Learning Theory

Preview

- "No free lunch" theorems
- Bias and variance
- PAC learning
- VC dimension
- Support vector machines

"No Free Lunch" Theorems

 $Acc_G(L) =$ Generalization accuracy of learner L= Accuracy of L on non-training examples $\mathcal{F} =$ Set of all possible concepts, $y = f(\mathbf{x})$

Theorem: For any learner L, $\frac{1}{|\mathcal{F}|} \sum_{\mathcal{F}} Acc_G(L) = \frac{1}{2}$ (given any distribution \mathcal{D} over \mathbf{x} and training set size n)

Proof sketch: Given any training set S: For every concept f where $Acc_G(L) = \frac{1}{2} + \delta$, there is a concept f' where $Acc_G(L) = \frac{1}{2} - \delta$. $\forall \mathbf{x} \in S, f'(\mathbf{x}) = f(\mathbf{x}) = y$. $\forall \mathbf{x} \notin S, f'(\mathbf{x}) = \neg f(\mathbf{x})$.

Corollary: For any two learners L_1, L_2 : **If** \exists learning problem s.t. $Acc_G(L_1) > Acc_G(L_2)$ **Then** \exists learning problem s.t. $Acc_G(L_2) > Acc_G(L_1)$

What Does This Mean in Practice?

- Don't expect your favorite learner to always be best
- Try different approaches and compare
- But how could (say) a multilayer perceptron be less accurate than a single-layer one?

Bias and Variance

- Bias-variance decomposition is key tool for understanding learning algorithms
- Helps explain why simple learners can outperform powerful ones
- Helps explain why model ensembles outperform single models
- Helps understand & avoid overfitting
- Standard decomposition for squared loss
- Can be generalized to zero-one loss

Definitions

- Given training set: $\{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_n, t_n)\}$
- Learner induces model: $y = f(\mathbf{x})$
- Loss measures quality of learner's predictions
 - Squared loss: $L(t, y) = (t y)^2$
 - Absolute loss: L(t, y) = |t y|
 - Zero-one loss: L(t, y) = 0 if y = t, 1 otherwise

- Etc.

• Loss = Bias + Variance + Noise (This lecture: ignore noise; see paper)

Bias

Decomposition for squared loss

$$(t-y)^2 = (t-\overline{y}+\overline{y}-y)^2$$

= $(t-\overline{y})^2 + (\overline{y}-y)^2 + 2(t-\overline{y})(\overline{y}-y)$

$$E[(t-y)^2] = (t-\overline{y})^2 + E[(\overline{y}-y)^2]$$

Exp. loss = Bias + Variance

(Expectations are over training sets)

How to generalize this to other loss funcs?

$$E[(t-y)^2] = (t-\overline{y})^2 + E[(\overline{y}-y)^2]$$

$$\begin{array}{rccc} (a-b)^2 & \to & L(a,b) \\ E[(t-y)^2] & \to & E[L(t,y)] & (\text{Exp. loss}) \\ (t-\overline{y})^2 & \to & L(t,\overline{y}) & (\text{Bias}) \\ E[(\overline{y}-y)^2] & \to & E[L(\overline{y},y)] & (\text{Variance}) \end{array}$$

But what should \overline{y} be?

Define Main Prediction:

Prediction with min average loss relative to all predictions

$$\overline{y}_L = \operatorname*{argmin}_{y'} E[L(y, y')]$$

- Squared loss: $\overline{y} = Mean$
- Absolute loss: $\overline{y} = Median$
- Zero-one loss: $\overline{y} = Mode$

Generalized definitions

Bias = Loss incurred by main prediction = $L(t, \overline{y})$

Variance = Average loss incurred by prediction relative to main prediction = $E[L(\overline{y}, y)]$

These definitions have all the required properties.

For zero-one loss:

 $\mathbf{Bias} = \begin{cases} 0 \text{ if main prediction is correct} \\ 1 \text{ otherwise} \end{cases}$

Variance = Prob(Prediction \neq Main pred) = $P(y \neq \overline{y})$

Can we decompose zero-one loss into these?

Assume two-class problem.

Bias = 1 \Rightarrow Loss = Bias – Variance Loss = $P(y \neq t) = 1 - P(y = t) = 1 - P(y \neq \overline{y})$ because if $\overline{y} \neq t$ then $y = t \Leftrightarrow y \neq \overline{y}$.

Increasing variance can reduce loss!

Can we generalize this further?

Loss = Bias + c Variance

where c = 1 if Bias = 0, otherwise see below

- Applies to:
 - Squared loss: c = 1
 - Two-class problems: c = -1
 - Multiclass problems: $c = -P(y = t | y \neq \overline{y})$
 - Variable costs: $c = -L(t, \overline{y})/L(\overline{y}, t)$

Metric loss functions

- What about loss functions where decomposition does not apply?
- For any metric loss function:

 $Loss \le Bias + Variance$ $Loss \ge Max \{Bias - Var, Var - Bias\}$

PAC Learning

- Overfitting happens because training error is bad estimate of generalization error
- \rightarrow Can we infer something about generalization error from training error?
 - Overfitting happens when the learner doesn't see "enough" examples
- \rightarrow Can we estimate how many examples are enough?

