Parallel Programming

Map-Reduce

Machine Learning — CSEP546
Carlos Guestrin

University of Washington
February 24, 2014

©Carlos Guestrin 2013-2014

Needless to Say, We Need
Machine Learning for Big Data

flickr

6 Billion

YouIT

N 1 Billion 72 Hours a Minute
Flickr Photos 28 Million Facebook Users YouTube
Wikipedia Pages
Ehe New JJork Times i dat | f .
= ... data a new cClass or economic
SundayReview

WORLD US. NJY./REGION BUSINESS TEC

NEWS ANALYSIS

The Age of Big Data

By STEVE LOHR
Published: February 11, 2012

asset, like currency or gold.”

©Carlos Guestrin 2013-2014 2

- 0T0C¢

: " |
n n 1
- , m -+ 800¢
I3 : --
) S 9002
a 4
LL] H B B 00
=2 a0z
- 0002
(D) |
@) 8661
w -~ 966T
@) T
O -+ 66T
O d
m_\lu - 266T
0 - 066T
) | 886T
Dl o i i —i
ol & s 3

ZHo paads Bmmmuoao

release date

©Carlos Guestrin 2013-2014

ML in the Context of Parallel
Architectures

amaZon
web services™

Clusters Clouds Supercomputers

m But scalable ML in these systems is hard,
especially in terms of:
1. Programmability
2. Data distribution
3. Failures

©Carlos Guestrin 2013-2014 4

Programmability Challenge 1:

Designing Parallel programs
"

m SGD for LR:
For each data point x®:

w™ w4 { Xl + 6, D)y® — PV = 1), w)] |

©Carlos Guestrin 2013-2014 5

Programmability Challenge 2:

__Race Conditions
N
m \We are used to sequential programs:

Read data, think, write data, read data, think, write data, read data, think, write data, read
data, think, write data, read data, think, write data, read data, think, write data...

m But, in parallel, you can have non-deterministic effects:
One machine reading data will other is writing

m Called a race-condition:
Very annoying

One of the hardest problems to debug in practice:
m because of non-determinism, bugs are hard to reproduce

©Carlos Guestrin 2013-2014

Data Distribution Challenge

" J

m Accessing data:
Main memory reference: 100ns (107s)
Round trip time within data center: 500,000ns (5 * 104s)
Disk seek: 10,000,000ns (10-2s)

m Reading 1MB sequentially:
Local memory: 250,000ns (2.5 * 10-4s)
Network: 10,000,000ns (10-2s)
Disk: 30,000,000ns (3*10-2s)

m Conclusion: Reading data from local memory is much faster =» Must have
data locality:

Good data partitioning strategy fundamental!
“Bring computation to data” (rather than moving data around)

©Carlos Guestrin 2013-2014

Robustness to Failures Challenge
" I

m From Google’s Jeff Dean, about their clusters of 1800 servers, in

first year of operation:
1,000 individual machine failures
thousands of hard drive failures
one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
20 racks will fail, each time causing 40 to 80 machines to vanish from the network
5 racks will “go wonky,” with half their network packets missing in action

the cluster will have to be rewired once, affecting 5 percent of the machines at any given
moment over a 2-day span

50% chance cluster will overheat, taking down most of the servers in less than 5 minutes
and taking 1 to 2 days to recover

m How do we design distributed algorithms and systems robust
to failures?

It's not enough to say: run, if there is a failure, do it again... because
you may never finish

©Carlos Guestrin 2013-2014

Move Towards Higher-Level

Abstraction
"
m Distributed computing challenges are hard and annoying!
Programmability
Data distribution
Failures

m High-level abstractions try to simplify distributed programming by
hiding challenges:

Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...

