Recommender Systems

Machine Learning – CSEP546

Carlos Guestrin

University of Washington

February 10, 2014

Personalization is transforming our experience of the world

Information overload →
 "Browsing" is history

- 100 Hours a Minute What do I care about?
- Need fundamentally new ways to discover content
- Personalization: Connects users & items

Movie recommendations

Product recommendations

Recommendations combine global & session interests

Playlist recommendations

Recommendations form coherent & diverse sequence

Friend recommendations

Users and "items" are of the same type

Drug-target interactions

What drug should we "repurpose" for some disease?

Cobanoglu et al. '13

Challenges of developing recommender systems

Type of feedback

Explicit – user tells us what she likes

 Implicit – we try to infer what she likes from usage data

Top K versus diverse outputs

- Top K recommendations may be very redundant
 - People who liked Rocky 1 also enjoyed Rocky 2,
 Rocky 3, Rocky 4, Rocky 5,...
- Diverse recommendations
 - Users are multi-facetted & want to hedge our bets
 - Rocky 2, It never rains in Philadelphia, Gandhi

A new movies walks into a bar...

IN THEATERS

- Cold-start problem: recommendations for new users or new movies
 - Need side information about user/movie
 - A.K.A. features!

Could also play 20-questions game...

That's so last year...

- Interests change over time...
 - Is it 1967?
 - Or 1977?
 - Or 1988?
 - Or 1998?
 - Or 2011?
- Models need flexibility to adapt to users
 - Macro scale
 - Micro scale
- And keep checking that system still accurate

macys.com

Scalability

- For N users and M movies, some approaches take $O(N^3+M^3)$
 - Not so good for billions of users...

- GraphLab can help...
 - Efficient implementations
 - Fast exact & approximate methods as needed

Building a recommender system

Solution 0: Popularity

Simplest approach: popularity

- What people are viewing now
 - Super popular

- Limitations:
 - No context (what's my intention now)
 - No personalization

Solution 1: Click prediction

What's the probability I'll buy this product?

- Features capture context
 - Time of the day, what I just saw, user info, what I bought in the past
- Helps mitigate cold-start problem
 - Rate new movie from features of other movies user liked
- Limitation:
 - May not have context available
 - Often doesn't perform as well as collaborative filtering methods (next)

Solution 2: People who bought this also bought...

Co-occurrence matrix

Matrix C: item by item

• $C_{ij} = C_{ji}$ number of users who bought both items $i \, \vartheta \, j$

Normalizing co-occurrences: similarity matrix

- C_{ij} very large if either i or j are very popular movies \rightarrow drowns out other effects
 - just recommends by popularity
- Jaccard similarity: normalizes by popularity
 - Who watched i and j divided by who watched i or j

Many other similarity metrics possible, e.g., cosine similarity

Using similarity matrix to recommend

- People who bought diapers also bought beer
- For i=diapers, sort S_{ij} and find j with highest similarity
 - Beer, milk, baby food,...

• Limitation:

Only current page matters, no history

Solution 3: Average item-item similarity

(Weighted) average over items user bought

- User u bought items B_u
 - Define user specific similarity (score) for each item j
 - Average similarity for items in B_u
 - Could also weight recent purchases more

- For $B_u = \{diapers, beer\}$ sort Score(u,j) and find j with highest similarity
- Limitation:
 - Scalability similarity matrix M² size

Training versus testing data

- A/B testing standard in industry:
 - Randomly split users into groups A & B
 - Show different websites
 - Compare outcomes

- Same idea fundamental in ML
 - Randomly split data into train and test sets
 - Train on training data, evaluate on test data

Example Performance metric for recommenders

• User *u* liked *m* movies, we showed her *k* movies

- Recall: what fraction of the liked movies we found
- Precision: what fraction of the movies we showed she liked
- Precision-Recall curve:

Limitations of item-based similarity

Scalability – similarity matrix M² size

Cold-start problem

Solution 4: Discovering hidden structure by matrix factorization

Suppose we had d features of movies and users

- Describe movie v with features R_v
 - How much is it action, romance, drama,...
- Describe user u with features L_u
 - How much she likes action, romance, drama,...
- Score(u,v) is the product of the two vectors

But we don't know features of users and movies...

Matrix Completion Problem

Score(u,v) known for black cells Score(u,v) unknown for white cells Rows index users Columns index movies

Users score some movies

Filling missing data?

Matrix Factorization: discovering features of users and movies

Many efficient algorithms for matrix factorization implemented in GraphLab

Using the results of matrix factorization

- Discover "features" R_v for each movie v
- Discover "features" L_u for each user u
- Score(u,v) is the product of the two vectors → predict how much a user will like a movie

Recommendations: sort movies user hasn't watched by Score(u,v)

Limitations of matrix factorization

Cold-start problem

Bringing it all together: Featurized matrix factorization

Combining real and discovered features

- Real features capture context
 - Time of the day, what I just saw, user info, what I bought in the past
- Discovered features from matrix factorization capture groups of users who behave similarly
 - Hipster wannabes from Seattle who teach and have a startup
- Mitigates cold-start problem
 - Ratings for a new user from real features only
 - As more information about user is discovered, matrix factorization "features" become more relevant

Matrix Factorization Alternating Least Squares

Machine Learning – CSEP546

Carlos Guestrin

University of Washington

February 10, 2014

Matrix Completion Problem

Filling missing data?

X_{ij} known for black cells
X_{ij} unknown for white cells
Rows index users
Columns index movies

Interpreting Low-Rank Matrix Completion (aka Matrix Factorization)

Matrix Completion via Rank Minimization

•	Given	observed	values.
•	Given	ODSELVED	values.

