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ML in the Context of Parallel
Architectures

amaZon
web services™

Clusters Clouds Supercomputers

m But scalable ML in these systems is hard,
especially in terms of:
1. Programmability
2. Data distribution
3. Failures

©Carlos Guestrin 2013-2014 4



Programmability Challenge 1:

Designing Parallel programs
"

m SGD for LR:
For each data point x®:

w™ w4 { Xl + 6, D)y® — PV = 1), w)] |
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Programmability Challenge 2:

__Race Conditions
N
m \We are used to sequential programs:

Read data, think, write data, read data, think, write data, read data, think, write data, read
data, think, write data, read data, think, write data, read data, think, write data...

m But, in parallel, you can have non-deterministic effects:
One machine reading data will other is writing

m Called a race-condition:
Very annoying

One of the hardest problems to debug in practice:
m because of non-determinism, bugs are hard to reproduce

©Carlos Guestrin 2013-2014



Data Distribution Challenge

" J

m Accessing data:
Main memory reference: 100ns (107s)
Round trip time within data center: 500,000ns (5 * 104s)
Disk seek: 10,000,000ns (10-2s)

m Reading 1MB sequentially:
Local memory: 250,000ns (2.5 * 10-4s)
Network: 10,000,000ns (10-2s)
Disk: 30,000,000ns (3*10-2s)

m Conclusion: Reading data from local memory is much faster =» Must have
data locality:

Good data partitioning strategy fundamental!
“Bring computation to data” (rather than moving data around)
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Robustness to Failures Challenge
" I

m From Google’s Jeff Dean, about their clusters of 1800 servers, in

first year of operation:
1,000 individual machine failures
thousands of hard drive failures
one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
20 racks will fail, each time causing 40 to 80 machines to vanish from the network
5 racks will “go wonky,” with half their network packets missing in action

the cluster will have to be rewired once, affecting 5 percent of the machines at any given
moment over a 2-day span

50% chance cluster will overheat, taking down most of the servers in less than 5 minutes
and taking 1 to 2 days to recover

m How do we design distributed algorithms and systems robust
to failures?

It's not enough to say: run, if there is a failure, do it again... because
you may never finish

©Carlos Guestrin 2013-2014



Move Towards Higher-Level

Abstraction
"
m Distributed computing challenges are hard and annoying!
Programmability
Data distribution
Failures

m High-level abstractions try to simplify distributed programming by
hiding challenges:

Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...

Generally, you are still on your own WRT designing parallel algorithms

m Some common parallel abstractions:

Lower-level:

m Pthreads: abstraction for distributed threads on single machine

»  MPI: abstraction for distributed communication in a cluster of computers
Higher-level:

m  Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
m GraphLab: for graph-structured distributed problems

©Carlos Guestrin 2013-2014



Simplest Type of Parallelism:

] Data Barallel Problems

® You have already learned a classifier
What's the test error?

m You have 10B labeled documents and 1000 machines

m Problems that can be broken into independent subproblems are
called data-parallel (or embarrassingly parallel)

m Map-Reduce is a great tool for this...
Focus of today’s lecture
but first a simple example

©Carlos Guestrin 2013-2014
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Data Parallelism (MapReduce

Solve a huge number of independent subproblems,
e.qg., extract features in images




Counting Words on a Single Processor
"

(This is the “Hello World!” of Map-Reduce)
Suppose you have 10B documents and 1 machine

You want to count the number of appearances of each word on this
corpus

Similar ideas useful, e.g., for building Naive Bayes classifiers and
computing TF-IDF

Code:

©Carlos Guestrin 2013-2014 12



Naive Parallel Word Counting
" I

m Simple data parallelism approach:

m Merging hash tables: annoying, potentially not parallel =
no gain from parallelism?7??