Generally, you are still on your own WRT designing parallel algorithms

m Some common parallel abstractions:

Lower-level:

m Pthreads: abstraction for distributed threads on single machine

» MPI: abstraction for distributed communication in a cluster of computers
Higher-level:

m Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
m GraphLab: for graph-structured distributed problems

©Carlos Guestrin 2013-2014

Simplest Type of Parallelism:

] Data Barallel Problems

® You have already learned a classifier
What's the test error?

m You have 10B labeled documents and 1000 machines

m Problems that can be broken into independent subproblems are
called data-parallel (or embarrassingly parallel)

m Map-Reduce is a great tool for this...
Focus of today’s lecture
but first a simple example

©Carlos Guestrin 2013-2014

10

Data Parallelism (MapReduce

Solve a huge number of independent subproblems,
e.qg., extract features in images

Counting Words on a Single Processor
"

(This is the “Hello World!” of Map-Reduce)
Suppose you have 10B documents and 1 machine

You want to count the number of appearances of each word on this
corpus

Similar ideas useful, e.g., for building Naive Bayes classifiers and
computing TF-IDF

Code:

©Carlos Guestrin 2013-2014 12

Naive Parallel Word Counting
" I

m Simple data parallelism approach:

m Merging hash tables: annoying, potentially not parallel =
no gain from parallelism?7??

©Carlos Guestrin 2013-2014 13

Counting Words in Parallel &

] Merﬁinﬂ Hash Tables in Parallel

m Generate pairs (word,count)

m Merge counts for each word in parallel
Thus parallel merging hash tables

©Carlos Guestrin 2013-2014

Map-Reduce Abstraction

"
m Map:

Data-parallel over elements, e.g., documents
Generate (key,value) pairs
m “value” can be any data type

m Reduce:

Aggregate values for each key

Must be commutative-associate operation
Data-parallel over keys

Generate (key,value) pairs

m Map-Reduce has long history in functional programming

But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Carlos Guestrin 2013-2014 15

Map Code (Hadoop): Word Count
"

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context) throws <stuff>

{
String line = value.toString(Q);

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

©Carlos Guestrin 2013-2014 16

Reduce Code (Hadoop): Word Count
"

public static class Reduce extends Reducer<Text, IntWritable,
Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values,
Context context)

throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get(Q);

¥
context.write(key, new IntWritable(sum));

©Carlos Guestrin 2013-2014 17

Map-Reduce Parallel Execution
" S

Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase

(Kq,V4) (Kq,V4)
M1 > (kyvsy) M1 = (k,0v)

/

.. Assign tuple (k;,v;) to

(K, vy)

’ 3)
M2 (ky,vy) S M2 > (k,,V,)

\

AN
Split data

across machines

machine h[k]

v

— ot
M1000 (k2””V2”’) M1000 >(

C Big Data C)
N

©Carlos Guestrin 2013-2014 19

Map-Reduce — Robustness to Failures 1:
Protecting Data: Save To Disk Constantly

Map Phase Shuffle Phase Reduce Phase
(Ky,v4) (kq,V4)
M1 = (k,V,) —> (k;,Vy)
U (kqyvy) (k3,v3)
M2 [(kz.V2) e —> (k,,v,)
s 3e
85 . <=
fo < ZE a2
@® = 2
a |'?s.. 58
2 ° A 7
I <
(kwve) S (Ks,Vs)
—> (kym,Vy) —> (Ks,V6)

©Carlos Guestrin 2013-2014 20

Distributed File Systems
" A

m Saving to disk locally is not enough = If disk or machine fails, all data is lost
m Replicate data among multiple machines!

m Distributed File System (DFS)

Write a file anywhere =» automatically replicated

Can read a file anywhere = read from closest copy
n [f failure, try next closest copy

m Common implementations:
Google File System (GFS)
Hadoop File System (HDFS)

m Important practical considerations:

Write large files
= Many small files & becomes way too slow

Typically, files can’t be “modified”, just “replaced” = makes robustness much simpler

©Carlos Guestrin 2013-2014 21

Map-Reduce — Robustness to Failures 2:
Recovering From Failures: Read from DFS

[\ Map Phase Shuffle Phase Reduce Phase
(ky,v4) (ky,v4)
71 M1 =2 (k;v,) M1 =2 (k;v,)
U (Ky,vy) (k3,v3)
M2 > (kp,v2) o (Kq,V4)
2 /’l T=
85 . X
o < ZE : 22
Ry °otA @ E
m <
(kpmvyn) f° ‘ (ks,Vs)
U > (KyVy) —> (ko)