- Find matrix
- Such that:
- But...
- Introduce bias:

Two issues:

Approximate Matrix Completion

- Minimize squared error:
 - (Other loss functions are possible)

Choose rank k:

• Optimization problem:

Coordinate Descent for Matrix Factorization

$$\min_{L,R} \sum_{(u,v):r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2$$

- Fix movie factors, optimize for user factors
- First Observation:

Minimizing Over User Factors

• For each user u: $\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v - r_{uv})^2$

In matrix form:

• Second observation: Solve by

Coordinate Descent for Matrix Factorization: Alternating Least-Squares

$$\min_{L,R} \sum_{(u,v):r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2$$

- Fix movie factors, optimize for user factors
 - Independent least-squares over users

$$\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v - r_{uv})^2$$

- Fix user factors, optimize for movie factors
 - Independent least-squares over movies

$$\min_{R_v} \sum_{u \in U_v} (L_u \cdot R_v - r_{uv})^2$$

• System may be underdetermined:

Converges to

Effect of Regularization

$$\min_{L,R} \sum_{(u,v):r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2$$

Stochastic Gradient Descent

$$\min_{L,R} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \lambda_u ||L||_2^2 + \lambda_v ||R||_2^2$$

- Observe one rating at a time r_{uv}
- Gradient:

Updates:

What you need to know...

- Matrix completion problem for collaborative filtering
- Over-determined -> low-rank approximation
- Rank minimization is NP-hard
- Minimize least-squares prediction for known values for given rank of matrix
 - Must use regularization
- Coordinate descent algorithm = "Alternating Least Squares"

Non-Negative Matrix Factorization

Machine Learning – CSEP546

Carlos Guestrin

University of Washington

February 10, 2014

Matrix factorization solutions can be unintuitive...

- Many, many, many applications of matrix factorization
- E.g., in text data, can do topic modeling:

- Would like:
- But...

Nonnegative Matrix Factorization

Just like before, but

$$\min_{L\geq 0, R\geq 0} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \lambda_u ||L||_F^2 + \lambda_v ||R||_F^2$$

- Constrained optimization problem
 - Many, many, many, many solution methods... we'll check out a simple one

Projected Gradient

- Standard optimization:
 - Want to minimize: $\min_{\Theta} f(\Theta)$
 - Use gradient updates:

$$\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \eta_t \nabla f(\Theta^{(t)})$$

- Constrained optimization:
 - Given convex set C of feasible solutions
 - Want to find minima within C: $\min_{\Theta} f(\Theta)$
- Projected gradient:
 - Take a gradient step (ignoring constraints):
 - Projection into feasible set:

Projected Stochastic Gradient Descent for Nonnegative Matrix Factorization

$$\min_{L\geq 0, R\geq 0} \frac{1}{2} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \frac{\lambda_u}{2} ||L||_F^2 + \frac{\lambda_v}{2} ||R||_F^2$$

• Gradient step observing r_{uv} ignoring constraints:

$$\begin{bmatrix} \tilde{L}_u^{(t+1)} \\ \tilde{R}_v^{(t+1)} \end{bmatrix} \leftarrow \begin{bmatrix} (1 - \eta_t \lambda_u) L_u^{(t)} - \eta_t \epsilon_t R_v^{(t)} \\ (1 - \eta_t \lambda_v) R_v^{(t)} - \eta_t \epsilon_t L_u^{(t)} \end{bmatrix}$$

- Convex set:
- Projection step:

What you need to know...

 In many applications, want factors to be nonnegative

 Corresponds to constrained optimization problem

 Many possible approaches to solve, e.g., projected gradient

52

The Cold-Start Problem

Machine Learning – CSEP546

Carlos Guestrin

University of Washington

February 10, 2014

Cold-Start Problem

- Challenge: Cold-start problem (new movie or user)
- Methods: use features of movie/user

©2005-2014 Carlos Guestrin

54

Cold-Start More Formally

No observations about a particular user:

$$\min_{L,R} \frac{1}{2} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \frac{\lambda_u}{2} ||L||_F^2 + \frac{\lambda_v}{2} ||R||_F^2$$

- A simpler model for collaborative filtering:
 - Observe ratings:
 - Given features of a movie:

- Fit linear model:
- Minimize:

Personalization

- If we don't have any observations about a user, use wisdom of the crowd
 - Address cold-start problem

But, as we gain more information about the user, forget the crowd:

User Features...

• In addition to movie features, may have information user:

Combine with features of movie:

• Unified linear model:

Feature-based Approach versus Matrix Factorization

- Feature-based approach:
 - Feature representation of user and movies fixed
 - Can address cold-start
- Matrix factorization approach:
 - Suffers from cold-start problem
 - User & movie features are learned from data

Unified model:

MAP for Unified Collaborative Filtering via SGD

$$\min_{L,R,w,\{w_u\}_u} \frac{1}{2} \sum_{r_{uv}} (L_u \cdot R_v + (w + w_u) \cdot \phi(u,v) - r_{uv})^2
+ \frac{\lambda_u}{2} ||L||_F^2 + \frac{\lambda_v}{2} ||R||_F^2 + \frac{\lambda_w}{2} ||w||_2^2 + \frac{\lambda_{wu}}{2} \sum_{u} ||w_u||_2^2$$

Gradient step observing r_{uv}

$$\begin{bmatrix} L_u^{(t+1)} \\ R_v^{(t+1)} \end{bmatrix} \leftarrow \begin{bmatrix} (1 - \eta_t \lambda_u) L_u^{(t)} - \eta_t \epsilon_t R_v^{(t)} \\ (1 - \eta_t \lambda_v) R_v^{(t)} - \eta_t \epsilon_t L_u^{(t)} \end{bmatrix}$$

- For w and w_u :

What you need to know...

Cold-start problem

- Feature-based methods for collaborative filtering
 - Help address cold-start problem
- Unified approach