©Carlos Guestrin 2013-2014 13



Counting Words in Parallel &

] Merﬁinﬂ Hash Tables in Parallel

m  Generate pairs (word,count)

m  Merge counts for each word in parallel
Thus parallel merging hash tables
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Map-Reduce Abstraction

"
m  Map:

Data-parallel over elements, e.g., documents
Generate (key,value) pairs
m  “value” can be any data type

m Reduce:

Aggregate values for each key

Must be commutative-associate operation
Data-parallel over keys

Generate (key,value) pairs

m Map-Reduce has long history in functional programming

But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Carlos Guestrin 2013-2014 15



Map Code (Hadoop): Word Count
"

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context) throws <stuff>

{
String line = value.toString(Q);

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

©Carlos Guestrin 2013-2014 16



Reduce Code (Hadoop): Word Count
"

public static class Reduce extends Reducer<Text, IntWritable,
Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values,
Context context)

throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get(Q);

¥
context.write(key, new IntWritable(sum));

©Carlos Guestrin 2013-2014 17



Map-Reduce Parallel Execution
" S



Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase

(Kq,V4) (Kq,V4)
M1 > (kyvsy) M1 = (k,0v)

/

.. Assign tuple (k;,v;) to

(K, vy)

’ 3)
M2 (ky,vy) S M2 > (k,,V,)

\

AN
Split data

across machines

machine h[k]

v

— ot
M1000 (k2””V2”’) M1000 >(

C Big Data C)
N
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Map-Reduce — Robustness to Failures 1:
Protecting Data: Save To Disk Constantly

Map Phase Shuffle Phase Reduce Phase
(Ky,v4) (kq,V4)
M1 = (k,V,) —> (k;,Vy)
U (kqyvy) (k3,v3)
M2 [ (kz.V2) e —> (k,,v,)
s 3e
85 . <=
fo < ZE a2
@® = 2
a |'?s.. 58
2 ° A 7
I <
(kwve) S (Ks,Vs)
—> (kym,Vy) —> (Ks,V6)
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Distributed File Systems
" A

m  Saving to disk locally is not enough = If disk or machine fails, all data is lost
m Replicate data among multiple machines!

m Distributed File System (DFS)

Write a file anywhere =» automatically replicated

Can read a file anywhere = read from closest copy
n [f failure, try next closest copy

m  Common implementations:
Google File System (GFS)
Hadoop File System (HDFS)

m Important practical considerations:

Write large files
= Many small files & becomes way too slow

Typically, files can’t be “modified”, just “replaced” = makes robustness much simpler

©Carlos Guestrin 2013-2014 21



Map-Reduce — Robustness to Failures 2:
Recovering From Failures: Read from DFS

[\ Map Phase Shuffle Phase Reduce Phase
(ky,v4) (ky,v4)
71 M1 =2 (k;v,) M1 =2 (k;v,)
U (Ky,vy) (k3,v3)
M2 > (kp,v2) o (Kq,V4)
2 /’l T=
85 . X
o < ZE : 22
Ry °otA @ E
m <
(kpmvyn) f° ‘ (ks,Vs)
U > (KyVy) —> (ko)
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m Communication

in initial
distribution &
shuffle phase
“automatic”

Done by DFS

If failure, don’t
restart everything

Otherwise,
never finish

Only restart Map/
Reduce jobs in
dead machines
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Improving Performance: Combiners
"

m Naive implementation of M-R very wasteful in communication during shuffle:

m Combiner: Simple solution, perform reduce locally before communicating
for global reduce

Works because reduce is commutative-associative

©Carlos Guestrin 2013-2014 23



(A few of the) Limitations of Map-Reduce
" S

Map Phase Shuffle Phase Reduce Phase
m Too much synchrony [\
E.g., reducers don’t start until all M1 > §E;X;§ —> EEQXS
mappers are done U
111 ” (k sV ) Ks,
m “Too much” robustness ,,I M2 oovs) e w2 > i)
Writing to disk all the time oL ZE
@ < E : : 32
" © &8 - g
m  Not all problems fit in > 3leag 58
Map-Reduce o : g
E.g., you can’t communicate
between mappers
o ] 9(k5=V5)
m Oblivious to structure in data (ks Vo)