©Carlos Guestrin 2013-2014

m Communication

in initial
distribution &
shuffle phase
“automatic”

Done by DFS

If failure, don’t
restart everything

Otherwise,
never finish

Only restart Map/
Reduce jobs in
dead machines

22

Improving Performance: Combiners
"

m Naive implementation of M-R very wasteful in communication during shuffle:

m Combiner: Simple solution, perform reduce locally before communicating
for global reduce

Works because reduce is commutative-associative

©Carlos Guestrin 2013-2014 23

(A few of the) Limitations of Map-Reduce
" S

Map Phase Shuffle Phase Reduce Phase
m Too much synchrony [\
E.g., reducers don’t start until all M1 > §E;X;§ —> EEQXS
mappers are done U
111 ” (k sV) Ks,
m “Too much” robustness ,,I M2 oovs) e w2 > i)
Writing to disk all the time oL ZE
@ < E : : 32
" © &8 - g
m Not all problems fit in > 3leag 58
Map-Reduce o : g
E.g., you can’t communicate
between mappers
o] 9(k5=V5)
m Oblivious to structure in data (ks Vo)

E.g., if data is a graph, can be
much more efficient
s For example, no need to shuffle nearly as much

m Nonetheless, extremely useful;
industry standard for Big Data

Though many many companies are moving

away from Map-Reduce (Hadoop)
©Carlos Guestrin 2013-2014 24

What you need to know about Map-Reduce
" S

m Distributed computing challenges are hard and annoying!
Programmability

Data distribution
Failures

m High-level abstractions help a lot!
m Data-parallel problems & Map-Reduce
m Map:

Data-parallel transformation of data
m Parallel over data points

m Reduce:

Data-parallel aggregation of data
m Parallel over keys

m Combiner helps reduce communication
m Distributed execution of Map-Reduce:
Map, shuffle, reduce

Robustness to failure by writing to disk
Distributed File Systems

©Carlos Guestrin 2013-2014 25

Parallel K-Means on

Map-Reduce

Machine Learning — CSEP546
Carlos Guestrin

University of Washington
February 24, 2014

©Carlos Guestrin 2013-2014

Auton’s Graphics

Some Data
" A

x1

0.8

0.6

0.4

0,2

—=

0.2

0.8

——

%07

©Carlos Guestrin 2013-2014

27

K-means

1.

Ask user how many
clusters they'd like.
(e.g. k=5)

Auton’s Graphics [

x1

0.8

0.6

0.4

0,2

——

0.2

0.6 0.8 1

%07

©Carlos Guestrin 2013-2014

28

— Auton’s Graphics i J_

K-means
" A

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guessk | ®® 7
cluster Center

locations
0,4 T
0.2 ——
" 1 l l l l
T T T T T T
A 0 0,2 0.4 0,6 0.8 1

%07

©Carlos Guestrin 2013-2014 29

— Auton’s Graphics I 4”

K-means |
I

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guessk | ®F
cluster Center
locations

0.8

3. Each datapoint finds | o.4
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints) | °2

%07

©Carlos Guestrin 2013-2014 30

= Auton’s Graphics [4”

K-means |
I

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guessk | ®F
cluster Center
locations

0.8

3. Each datapoint finds | o.4
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns

0,2

%07

©Carlos Guestrin 2013-2014 31

K-means
I

1.

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!

Auton’s Graphics

x1

0.8

0.6

0.4

0,2

Sl

——

0,2

/!
T

0.8

——

%07

——

©Carlos Guestrin 2013-2014

32

K-means
" J
m Randomly initialize k centers
u©® =y Oy ©

m Classify: Assign each point jJ&{1,...m} to nearest
center:

2! < argmin [|u; — x7||3
(

m Recenter: u. becomes centroid of its point:

p "V = argmin [l — |3
jizd =1

Equivalent to u, < average of its points!

