CSEP 546
Data Mining
Machine Learning

Instructor: Pedro Domingos
Logistics

• **Instructor:** Pedro Domingos
 – Email: pedrod@cs
 – Office: CSE 648
 – Office hours: Tuesdays 5:30-6:20

• **TAs:** Angli Liu, Fereshteh Sadeghi
 – Email: anglil@cs, fsadeghi@cs
 – Office: CSE TBD
 – Office hours: Tuesdays 5:30-6:20

• **Web:** www.cs.washington.edu/csep546

• **Mailing list:** csep546a_sp16
Evaluation

• Four assignments (25% each)
 – Handed out on weeks 2, 4, 6 and 8
 – Due two weeks later
 – Mix of:
 • Implementing machine learning algorithms
 • Applying them to real datasets (e.g.: clickstream mining, recommender systems, spam filtering)
 • Exercises
Source Materials

• R. Duda, P. Hart & D. Stork, *Pattern Classification* *(2nd ed.)*, Wiley *(Required)*
• P. Domingos, *The Master Algorithm*, Basic Books *(Recommended)*
• Papers
A Few Quotes

• “A breakthrough in machine learning would be worth ten Microsofts” (Bill Gates, Chairman, Microsoft)
• “Machine learning is the next Internet” (Tony Tether, Director, DARPA)
• Machine learning is the hot new thing” (John Hennessy, President, Stanford)
• “Web rankings today are mostly a matter of machine learning” (Prabhakar Raghavan, Dir. Research, Yahoo)
• “Machine learning is going to result in a real revolution” (Greg Papadopoulos, Former CTO, Sun)
• “Machine learning is today’s discontinuity” (Jerry Yang, Founder, Yahoo)
• “Machine learning today is one of the hottest aspects of computer science” (Steve Ballmer, CEO, Microsoft)
So What Is Machine Learning?

• Automating automation
• Getting computers to program themselves
• Writing software is the bottleneck
• Let the data do the work instead!
Traditional Programming

Data → Computer → Output
Program → Computer

Machine Learning

Data → Computer → Program
Output → Computer
Magic?

No, more like gardening

- **Seeds** = Algorithms
- **Nutrients** = Data
- **Gardener** = You
- **Plants** = Programs
Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging
- [Your favorite area]
ML in a Nutshell

• Tens of thousands of machine learning algorithms
• Hundreds new every year
• Every machine learning algorithm has three components:
 – Representation
 – Evaluation
 – Optimization
Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.
Evaluation

• Accuracy
• Precision and recall
• Squared error
• Likelihood
• Posterior probability
• Cost / Utility
• Margin
• Entropy
• K-L divergence
• Etc.
Optimization

• Combinatorial optimization
 – E.g.: Greedy search

• Convex optimization
 – E.g.: Gradient descent

• Constrained optimization
 – E.g.: Linear programming
Types of Learning

• Supervised (inductive) learning
 – Training data includes desired outputs

• Unsupervised learning
 – Training data does not include desired outputs

• Semi-supervised learning
 – Training data includes a few desired outputs

• Reinforcement learning
 – Rewards from sequence of actions
Inductive Learning

- **Given** examples of a function \((X, F(X))\)
- **Predict** function \(F(X)\) for new examples \(X\)
 - Discrete \(F(X)\): Classification
 - Continuous \(F(X)\): Regression
 - \(F(X) = \text{Probability}(X)\): Probability estimation
What We’ll Cover

• **Supervised learning**
 – Decision tree induction
 – Rule induction
 – Instance-based learning
 – Bayesian learning
 – Neural networks
 – Support vector machines
 – Model ensembles
 – Learning theory

• **Unsupervised learning**
 – Clustering
 – Dimensionality reduction
ML in Practice

- Understanding domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learning models
- Interpreting results
- Consolidating and deploying discovered knowledge
- Loop