E.g., if data is a graph, can be
much more efficient
s  For example, no need to shuffle nearly as much

m Nonetheless, extremely useful;
industry standard for Big Data

Though many many companies are moving

away from Map-Reduce (Hadoop)
©Carlos Guestrin 2013-2014 24



What you need to know about Map-Reduce
" S

m Distributed computing challenges are hard and annoying!
Programmability

Data distribution
Failures

m High-level abstractions help a lot!
m Data-parallel problems & Map-Reduce
m  Map:

Data-parallel transformation of data
m Parallel over data points

m Reduce:

Data-parallel aggregation of data
m Parallel over keys

m  Combiner helps reduce communication
m Distributed execution of Map-Reduce:
Map, shuffle, reduce

Robustness to failure by writing to disk
Distributed File Systems

©Carlos Guestrin 2013-2014 25



Parallel K-Means on

Map-Reduce

Machine Learning — CSEP546
Carlos Guestrin

University of Washington
February 24, 2014
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" A
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K-means

1.

Ask user how many
clusters they'd like.
(e.g. k=5)

Auton’s Graphics [
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— Auton’s Graphics i J_

K-means
" A

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guessk | ®® 7
cluster Center

locations
0,4 T
0.2 ——
" 1 l l l l
T T T T T T
A 0 0,2 0.4 0,6 0.8 1
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— Auton’s Graphics I 4”

K-means |
I

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guessk | ®F
cluster Center
locations

0.8

3. Each datapoint finds | o.4
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints) | °2

%07
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= Auton’s Graphics [ 4”

K-means |
I

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guessk | ®F
cluster Center
locations

0.8

3. Each datapoint finds | o.4
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns

0,2

%07
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K-means
I

1.

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!

Auton’s Graphics
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K-means
" J
m Randomly initialize k centers
u©® =y Oy ©

m Classify: Assign each point jJ&{1,...m} to nearest
center:

2! < argmin [|u; — x7||3
(

m Recenter: u. becomes centroid of its point:

p "V = argmin [l — |3
jizd =1

Equivalent to u, < average of its points!

©Carlos Guestrin 2013-2014 33



Map-Reducing One lIteration of

K-Means
"
m Classify: Assign each point JE{1,...m} to nearest center:
2 argmin ||u; — 7|5

m Recenter: u, becomes centroid of its point:

t+1 . :
p ™ e argmin Y [l — |3

jizd=1

Equivalent to u; «<— average of its points!

m Map:

m Reduce:

©Carlos Guestrin 2013-2014
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Classification Step as Map
" A

m Classify: Assign each point JE{1,...m} to nearest center:
2 ¢ argmin [|u; — x5

m Map:

©Carlos Guestrin 2013-2014
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Recenter Step as Reduce
" A

m Recenter: u. becomes centroid of its point:
pi T e argmin Y lp— |3

jizd=1

Equivalent to u; < average of its points!

m Reduce:

©Carlos Guestrin 2013-2014
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Some Practical Considerations
" A
m K-Means needs an iterative version of Map-
Reduce

Not standard formulation

m Mapper needs to get data point and all centers
A lot of datal!
Better implementation: mapper gets many data points

©Carlos Guestrin 2013-2014 37



What you need to know about

__Paralle| K-Means on Map-Reduce

m K-Means = EM for mixtures of spherical
Gaussians with hard assignments

m Map: classification step; data parallel over data
point

m Reduce: recompute means; data parallel over
centers



Graph-Parallel Problems

Synchronous V.
Asynchronous Computation

Machine Learning — CSEP546
Carlos Guestrin

University of Washington
February 24, 2014
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Issues with Map-Reduce Abstraction
" A
m Often all data gets moved around cluster
Very bad for iterative settings

m Definition of Map & Reduce functions can be
unintuitive in many apps
Graphs are challenging

m Computation is synchronous



SGD for Matrix Factorization in

] MaE-Reduce?

ng_i) % (1 — nt)\u)L’SLw — T]thRq(;t)
Rq() +1) (1 — nt)\U)Rfl(Jt) — UthLz(Lt)

€ = L,ff) : Rgf) — Tuw
m Map and Reduce functions???

m Map-Reduce:
Data-parallel over all mappers
Data-parallel over reducers with same key

m Here, one update at a time!