©Carlos Guestrin 2013-2014 33

Map-Reducing One lIteration of

K-Means
"
m Classify: Assign each point JE{1,...m} to nearest center:
2 argmin ||u; — 7|5

m Recenter: u, becomes centroid of its point:

t+1 . :
p ™ e argmin Y [l — |3

jizd=1

Equivalent to u; «<— average of its points!

m Map:

m Reduce:

©Carlos Guestrin 2013-2014

34

Classification Step as Map
" A

m Classify: Assign each point JE{1,...m} to nearest center:
2 ¢ argmin [|u; — x5

m Map:

©Carlos Guestrin 2013-2014

35

Recenter Step as Reduce
" A

m Recenter: u. becomes centroid of its point:
pi T e argmin Y lp— |3

jizd=1

Equivalent to u; < average of its points!

m Reduce:

©Carlos Guestrin 2013-2014

36

Some Practical Considerations
" A
m K-Means needs an iterative version of Map-
Reduce

Not standard formulation

m Mapper needs to get data point and all centers
A lot of datal!
Better implementation: mapper gets many data points

©Carlos Guestrin 2013-2014 37

What you need to know about

__Paralle| K-Means on Map-Reduce

m K-Means = EM for mixtures of spherical
Gaussians with hard assignments

m Map: classification step; data parallel over data
point

m Reduce: recompute means; data parallel over
centers

Graph-Parallel Problems

Synchronous V.
Asynchronous Computation

Machine Learning — CSEP546
Carlos Guestrin

University of Washington
February 24, 2014

©Carlos Guestrin 2013-2014

Issues with Map-Reduce Abstraction
" A
m Often all data gets moved around cluster
Very bad for iterative settings

m Definition of Map & Reduce functions can be
unintuitive in many apps
Graphs are challenging

m Computation is synchronous

SGD for Matrix Factorization in

] MaE-Reduce?

ng_i) % (1 — nt)\u)L’SLw — T]thRq(;t)
Rq() +1) (1 — nt)\U)Rfl(Jt) — UthLz(Lt)

€ = L,ff) : Rgf) — Tuw
m Map and Reduce functions???

m Map-Reduce:
Data-parallel over all mappers
Data-parallel over reducers with same key

m Here, one update at a time!

©Carlos Guestrin 2013-2014 41

Matrix Factorization as a Graph

The Celebration

e City of God

e \\i1d Strawberries

"8 | a Dolce Vita

©Carlos Guestrin 2013-2014

42

Flashback to 1998

m@ role!
altavista. Google!

SSSSSSSSSSSSSS

First Google advantage:

a Graph Algorithm & a System to Support it!

Social Media Science Advertising

a

NETELIX

¢ Graphs encode the relationships between:

People Products ldeas
Facts Interests

o Big: 100 billions of vertices and edges and rich metadata

e Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges

©Carlos Guestrin 2013-2014

44

Facebook Graph

Data model
Objects & Associations

18429207554
(page)
fan f
8636146 dmin birthday: 08/04/1961
(user) . website: http://...
verified: 1
friend
likes
liked by friend
604191769
(user)

6205972929
(story)

Slide from Facebook Engineering presentationg g
©Carlos Guestrin 2013-2014

Label a Face and Propagate

grandma ¢

-* Y

N

*}. L ~4
i L
- e ©
- R 4 aJs
.“‘ =2
b &
.
A -
S
o~
<

©Carlos Guestrin 2013-2014

46

Pairwise similarity not enough...

v y '
1‘ / (- (
~ Not similar enough

=" grandma to be sure | B
A Who? 7788

- -'V““.~ .’!.

47
©Carlos Guestrin 2013-2014

Propagate Similarities & Co-occurrences
for Accurate Predictions

COo-occurring
faces
M further evidence

48

Example: Estimate Political Bias

Topic Modeling (e.g., LDA)

Click to LOOK INSIDE!

click to LOOK INSIDE!

