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“No Free Lunch” Theorems

Accg(L) = Generalization accuracy of learner L
= Accuracy of L on non-training examples
F = Set of all possible concepts, y = f(x)

Theorem: For any learner L, |1T| Y. rAccg(L) = 5
(given any distribution D over x and training set size n)

Proof sketch: Given any training set S:
For every concept f where Accg (L)

there is a concept f’ where Accg(L) =

Vx €8, f'(x) = f(x) =y. Vx5, f'(x) = =f(x)

Corollary: For any two learners Lq, Ls:
If 9 learning problem s.t. Accg(L1) > Accg(L2)
Then 7 learning problem s.t. Accg(Ls) > Accg(L1)
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What Does This Mean in Practice?

e Don’t expect your favorite learner to always be best
e Try different approaches and compare

e But how could (say) a multilayer perceptron be less
accurate than a single-layer one?



Bias and Variance

Bias-variance decomposition is key tool for
understanding learning algorithms

Helps explain why simple learners can outperform
powerful ones

Helps explain why model ensembles outperform single
models

Helps understand & avoid overfitting
Standard decomposition for squared loss

Can be generalized to zero-one loss



Definitions

Given training set: {(x1,%1),...,(Xn,tn)}
Learner induces model: y = f(x)

Loss measures quality of learner’s predictions

— Squared loss: L(t,y) = (t — y)*

— Absolute loss: L(t,y) = |t — y|

— Zero-one loss: L(t,y) =0 if y = ¢, 1 otherwise
— Etc.

Loss = Bias 4+ Variance + Noise
(This lecture: ignore noise; see paper)



Bias




Variance




Decomposition for squared loss

t-y)? = (E—-yg+7—vy)
= t-9°+@-y)’+2t-9)w—-y)

Elt-y)* = (-9 +E(F-y)7]
Exp. loss = DBias + Variance

(Expectations are over training sets)



How to generalize this to other loss funcs?

El(t-y)°1=(t-9*+E[7-y)°]

(a —b)* — L(a,b)
El(t-y)*] — E[L(ty)] (Exp. loss)
(t-9)° — L(t7) (Bias)
E(-1)% — EL@y)]  (Variance)



But what should ¥ be?

Define Main Prediction:
Prediction with min average loss relative to all predictions

y;, = argmin E[L(y, y")]
yl

e Squared loss: ¥ = Mean
e Absolute loss: ¥ = Median

e Zero-one loss: ¥ = Mode



Generalized definitions

Bias = Loss incurred by main prediction = L(¢, %)

Variance = Average loss incurred by prediction relative to
main prediction = E[L(Yy, y)]

These definitions have all the required properties.

For zero-one loss:

. 0 if main prediction is correct
Bias = .
1 otherwise

Variance = Prob(Prediction # Main pred) = P(y # 7)



Can we decompose zero-one loss into these?

Assume two-class problem.

Bias = 0 = Loss = Bias + Variance
Loss = P(y # t) Variance = P(y # 7)
Bias =0 & y =1+t

Bias = 1 = Loss = Bias — Variance

Loss =P(y#t)=1-P(y=t)=1- Py #7)
because if y Z#t theny=t < y # 7.

Increasing variance can reduce loss!



Can we generalize this further?

Loss = Bias + ¢ Variance

where ¢ = 1 if Bias = 0, otherwise see below

e Applies to:
— Squared loss: ¢ =1
— Two-class problems: ¢ = —1
— Multiclass problems: ¢ = —P(y = t|y # ©)
— Variable costs: ¢ = —L(t,7)/L(y, t)



Metric loss functions

e What about loss functions where decomposition
does not apply?

e For any metric loss function:

Loss < Bias + Variance
Loss > Max {Bias — Var, Var — Bias}
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Possible values of loss



PAC Learning

Overfitting happens because training error
is bad estimate of generalization error

Can we infer something about generalization error from
training error?

Overfitting happens when the learner doesn’t see
“enough” examples

Can we estimate how many examples are enough?