©Carlos Guestrin 2013-2014 41



Matrix Factorization as a Graph

The Celebration

e City of God

e \\i1d Strawberries

"8 | a Dolce Vita

©Carlos Guestrin 2013-2014
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Flashback to 1998

m@ role!
altavista. Google!

SSSSSSSSSSSSSS

First Google advantage:

a Graph Algorithm & a System to Support it!



Social Media Science Advertising

a

NETELIX

¢ Graphs encode the relationships between:

People Products ldeas
Facts Interests

o Big: 100 billions of vertices and edges and rich metadata

e Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges

©Carlos Guestrin 2013-2014
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Facebook Graph

Data model
Objects & Associations

18429207554
(page)
fan f
8636146 dmin birthday: 08/04/1961
(user) . website: http://...
verified: 1
friend
likes
liked by friend
604191769
(user)

6205972929
(story)

Slide from Facebook Engineering presentationg g
©Carlos Guestrin 2013-2014



Label a Face and Propagate

grandma ¢

-* Y

N

*}. L ~4
i L
- e ©
- R 4 aJs
.“‘ =2
b &
.
A -
S
o~
<
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Pairwise similarity not enough...

v y '
1‘ / (- (
~ Not similar enough

=" grandma to be sure | B
A Who? 7788

- -'V““.~ .’!.

47
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Propagate Similarities & Co-occurrences
for Accurate Predictions

COo-occurring
faces
M further evidence

48



Example: Estimate Political Bias




Topic Modeling (e.g., LDA)

Click to LOOK INSIDE!

click to LOOK INSIDE!

JOHNNY
APPLESELED

©Carlos Guestrin 2013-2014
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ML Tasks Beyond Data-Parallelism

Data-Parallel Graph-Parallel

Map Reduce

Feature Cross Graphical Models Semi-Supervised
Extraction  Validation Gibbs Sampling Learning
Belief Propagation  |abel Propagation
Computing Sufficient Variational Opt. CoEM

Statistics Collaborative  Graph Analysis

Filtering PageRank
Tensor Factorization Triangle Counting

51
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Example of a
Graph-Parallel
Algorithm



Depends on rank
PagERank of who follows them...
Depends on rank |
of who follows her /

What's the rank
of this user?

Loops in graph--) Must iterate! .



PageRank Iteration

e a is the random reset probability

» w;is the prob. transitioning (S|m|Iar|ty) fromjtoi
arlos Guestrin 2013-2014
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Properties of Graph Parallel Algorithms

Dependency Local Iterative
Graph Updates Computation

”— My Rank
!l III

Friends Rank

55
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Addressing Graph-Parallel ML

< Data-Parallel Graph-Parallel

\EToN e [V[o<I Graph-Parallel’Abstraction

Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
. - Belief Propagation | abel Propagation
Computing Sufficient Variational Opt. CoEng
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization Triangle Counting

56
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Graph Computation:

Synchronous
V.
Asynchronous



Bulk Synchronous Parallel Model:
Pregel (Giraph) Valiant ‘90

Compute Communicate




Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase

(Kq,V4) (Kq,V4)
M1 > (kyov) M1 = (k,0v)

/

.. Assign tuple (k;,v;) to

(K, vy)

’ 3)
M2 _>(k2”V2’) \ M2 _>(k4,V4)

\

AN
Split data

across machines

machine h[k]

v

— ot
M1000 (k2””V2”’) M1000 >(

C Big Data C)
N
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BSP — Execution Overview

Compute Phase n Communicate Phase

[\ (vidy,vid’; vy)
M1 f(vid,,vid', v,) < M1

U (vidy,vid'y: vy.)
/7- M2 |(vid,,vid’, v,) < M2

Graph
AN
Split graph
across machines
‘ Message machine
. for every edge (vid,vid’,val)

.
..O
e
. .
LN
24, .
. .
. .
.
.
.
A4 -
.