JOHNNY
APPLESELED

©Carlos Guestrin 2013-2014

50

ML Tasks Beyond Data-Parallelism

Data-Parallel Graph-Parallel

Map Reduce

Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
Belief Propagation |abel Propagation
Computing Sufficient Variational Opt. CoEM

Statistics Collaborative Graph Analysis

Filtering PageRank
Tensor Factorization Triangle Counting

51
©Carlos Guestrin 2013-2014

Example of a
Graph-Parallel
Algorithm

Depends on rank
PagERank of who follows them...
Depends on rank |
of who follows her /

What's the rank
of this user?

Loops in graph--) Must iterate! .

PageRank Iteration

e a is the random reset probability

» w;is the prob. transitioning (S|m|Iar|ty) fromjtoi
arlos Guestrin 2013-2014

54

Properties of Graph Parallel Algorithms

Dependency Local Iterative
Graph Updates Computation

”— My Rank
!l III

Friends Rank

55

©Carlos Guestrin 2013-2014

Addressing Graph-Parallel ML

< Data-Parallel Graph-Parallel

\EToN e [V[o<I Graph-Parallel’Abstraction

Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
. - Belief Propagation | abel Propagation
Computing Sufficient Variational Opt. CoEng
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization Triangle Counting

56
©Carlos Guestrin 2013-2014

Graph Computation:

Synchronous
V.
Asynchronous

Bulk Synchronous Parallel Model:
Pregel (Giraph) Valiant ‘90

Compute Communicate

Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase

(Kq,V4) (Kq,V4)
M1 > (kyov) M1 = (k,0v)

/

.. Assign tuple (k;,v;) to

(K, vy)

’ 3)
M2 _>(k2”V2’) \ M2 _>(k4,V4)

\

AN
Split data

across machines

machine h[k]

v

— ot
M1000 (k2””V2”’) M1000 >(

C Big Data C)
N

©Carlos Guestrin 2013-2014 59

BSP — Execution Overview

Compute Phase n Communicate Phase

[\ (vidy,vid’; vy)
M1 f(vid,,vid', v,) < M1

U (vidy,vid'y: vy.)
/7- M2 |(vid,,vid’, v,) < M2

Graph
AN
Split graph
across machines
‘ Message machine
. for every edge (vid,vid’,val)

.
..O
e
. .
LN
24, .
. .
. .
.
.
.
A4 -
.

M1000

o ;
= 5
(Vidyo,Vid' o V) St
M1000 |(vidp»,vid’y» V) ©

©Carlos Guestrin 2013-2014

Bulk synchronous
parallel model
provably inefficient
for some ML tasks

Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]

focus here

<®]@®®@@\

Priority Queue
Smart Scheduling

important
influence

©Carlos Guestrin 2013-2014

62

Asynchronous Belief Propagation
Challenge/= Boundaries

Many
Updates

Few
Updates

- - Cumulative Vertex Updates
O

O Algorithm identifies and focuses

£
N
£
4

on hidden sequential structure

Graphical Model

63
©Carlos Guestrin 2013-2014

BSP ML Problem:
Synchronous Algorithms can be Inefficient

10000
" Bulk Synchronous (e.g., Pregel)

2 8000 /

o Theorem:

v 6000

< Asynchronous Splash BP Bulk Synchronous BP
:g’ 4000 O(#vertices) slower
c

5 2000 e . than Asynchronous BP

1 2 3 4 5 6 7 8
Number of CPUs

64

©Carlos Guestrin 2013-2014

Synchronous v. Asynchronous

m Bulk synchronous processing: m Asynchronous processing:

Computation in phases

m All vertices participate in a phase
Though OK to say no-op

m All messages are sent
Simpler to build, like Map-Reduce

m No worries about race conditions,
barrier guarantees data consistency

m Simpler to make fault-tolerant, save
data on barrier

Slower convergence for many ML
problems

In matrix-land, called Jacobi Iteration
Implemented by Google Pregel 2010

©Carlos Guestrin 2013-2014

Vertices see latest information from
neighbors

m Most closely related to sequential
execution

Harder to build:
m Race conditions can happen all the time
Must protect against this issue
m More complex fault tolerance
» When are you done?
m Must implement scheduler over vertices