Problem Setting

Given:

- Set of instances X
- Set of hypotheses H
- Set of possible target concepts C
- Training instances generated by a fixed, unknown probability distribution \mathcal{D} over X

Learner observes sequence D of training examples $\langle x, c(x) \rangle$, for some target concept $c \in C$

- Instances x are drawn from distribution $\mathcal D$
- Teacher provides target value c(x) for each

Learner must output a hypothesis h estimating c

• h is evaluated by its performance on subsequent instances drawn according to \mathcal{D}

Note: probabilistic instances, noise-free classifications

True Error of a Hypothesis

Instance space X

Definition: The **true error** (denoted $error_{\mathcal{D}}(h)$) of hypothesis h with respect to target concept c and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances

True error of hypothesis h with respect to c

• How often $h(x) \neq c(x)$ over future random instances

Our concern:

- Can we bound the true error of h given the training error of h?
- First consider when training error of h is zero

Version Spaces

Version Space $VS_{H,D}$:

Subset of hypotheses in H consistent with training data D

(r = training error, error = true error)

How Many Examples Are Enough?

Theorem:

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that $VS_{H,D}$ contains a hypothesis with error greater than ϵ is less than

$$|H|e^{-\epsilon m}$$

Proof sketch: Prob(1 hyp. w/ error > ϵ consistent w/ 1 ex.) < 1 - $\epsilon \leq e^{-\epsilon}$ Prob(1 hyp. w/ error > ϵ consistent with m exs.) < $e^{-\epsilon m}$ Prob(1 of |H| hyps. consistent with m exs.) < $|H|e^{-\epsilon m}$ Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $error(h) \ge \epsilon$

If we want this probability to be at most δ

$$|H|e^{-\epsilon m} \le \delta$$

then

$$m \ge \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$$

Learning Conjunctions

How many examples are sufficient to ensure with probability at least $(1 - \delta)$ that every h in $VS_{H,D}$ satisfies $error_{\mathcal{D}}(h) \leq \epsilon$?

Use our theorem:

$$m \geq rac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$$

Suppose H contains conjunctions of constraints on up to nBoolean attributes (i.e., n literals). Then $|H| = 3^n$, and

$$m \geq \frac{1}{\epsilon} (\ln 3^n + \ln(1/\delta))$$
$$\geq \frac{1}{\epsilon} (n \ln 3 + \ln(1/\delta))$$

How About *PlayTennis*?

attribute with 3 values (outlook)
attributes with 2 values (temp, humidity, wind, etc.)
Language: Conjunction of features or null concept

$$|H| = 4 \times 3^9 + 1 = 78733$$
$$m \ge \frac{1}{\epsilon} (\ln 78733 + \ln(1/\delta))$$

If we want to ensure that with probability 95%, VS contains only hypotheses with $error_{\mathcal{D}}(h) \leq 10\%$, then it is sufficient to have m examples, where

$$m \ge \frac{1}{0.1} (\ln 78733 + \ln(1/.05)) = 143$$

(# examples in domain: $3 \times 2^9 = 1536$)

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H iff for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don't assume $c \in H$

- What can we say in this case?
 - Hoeffding bounds:
 - $Pr[error_{\mathcal{D}}(h) > error_{D}(h) + \epsilon] \le e^{-2m\epsilon^{2}}$
 - For hypothesis space H:

 $Pr[error_{\mathcal{D}}(h_{best}) > error_{D}(h_{best}) + \epsilon] \le |H|e^{-2m\epsilon^2}$

• What is the sample complexity in this case?

$$m \geq \frac{1}{2\epsilon^2} (\ln |H| + \ln(1/\delta))$$

VC Dimension

- What about hypotheses with numeric parameters?
- Solution: Use VC dimension instead of $\ln |H|$

Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in Hconsistent with this dichotomy.

Three Instances Shattered

Instance space X

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space Hdefined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

VC Dim. of Linear Decision Surfaces

VC dim. of hyperplane in d-dimensional space is d + 1

Sample Complexity from VC Dimension

How many randomly drawn examples suffice to guarantee error of at most ϵ with probability at least $(1 - \delta)$?

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

Support Vector Machines

Support Vector Machines

- Many different hyperplanes can separate positive and negative examples
- Choose hyperplane with maximum margin
- Margin: Min. distance between plane and example
- Bound on VC dimension decreases with margin
- **Support vectors:** Examples that determine the plane

•
$$E[error_{\mathcal{D}}(h)] \leq \frac{E[\#support \ vectors]}{\#training \ vectors - 1}$$

- Noisy data: use slack variables
- Avoids overfitting even in very high-dimensional spaces (e.g., text)
- Non-linear: augment data with derived features

Learning Theory: Summary

- "No free lunch" theorems
- Bias and variance
- PAC learning
- VC dimension
- Support vector machines