M1000

o ;
= 5
(Vidyo,Vid' o V) St
M1000 |(vidp»,vid’y» V) ©
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Bulk synchronous
parallel model
provably inefficient
for some ML tasks



Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]

focus here

<®]@®®@@\

Priority Queue
Smart Scheduling

important
influence

©Carlos Guestrin 2013-2014
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Asynchronous Belief Propagation
Challenge/= Boundaries

Many
Updates

Few
Updates

- - Cumulative Vertex Updates
O

O Algorithm identifies and focuses

£
N
£
4

on hidden sequential structure

Graphical Model

63
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BSP ML Problem:
Synchronous Algorithms can be Inefficient

10000
" Bulk Synchronous (e.g., Pregel)

2 8000 /

o Theorem:

v 6000

< Asynchronous Splash BP Bulk Synchronous BP
:g’ 4000 O(#vertices) slower
c

5 2000 e . than Asynchronous BP

1 2 3 4 5 6 7 8
Number of CPUs

64
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Synchronous v. Asynchronous

m Bulk synchronous processing: m  Asynchronous processing:

Computation in phases

m All vertices participate in a phase
Though OK to say no-op

m All messages are sent
Simpler to build, like Map-Reduce

m No worries about race conditions,
barrier guarantees data consistency

m Simpler to make fault-tolerant, save
data on barrier

Slower convergence for many ML
problems

In matrix-land, called Jacobi Iteration
Implemented by Google Pregel 2010

©Carlos Guestrin 2013-2014

Vertices see latest information from
neighbors

m Most closely related to sequential
execution

Harder to build:
m Race conditions can happen all the time
Must protect against this issue
m  More complex fault tolerance
» When are you done?
m  Must implement scheduler over vertices

Faster convergence for many ML
problems

In matrix-land, called Gauss-Seidel
lteration

Implemented by GraphLab 2010, 2012

65



GraphLab

Machine Learning — CSEP546
Carlos Guestrin

University of Washington
February 24, 2014
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The GraphLab Goals

Know how to .
solve ML problem ()
on 1 machine Gra%hk%?w# CE ciant

parallel
EEEE predictions

+

“i' amazon |
“ webservices™ l

©Carlos Guestrin 2013-2014 67



Data Graph

Data associated with vertices and edges

i

Graph: Q_O

e Social Network

Vertex Data: '
 User profile text
e Current interests estimates

Edge Data: ﬁ
* Similarity weights

©Carlos Guestrin 2013-2014
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How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]



Update Functions

User-defined program: applied to

vertex transforms data in

pagerank(i, scope){

n

}

©Carlos Guestrin 2013-2014

of vertex
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Update Function Example:
Connected Components

©Carlos Guestrin 2013-2014
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Update Function Example:
Connected Components

©Carlos Guestrin 2013-2014
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The Scheduler

The scheduler determines order vertices are updated

| -
QL
=
O
Q
c
Q
)

©Carlos Guestrin 2013-2014
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Example Schedulers

¢ Round-robin

» Selective scheduling (skipping):
¢ round robin but jump over un-scheduled vertice

s FIFO
¢ Prioritize scheduling

¢ Hard to implement in a distributed fashion
o Approximations used (each machine has its own priority queue)

©Carlos Guestrin 2013-2014

74



Ensuring Race-Free Code

How much can computation overlap?

v

©Carlos Guestrin 2013-2014
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Need for Consistency?

e Higher

igher
Throughput

(#updates/sec)

No Consistency

Potentially Slower
Convergence of ML

©Carlos Guestrin 2013-2014
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GraphlLab Ensures Sequential Consistency

For each parallel execution, there exists a sequential
execution of update functions which produces the same result

o—@ O

CPU 1
Parallel

CPU 2
Sequential Single

CPU

©Carlos Guestrin 2013-2014 77



Consistency in Collaborative Filtering

128

64 - “
== |nconsistent updates
32 -

<@ Consistent updates
16 -

Train RMSE
(0]