Faster convergence for many ML
problems

In matrix-land, called Gauss-Seidel
lteration

Implemented by GraphLab 2010, 2012

65

GraphLab

Machine Learning — CSEP546
Carlos Guestrin

University of Washington
February 24, 2014

©Carlos Guestrin 2013-2014

The GraphLab Goals

Know how to .
solve ML problem ()
on 1 machine Gra%hk%?w# CE ciant

parallel
EEEE predictions

+

“i' amazon |
“ webservices™ l

©Carlos Guestrin 2013-2014 67

Data Graph

Data associated with vertices and edges

i

Graph: Q_O

e Social Network

Vertex Data: '
 User profile text
e Current interests estimates

Edge Data: ﬁ
* Similarity weights

©Carlos Guestrin 2013-2014

68

How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]

Update Functions

User-defined program: applied to

vertex transforms data in

pagerank(i, scope){

n

}

©Carlos Guestrin 2013-2014

of vertex

70

Update Function Example:
Connected Components

©Carlos Guestrin 2013-2014

71

Update Function Example:
Connected Components

©Carlos Guestrin 2013-2014

72

The Scheduler

The scheduler determines order vertices are updated

| -
QL
=
O
Q
c
Q
)

©Carlos Guestrin 2013-2014

73

Example Schedulers

¢ Round-robin

» Selective scheduling (skipping):
¢ round robin but jump over un-scheduled vertice

s FIFO
¢ Prioritize scheduling

¢ Hard to implement in a distributed fashion
o Approximations used (each machine has its own priority queue)

©Carlos Guestrin 2013-2014

74

Ensuring Race-Free Code

How much can computation overlap?

v

©Carlos Guestrin 2013-2014

75

Need for Consistency?

e Higher

igher
Throughput

(#updates/sec)

No Consistency

Potentially Slower
Convergence of ML

©Carlos Guestrin 2013-2014

76

GraphlLab Ensures Sequential Consistency

For each parallel execution, there exists a sequential
execution of update functions which produces the same result

o—@ O

CPU 1
Parallel

CPU 2
Sequential Single

CPU

©Carlos Guestrin 2013-2014 77

Consistency in Collaborative Filtering

128

64 - “
== |nconsistent updates
32 -

<@ Consistent updates
16 -

Train RMSE
(0]

4 -
]
1 -\I—HJ—I—I—I—I—I—I—I
05 I I I]
0 2 4 6 8
Updates Millions

Netflix data, 8 cores ©Carlos Guestrin 2013-2014 78

The GraphLab Framework

Graph Based Update Functions
Data Representation User Computation

O———C

Scheduler Consistency Model

oooo>

©Carlos Guestrin 2013-2014 79

Triangle Counting in Twitter Graph

v Total:

40M Users 34.8 Bi"iOn Triangles
1.2B Edges

Hadoop

8 64 Machines, 1024 Cores

GraphLab 1.5 Minutes

_©Carlos Guestrin 2013-2014 80
Hadoop results from [Suri & Vassilvitskii '11]

CoEM (Jones et al., 2005)

Named Entity Recognition Task

Is “Dog” an animal?
Is “Catalina” a place?

dog(> < ><X> ran quickly

Australia travelled to <X>

Catalina <X> is pleasant
Island

©Carlos Guestrin 2013-2014

81

Never Ending Learner Project (CoEM)

Vertices: 2 Million
Edges: 200 Million

Hadoop 95 Cores 7.5 hrs

Distributed 32 EC2 80 secs
GraphlLab machines

©Carlos Guestrin 2013-2014 82

%men

Yok

smﬂdm

ClTYor G

©Carlos Guestrin 2013- 2014

(0]))

Women on the Verge of a

g Nervous Breakdown
p’”

The Celebration

City of God

Wild Strawberries

La Dolce Vita

83

Interpreting Low-Rank Matrix Completion (aka
Matrix Factorization)

J Mmovi€sS k M

R ,.},wx = “ 6}R’

Ly

Cue © Lu* R, w @\ Ry

u U‘L w MMC‘\
b Vie how '™ ho :
opic . wey U movie V
pic \i e eg s abont
o " .) -
rémance kopiC A Xopic 4

©Carlos Guestrin
2013-2014 84

Matrix Completion as a Graph
" JE

Xi; known for black cells
X;; unknown for white cells
X = .

