Model Ensembles
Model Ensembles

- **Basic idea:**
 Instead of learning one model,
 Learn several and combine them

- Typically improves accuracy, often by a lot

- **Many methods:**
 - Bagging
 - Boosting
 - ECOC (error-correcting output coding)
 - Stacking
 - Etc.
Bagging

• Generate “bootstrap” replicates of training set by sampling with replacement
• Learn one model on each replicate
• Combine by uniform voting
Boosting

- Maintain vector of weights for examples
- Initialize with uniform weights
- Loop:
 - Apply learner to weighted examples (or sample)
 - Increase weights of misclassified examples
- Combine models by weighted voting
\textbf{AdaBoost}(S, Learn, k)

S: Training set $\{(x_1, y_1), \ldots, (x_m, y_m)\}$, $y_i \in Y$

\textbf{Learn}: Learner(S, weights)

k: # Rounds

For all i in S: $w_1(i) = 1/m$

For $r = 1$ to k do

For all i: $p_r(i) = w_r(i) / \sum_i w_r(i)$

$h_r = \text{Learn}(S, p_r)$

$\epsilon_r = \sum_i p_r(i) \mathbf{1}[h_r(i) \neq y_i]$

If $\epsilon_r > 1/2$ then

$k = r - 1$

Exit

$\beta_r = \epsilon_r / (1 - \epsilon_r)$

For all i: $w_{r+1}(i) = w_r(i) \beta_r^{1 \cdot \mathbf{1}[h_r(x_i) \neq y_i]}$

Output: $h(x) = \arg\max_{y \in Y} \sum_{r=1}^k (\log \frac{1}{\beta_r}) \mathbf{1}[h_r(x) = y]$
Error-Correcting Output Coding

- **Motivation:**
 Applying binary classifiers to multiclass problems

- **Train:** Repeat L times:
 - Form a binary problem by randomly assigning classes to "superclasses" 0 and 1
 E.g.: A, B, D \to 0; C, E \to 1
 - Apply binary learner to binary problem

- **Each class is represented by a binary vector**

- **Test:**
 - Apply each classifier to test example, forming vector of predictions \mathbf{P}
 - Predict class whose vector is closest to \mathbf{P} (Hamming)
Stacking

- Apply multiple base learners
 (e.g. decision trees, naive Bayes, neural nets)
- Meta-learner: Inputs = Base learner predictions
- Training by leave-one-out cross-validation:
 Meta-L. inputs = Predictions on left-out examples
Model Ensembles: Summary

- Learn several models and combine them
- Bagging: Random resamples
- Boosting: Weighted resamples
- ECOC: Recode outputs
- Stacking: Multiple learners