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The regression problem 
n  Instances: <xj, tj> 
n  Learn: Mapping from x to t(x) 
n  Hypothesis space: 

¨  Given, basis functions 
¨  Find coeffs w={w1,…,wk} 

¨  Why is this called linear regression??? 
n  model is linear in the parameters 

n  Precisely, minimize the residual squared error: 

©2005-2014 Carlos Guestrin 



3 

The regression problem in matrix notation 

N
 data points 

K basis functions 

N
 data points 

observations weights 

K basis func
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Regression solution = simple matrix operations 

where 

k×k matrix  
for k basis functions  

k×1 vector 
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Bias-Variance Tradeoff 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 
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Test set error as a function of 
model complexity 
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Overfitting 

n  Overfitting: a learning algorithm overfits the 
training data if it outputs a solution w when there 
exists another solution w’ such that: 
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Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Quadratic Penalty (regularization) 

n  What we thought we wanted to minimize: 

n  But weights got too big, penalize large weights:  
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Ridge Regression 
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n  Ameliorating issues with overfitting:  

n  New objective: 
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Ridge Regression in Matrix Notation 

N
 data points 

K+1 basis functions 

N
 data points 

observations weights 

K+
1 basis func
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Minimizing the Ridge Regression Objective 
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Shrinkage Properties 
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n  If orthonormal features/basis:  

 

ŵridge = (HTH + � I0+k)
�1HT t

HTH = I
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Ridge Regression: Effect of Regularization 
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n  Solution is indexed by the regularization parameter λ 
n  Larger λ 

n  Smaller λ  

n  As λ à 0 

n  As λ à∞ 
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Ridge Coefficient Path 

n  Typical approach: select λ using cross validation, more on this 
later in the quarter 
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From  
Kevin Murphy 
textbook 
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Error as a function of regularization 
parameter for a fixed model complexity 

λ=∞ λ=0 
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What you need to know… 

n  Regularization 
¨ Penalizes for complex models 

n  Ridge regression 
¨ L2 penalized least-squares regression 
¨ Regularization parameter trades off model complexity 

with training error 
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Test set error as a function of 
model complexity 
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How… How… How??????? 

n  How do we pick the regularization constant λ… 
¨ And all other constants in ML, ‘cause one thing ML 

doesn’t lack is constants to tune… L  

n  We could use the test data, but…  
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(LOO) Leave-one-out cross validation 

n  Consider a validation set with 1 example: 
¨  D – training data 
¨  D\j – training data with j th data point moved to validation set 

n  Learn classifier hD\j with D\j dataset 
n  Estimate true error as squared error on predicting t(xj): 

¨  Unbiased estimate of errortrue(hD\j)! 

¨  Seems really bad estimator, but wait! 

n  LOO cross validation: Average over all data points j: 
¨  For each data point you leave out, learn a new classifier hD\j 
¨  Estimate error as:  
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LOO cross validation is (almost)  
unbiased estimate of true error of hD! 

n  When computing LOOCV error, we only use N-1 data points 
¨  So it’s not estimate of true error of learning with N data points! 
¨  Usually pessimistic, though – learning with less data typically gives worse answer 

n  LOO is almost unbiased! 

n  Great news! 
¨  Use LOO error for model selection!!! 
¨  E.g., picking λ 

22 ©2005-2014 Carlos Guestrin 



Using LOO to Pick λ 

λ=∞ λ=0 
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Using LOO error for model selection 
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Computational cost of LOO 

n  Suppose you have 100,000 data points 
n  You implemented a great version of your learning 

algorithm 
¨ Learns in only 1 second  

n  Computing LOO will take about 1 day!!! 
¨  If you have to do for each choice of basis functions, it will 

take fooooooreeeve’!!! 
n  Solution 1: Preferred, but not usually possible 

¨ Find a cool trick to compute LOO (e.g., see homework) 
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Solution 2 to complexity of computing LOO:   
(More typical) Use k-fold cross validation 

n  Randomly divide training data into k equal parts 
¨  D1,…,Dk 

n  For each i 
¨  Learn classifier hD\Di using data point not in Di  
¨  Estimate error of hD\Di on validation set Di: 

n  k-fold cross validation error is average over data splits: 

n  k-fold cross validation properties: 
¨  Much faster to compute than LOO 
¨  More (pessimistically) biased – using much less data, only m(k-1)/k 
¨  Usually, k = 10 J 
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ML Pipeline 
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What you need to know… 

n  Never ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
train on the test data 

n  Use cross-validation to choose magic 
parameters such as λ 

n  Leave-one-out is the best you can do, but 
sometimes too slow 
¨  In that case, use k-fold cross-validation 
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Sparsity 
n  Vector w is sparse, if many entries are zero: 

n  Very useful for many tasks, e.g.,  
¨  Efficiency:  If size(w) = 100B, each prediction is expensive: 

n  If part of an online system, too slow 
n  If w is sparse, prediction computation only depends on number of non-zeros 