Rows index users
Columns index movies

©Carlos Guestrin 2013-2014

85

Coordinate Descent for Matrix

~Factorization: Alternating Least-Squares
"
pin 2, (Lt Ry —run)

Y

(U,0):7ypF£?
m Fix movie factors, optimize for user factors
j (Lu - Ry = Tun)”
Independent least-squares over users HLlln U v — Tyv
“ veVy,

m Fix user factors, optimize for movie factors

Independent least-squares over movies min E (Lu y RU — Tuv)z
R,
uel,

m System may be underdetermined:

m Convergesto

©Carlos Guestrin 2013-2014 86

Alternating Least Squares Update Function

©Carlos Guestrin 2013-2014 87

SGD for Matrix Factorization in

] MaE-Reduce?

£ } . [(1= gA)LY — e

er =LY RY —ry,
ngtﬂ) (1 — nt)\’l))R’l(Jt) — UthL&t)

©Carlos Guestrin 2013-2014 88

GraphChi: Going small with GraphlLab

Graph Lab w" 4 3
Solve huge problems on ;
small or embedded Q é}é%
devices? ~

Key: Exploit non-volatile memory

(starting with SSDs and HDs)

©Carlos Guestrin 2013-2014 89

GraphChi — disk-based Graphlab

Challenge:

Random Accesses \ / / =

Novel GraphChi solution:
Parallel sliding windows method =
minimizes number of random accesses

©Carlos Guestrin 2013-2014 90

Naive Graph Disk Layouts

¢ Symmetrized adjacency file with values,

vertex | in-neighbors | out-neighbors
5 3:2.3,19: 1.3, 49: 0.65,... 781:2.3,881:4.2..

Random
\ synchronize write

19 3:1.4,9:12.1, ... \5: 1.3,28:2.2, ...

¢ ... or with file index pointers

vertex | in-neighbor-ptr

5 3: 881, 19: 10092, 49: 20763,... 781: 2.3,881:4.2..
— — Random
read/write

5:1.3,28:2.2, ...
©Carlos Guestrin 2013-2014 91

19 3:882,9:2872, ...

Parallel Sliding Windows Layout

Shard: in-edges for subset of vertices; sorted by source_id

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

o

S Shard 1 Shard 2 Shard 3 Shard 4

- 2

o S

E 5

o 3

> >

- O

L -

n

L

= 2

¢

=

Shards small enougf ta fit.in memaory; balance size of shards 9

Parallel Sliding Windows Execution
Load subgraph for vertices 1..100

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

Shard 4

in-edges for vertices 1..100
sorted by source_id

Load all in-edges RUWALELS:]ele]0)Re]IU)ET=To fo{1Yy
in memory Arranged in sequence in other shards!

And seauential writes!

Parallel Sliding Windows Execution
Load subgraph for vertices 101..700

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

o

- Shard 3 Shard 4

1 ©

i '_I

o S

E 5

s 2

> >

- O

L -

n O

o

S 2

¢

£

Load all in-edges Only O(P?) random reads
In memory

per pass on entire graph

Triangle Counting on Twitter Graph

40M Users Total: 34.8 Billion Triangles
1.2B Edges

Hadoop

59 Minutes, 1 Mac Mini!
GraphChi
64 Machines, 1024 Cores

1.5 Minutes
GraphlLab?2

©Carlos Guestrin 2013-2014

Hadoop results from [Suri & Vassilvitskii '11] 95

N
Graph Lab\
Release 2.2 available now
http:/graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now
http:/graphchi.org

What you need to know...
" A
m Data-parallel versus graph-parallel computation

m Bulk synchronous processing versus
asynchronous processing

m GraphLab system for graph-parallel computation
Data representation

Update functions
Scheduling

Consistency model

©Carlos Guestrin 2013-2014 97