Problem Setting

Given:
e Set of instances X
e Set of hypotheses H
e Set of possible target concepts C

e Training instances generated by a fixed, unknown
probability distribution D over X

Learner observes sequence D of training examples (z, c(x)),
for some target concept ¢ € C

e Instances x are drawn from distribution D

e Teacher provides target value c¢(x) for each



Learner must output a hypothesis h estimating c

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: probabilistic instances, noise-free classifications



True Error of a Hypothesis

Instance space X

Where ¢
and A disagree

Definition: The true error (denoted errorp(h)) of
hypothesis h with respect to target concept ¢ and
distribution D is the probability that A will misclassify an
instance drawn at random according to D.

errorp(h) = mPE’rD[c(ac) # h(z)]



Two Notions of Error

Training error of hypothesis A with respect to target
concept ¢

e How often h(x) # c(z) over training instances

True error of hypothesis h with respect to ¢

e How often h(x) # c(x) over future random instances

Our concern:

e Can we bound the true error of A given the training
error of h?

e First consider when training error of h is zero



Version Spaces

Version Space V Sy p:
Subset of hypotheses in H consistent with training data D

Hypothesis space H

. 3 error=.3
error=.1 r=.4
. error=.2
error=.3 Sy

r=.

(r = training error, error = true error)



How Many Examples Are Enough?

Theorem:

If the hypothesis space H is finite, and D is a sequence of
m > 1 independent random examples of some target
concept ¢, then for any 0 < € < 1, the probability that
VS p contains a hypothesis with error greater than e is
less than

|H|e—€m

Proof sketch:

Prob(1 hyp. w/ error > € consistent w/ 1 ex.) <1—e<e~
Prob(1 hyp. w/ error > € consistent with m exs.) < e™ ™
Prob(1 of |H| hyps. consistent with m exs.) < |H|e™*™

€



Interesting! This bounds the probability that any consistent
learner will output a hypothesis h with error(h) > ¢

If we want this probability to be at most ¢
|Hlem™*™ < 6
then

—_— %(m H| + In(1/6))



Learning Conjunctions

How many examples are sufficient to ensure with
probability at least (1 — 8) that every A in V.S p
satisfies errorp(h) < €?

Use our theorem:

m> %(m H| + 1n(1/6))

Suppose H contains conjunctions of constraints on up to n
Boolean attributes (i.e., n literals). Then |H| = 3", and

m > %(ln?)n—l—ln(l/é))

> L(nIn3+In(1/6))

€



How About PlayTennis?

1 attribute with 3 values (outlook)
9 attributes with 2 values (temp, humidity, wind, etc.)
Language: Conjunction of features or null concept

|[H|=4x3”+1="78733
1
m > E(ln 78733 4+ In(1/6))

If we want to ensure that with probability 95%,
V'S contains only hypotheses with errorp(h) < 10%,
then it is sufficient to have m examples, where

1
m > O—l(ln 78733 +1n(1/.05)) = 143

(# examples in domain: 3 x 29 = 1536)



PAC Learning

Consider a class C of possible target concepts defined over
a set of instances X of length n, and a learner L using
hypothesis space H.

Definition: C is PAC-learnable by L using H iff
for all ¢ € C, distributions D over X, € such that
0 < e<1/2, and 6 such that 0 < § < 1/2,

learner L will with probability at least (1 — 6)
output a hypothesis h € H such that

errorp(h) < €, in time that is polynomial in 1/e,
1/6, n and size(c).



Agnostic Learning

So far, assumed c € H

Agnostic learning setting: don’t assume ¢ € H

e What can we say in this case?
— Hoeftding bounds:

Prlerrorp(h) > errorp(h) + €] < e=2m¢
— For hypothesis space H:
Prlerrorp(hpest) > errorp(hpest) + €] < |1LI|6_2""’62

e What is the sample complexity in this case?

m > —(ln |H| + In(1/6))



VC Dimension

e What about hypotheses with numeric parameters?

e Solution: Use VC dimension instead of ln |H|



Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition
of S into two disjoint subsets.

Definition: a set of instances S is shattered by
hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis in H
consistent with this dichotomy.



Three Instances Shattered

Instance space X

@O
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The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of the
largest finite subset of X shattered by H.

If arbitrarily large finite sets of X can be shattered
by H, then VC(H) = oo.



VC Dim. of Linear Decision Surfaces

@ 0)

VC dim. of hyperplane in d-dimensional space is d + 1



Sample Complexity from VC Dimension

How many randomly drawn examples suffice to guarantee
error of at most € with probability at least (1 — 6)7

m > %(4 log, (2/6) + 8V C(H) log,(13/€))



Support Vector Machines




Support Vector Machines

Many different hyperplanes can separate positive and
negative examples

Choose hyperplane with maximum margin
Margin: Min. distance between plane and example
Bound on VC dimension decreases with margin

Support vectors: Examples that determine the plane

E[#support vectors]
E[GTTOTD(h)] S #traz'ning vectors — 1

Noisy data: use slack variables

Avoids overfitting even in very high-dimensional spaces
(e.g., text)

Non-linear: augment data with derived features
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