¨  Interpretability:  What are the  
relevant dimension to make a  
prediction? 

n  E.g., what are the parts of the  
brain associated with particular  
words? 

n  But computationally  
intractable to perform  
“all subsets” regression 
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Eat  Push  Run 

Mean of 

independently 

learned signatures 

over all nine 

participants 
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P1 

Pars opercularis 
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Postcentral gyrus 

(z=30mm) 

Superior temporal 
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(z=12mm) 
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Simple greedy model selection algorithm 

n  Pick a dictionary of features 
¨ e.g., polynomials for linear regression 

n  Greedy heuristic: 
¨ Start from empty (or simple) set of 

features F0 = ∅	

¨ Run learning algorithm for current set 

of features Ft 
n  Obtain ht 

¨ Select next best feature Xi
* 

n  e.g., Xj that results in lowest training error 
learner when learning with Ft + {Xj} 

¨ Ft+1 ç Ft + {Xi
*} 

¨ Recurse 
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Greedy model selection 

n  Applicable in many settings: 
¨ Linear regression: Selecting basis functions 
¨ Naïve Bayes: Selecting (independent) features P(Xi|Y) 
¨ Logistic regression: Selecting features (basis functions) 
¨ Decision trees: Selecting leaves to expand 

n  Only a heuristic! 
¨ But, sometimes you can prove something cool about it 

n  e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that 
include Naïve Bayes 

n  There are many more elaborate methods out there 
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 When do we stop??? 

n  Greedy heuristic: 
¨  … 
¨  Select next best feature Xi

* 
n  e.g., Xj that results in lowest training error 

learner when learning with Ft  + {Xj} 
¨  Ft+1 ç  Ft + {Xi

*} 
¨  Recurse 

When do you stop??? 
n  When training error is low enough? 
n  When test set error is low enough? 
n    
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Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Variable Selection by Regularization 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose features with largest coefficients in ridge solution 

n  Try new penalty: Penalize non-zero weights 
¨  Regularization penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 
¨  This simple approach has changed statistics, machine learning & 

electrical engineering  
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LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Geometric Intuition for Sparsity 
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Picture of Lasso and Ridge regression
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Picture of Lasso and Ridge regression
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Optimizing the LASSO Objective 
n  LASSO solution: 
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Coordinate Descent 
n  Given a function F 

¨  Want to find minimum 

n  Often, hard to find minimum for all coordinates, but easy for one coordinate 
 
n  Coordinate descent: 

n  How do we pick next coordinate? 

n  Super useful approach for *many* problems 
¨  Converges to optimum in some cases, such as LASSO 
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How do we find the minimum over each 
coordinate? 

n  Key step in coordinate descent: 
¨  Find minimum over each coordinate 

n  Standard approach: 
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Optimizing LASSO Objective  
One Coordinate at a Time 

n  Taking the derivative: 
¨  Residual sum of squares (RSS):  

 
 
 
¨  Penalty term: 
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Coordinate Descent for LASSO  
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate l at (random or sequentially) 

n  Set: 

n  Where:  

¨  For convergence rates, see Shalev-Shwartz and Tewari 2009 
n  Other common technique = LARS 

¨ Least angle regression and shrinkage, Efron et al. 2004 
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Soft Thresholding  
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From  
Kevin Murphy 
textbook 
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Recall: Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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From  
Kevin Murphy 
textbook 
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Now: LASSO Coefficient Path  

45 

From  
Kevin Murphy 
textbook 
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LASSO Example  
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Estimated coefficients

Term Least Squares Ridge Lasso

Intercept 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133

From  
Rob 
Tibshirani 
slides 
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Debiasing 
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From Kevin Murphy textbook 
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What you need to know 

n  Variable Selection: find a sparse solution to learning 
problem 

n  L1 regularization is one way to do variable selection 
¨  Applies beyond regressions 
¨  Hundreds of other approaches out there 

n  LASSO objective non-differentiable, but convex è Use 
subgradient 

n  No closed-form solution for minimization è Use 
coordinate descent 

n  Shooting algorithm is very simple approach for solving 
LASSO 
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