:
programs are sets of such rules

First-Order Rule for Classifying Web Pages

[Slattery, 1997]

course(A) «—
has-word (A, instructor),
— has-word(A, good),
link-from(A, B),
has-word(B, assign),
= link-from(B, C)

Train: 31/31, Test: 31/34

FOIL (First-Order Inductive Learner)

Same as propositional separate-and-conquer, except:
e Different candidate specializations (literals)

e Diflerent evaluation function

Specializing Rules in FOIL

Learning rule: P(x1,22,...,2k) «— L1 ... L,
Candidate specializations add new literal of form:

e Q(v1,...,v,), where at least one of the v; in the created
literal must already exist as a variable in the rule.

o Equal(z;,xr), where x; and z; are variables already
presentin the rule

e The negation of either of the above forms of literals

Information Gain in FOIL

: : P1 Po
Foil Gain(L,R)=1t|lo — lo
() (g2P1+n1 gzpo-l-no)

Where
e [is the candidate literal to add to rule R
e pg = number of positive bindings of R
e ng = number of negative bindings of R
e p; = number of positive bindings of R + L
e n; = number of negative bindings of R + L

e ¢t = no. of positive bindings of R also covered by R + L

FOIL Example

X —y represents LinkedTo(x,y)

Target function:
e CanReach(z,y) true iff directed path from z to y
Instances:

e Pairs of nodes, e.g (1,5), with graph described by
literals LinkedTo(0,1), = LinkedTo(0,8) etc.

Hypothesis space:

e Fach h € H is a set of Horn clauses using predicates
LinkedTo (and CanReach)

Induction as Inverted Deduction

Induction is finding h such that

where
e x; is ¢th training instance
e f(x;) is the target function value for z;

e B is other background knowledge

So let’s design inductive algorithm by inverting operators
for automated deduction.

Induction as Inverted Deduction

“Pairs of people (u,v) such that child of u is v”

f(x;) : Child(Bob, Sharon)
z; : Male(Bob), Female(Sharon), Father(Sharon, Bob)
B : Parent(u,v) «<— Father(u,v)

What satisfies (V{(z;, f(z;)) € D) BAhAz; - f(x;)?

hi1: Child(u,v) «— Father(v,u)
ho : Child(u,v) «— Parent(v,u)

Induction as Inverted Deduction

We have mechanical deductive operators F (A, B) = C,
where ANABFFC

Need inductive operators

O(B, D) = h where (V(x;, f(z;)) € D) (BAhAx;) F f(x;)

Induction as Inverted Deduction

Positives:

e Subsumes earlier idea of finding & that “fits” training
data

e Domain theory B helps define meaning of “fit” the data
BARAz; |—f($z)

e Suggests algorithms that search H guided by B

Induction as Inverted Deduction

Negatives:

e Doesn’t allow for noisy data. Consider
(V(:UZ, f(a;'%)) = D) (B A h A .’L’z) = f(a:z)

e First order logic gives a huge hypothesis space H
— Overfitting

— Intractability of calculating all acceptable h’s

Deduction: Resolution Rule

P vV L
=L VvV R
P Vv R

1. Given initial clauses C7 and Cs, find a literal L from
clause C7 such that =L occurs in clause Cs

2. Form the resolvent C' by including all literals from C;
and Coq, except for L and —L. More precisely, the set of
literals occurring in the conclusion C is

C=(C1 —{L})U(C2 —{~L})

2

where U denotes set union, and “—” is set difference

Inverting Resolution

% : KnowMaterial V' —Study C2 : KnowMaterial N — Study

C} : PassExam VN —KnowMaterial (} s PassExam V' —KnowMaterial

C: PassExam N = Study

C: PassExam N —Study

Inverted Resolution (Propositional)

. Given initial clauses C; and C, find a literal L that
occurs in clause C7, but not in clause C.

. Form the second clause C9 by including the following
literals

Co = (C —(Cy —{L})) U{~L}

First-Order Resolution

1. Find a literal Lq from clause (', literal L, from clause
Cs, and substitution 8 such that L10 = — L0

2. Form the resolvent C by including all literals from C,6
and Cq0, except for L10 and —Ls6. More precisely, the
set of literals occurring in the conclusion C is

C=(C1 —{L1})0 U (Ce — {L2})0

Inverting First-Order Resolution

Co = (C — (Cr — {L1})61)05 " U{~L16:65"}

Cigol

Father (Tom, Bob) GrandChild(y,x) V — Father(x,z) V — Father(z,y)

{Bob/y, Tom/z}

Father (Shannon, Tom) GrandChild(Bob,x) N — Father(x,Tom)

{Shannon/x}

GrandChild(Bob, Shannon)

Progol

PROGOL: Reduce comb explosion by generating the most
specific acceptable A

1. User specifies H by stating predicates, functions, and
forms of arguments allowed for each

2. PROGOL uses sequential covering algorithm.
For each (x;, f(x;))
e Find most specific hypothesis h; s.t.
BAR; ANz; f(a:z)
— actually, considers only k-step entailment
3. Conduct general-to-specific search bounded by specific

hypothesis h;, choosing hypothesis with minimum
description length

Rule Induction: Summary

Rule grown by adding one antecedent at a time
Rule set grown by adding one rule at a time
Propositional or first-order

Alternative: inverse resolution

