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Motivation

* Clustering
* One way to summarize a complexreal-valued data pointwith a single
categorical variable
* Dimensionality reduction

* Another way to simplify complex high-dimensional data
e Summarize data with a lower dimensional real valued vector



Motivation

* Clustering
* One way to summarize a complexreal-valued data pointwith a single
categorical variable
* Dimensionality reduction

* Another way to simplify complex high-dimensional data
e Summarize data with a lower dimentional real valued vector

e Given data points in d dimensions
* Convert them to data points in r<d dimensions
* With minimal loss of information
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Data Compression

Reduce data from 3D to 2D

Andrew Ng
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Reduce from 2-dimension to 1-dimension: Find a direction (a vector (1) ¢ R™)
onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find kvectors u(l), u(z), . ,u(’“)
onto which to project the data, so as to minimize the projection error.

Andrew Ng



Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector u and covariance matrix >J
of original points

2. Compute eigenvectors and eigenvalues of X
3. Select top r eigenvectors

4. Project points onto subspace spanned by them:

y= Az —p)

where y is the new point, x is the old one,
and the rows of A are the eigenvectors



Covariance

* Variance and Covariance:
* Measure of the “spread” of a set of pointsaround their center of mass(mean)

* Variance:
* Measure of the deviation from the mean for pointsin one dimension

e Covariance:

* Measure of how much each of the dimensions vary from the mean with
respect to each other

e Covariance is measured between two dimensions
> | * Covariance sees if thereis a relation between two dimensions
e Covariance between one dimension is the variance




positive covariance negative covariance
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Positive: Both dimensions increase or decrease together Negative: While oneincrease the other decrease



Covariance

* Used to find relationships between dimensions in high dimensional
data sets

1 N
di = 57 2 (Xis = B(X,) (Xix — E(X))
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The Sample mean



Eigenvector and Eigenvalue

AX = AX

A: Square Matirx
A: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value

 The zero vector can not be an eigenvector
 Thevalue zero can be eigenvalue



Eigenvector and Eigenvalue

AX = AX

A: Square Matirx
A: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value
2 —4}

2
Show x = [1} isaneigenvector for A = [3 6

soaion:as=[2 2|]- 0

iJlo
But for A=0, Ax=0|_|=
1 0

Thus,xisaneigenvectorof A,and A =0 isaneigenvalue.



Eigenvector and Eigenvalue

Ax-Ax=0
Ax = Ax (A=Al)x=0
If we define a new matrix B:  =—p B=A-Al
Bx=0

BUT! an eigenvector
erse: -810=0 X
If B has an inverse: == Xx=B"0=0 cannot be zero!!

X will be an eigenvector of A if and only if B does
not have an inverse, or equivalently det(B)=0 :

det(A—-Al)=0




Eigenvector and Eigenvalue

Example 1: Find the eigenvalues of 2 —12
A - A4 A2 (A=2)(A+5)+12
- Al = =(A- +5)+
-1 A+5

=X +34+2=(A+1)(1+2)

two eigenvalues: -1, — 2

Note: The roots of the characteristicequation can be repeated. Thatis, A; = A, =...= A,.
If that happens, the eigenvalue is said to be of multiplicity k.

2 1 0

Example 2: Find the eigenvalues of

A=

2
0

0 0
0 2

AL-A4= 0 A-2 0 |=(4-2) =0

A= 2is an eigenvector of multiplicity 3.



Principal Component Analysis

Input: x € RP: D-z{xl,...,xN}

Set of basis vectors: u;,...,ug

Summarize a D dimensional vector X with K dimensional
feature vector h(x)

U] - X
U9o - X

h(x) =




Principal Component Analysis

U = [ul,...,uK]

Basis vectors are orthonormal
u;-ruj = ()
|lu;f| =1

New data representation h(x)
Zj — llj - X

h(x) = [z1,...,2K]"



Principal Component Analysis

U:[ul,...,uK]

New data representation h(x)
h(x) =U'x

h(x) = U (x — po)

-~ _ 1 N
Empirical mean of the data lj,o — N ZZ:]_ X’L



The space of all face images

e When viewed as vectors of pixel values, face images are
extremely high-dimensional
— 100x100 image = 10,000 dimensions
— Slow and lots of storage
e But very few 10,000-dimensional vectors are valid face
images
e We want to effectively model the subspace of face images

I E

'

| B

9
i

ATR

slide by Derek Hoiem



Eigenfaces example

Top eigenvectors: uy,...u,

Mean: u




Representation and reconstruction

« Face x in “face space” coordinates:
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« Reconstruction:
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Reconstruction

P = 400

After computing eigenfaces using 400 face
Images from ORL face database

slide by Derek Hoiem
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SIFT feature V|sual

* The top three principal components of SIFT descriptors from a set of images are computed
* Map these principal components to the principal components of the RGB space
* pixels with similar colors share similar structures



Application: Image compressmn

\K

Original Image

e Divide the original 372x492 image into patches:
e Each patch is an instance that contains 12x12 pixels on a grid
e View each as a 144-D vector
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PCA compression: 144D = 60D
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PCA compression: 144D - 16D
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6 most important eigenvectors
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PCA compression: 144D - 3D




3 most important eigenvectors
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PCA compression: 144D - 1D
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60 most important eigenvectors
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2D Discrete Cosine Basis
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http://en.wikipedia.org/wiki/Discrete_cosine_transform



Dimensionality reduction

* PCA (Principal Component Analysis):

* Find projection that maximize the variance

* ICA (Independent Component Analysis):
* Very similar to PCA except that it assumes non-Guassian features

* Multidimensional Scaling:
* Find projectionthat best preserves inter-point distances

e LDA(Linear Discriminant Analysis):
* Maximizing the componentaxes for class-separation