4 -
]
1 -\I—HJ—I—I—I—I—I—I—I
05 I I I ]
0 2 4 6 8
Updates Millions

Netflix data, 8 cores ©Carlos Guestrin 2013-2014 78



The GraphLab Framework

Graph Based Update Functions
Data Representation User Computation

O———C

Scheduler Consistency Model

oooo>

©Carlos Guestrin 2013-2014 79



Triangle Counting in Twitter Graph

v Total:

40M Users 34.8 Bi"iOn Triangles
1.2B Edges

Hadoop

8 64 Machines, 1024 Cores

GraphLab 1.5 Minutes

_ .. .. .©Carlos Guestrin 2013-2014 80
Hadoop results from [Suri & Vassilvitskii '11]



CoEM (Jones et al., 2005)

Named Entity Recognition Task

Is “Dog” an animal?
Is “Catalina” a place?

dog( > < ><X> ran quickly

Australia travelled to <X>

Catalina <X> is pleasant
Island

©Carlos Guestrin 2013-2014
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Never Ending Learner Project (CoEM)

Vertices: 2 Million
Edges: 200 Million

Hadoop 95 Cores 7.5 hrs

Distributed 32 EC2 80 secs
GraphlLab machines

©Carlos Guestrin 2013-2014 82



%men

Yok

smﬂdm

ClTYor G

©Carlos Guestrin 2013- 2014

(0]))

Women on the Verge of a

g Nervous Breakdown
p’”

The Celebration

City of God

Wild Strawberries

La Dolce Vita
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Interpreting Low-Rank Matrix Completion (aka
Matrix Factorization)

J Mmovi€sS k M

R ,.},wx = “ 6}R’

Ly

Cue © Lu* R, w @\ Ry

u U‘L w MMC‘\
b Vie how '™ ho :
opic . wey U movie V
pic \i e eg s abont
o " . ) -
rémance kopiC A Xopic 4

©Carlos Guestrin
2013-2014 84



Matrix Completion as a Graph
" JE

Xi; known for black cells
X;; unknown for white cells
X = .

Rows index users
Columns index movies

©Carlos Guestrin 2013-2014
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Coordinate Descent for Matrix

~Factorization: Alternating Least-Squares
"
pin 2, (Lt Ry —run)

Y

(U,0):7ypF£?
m Fix movie factors, optimize for user factors
j (Lu - Ry = Tun)”
Independent least-squares over users HLlln U v — Tyv
“ veVy,

m Fix user factors, optimize for movie factors

Independent least-squares over movies min E (Lu y RU — Tuv)z
R,
uel,

m System may be underdetermined:

m Convergesto

©Carlos Guestrin 2013-2014 86



Alternating Least Squares Update Function

©Carlos Guestrin 2013-2014 87



SGD for Matrix Factorization in

] MaE-Reduce?

£ } . [ (1= gA)LY — e

er =LY RY —ry,
ngtﬂ) (1 — nt)\’l))R’l(Jt) — UthL&t)

©Carlos Guestrin 2013-2014 88



GraphChi: Going small with GraphlLab

Graph Lab w" 4 3
Solve huge problems on ;
small or embedded Q é}é%
devices? ~

Key: Exploit non-volatile memory

(starting with SSDs and HDs)
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GraphChi — disk-based Graphlab

Challenge:

Random Accesses \ / / =

Novel GraphChi solution:
Parallel sliding windows method =
minimizes number of random accesses
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Naive Graph Disk Layouts

¢ Symmetrized adjacency file with values,

vertex | in-neighbors | out-neighbors
5 3:2.3,19: 1.3, 49: 0.65,... 781:2.3,881:4.2..

Random
\ synchronize write

19 3:1.4,9:12.1, ... \5: 1.3,28:2.2, ...

¢ ... or with file index pointers

vertex | in-neighbor-ptr

5 3: 881, 19: 10092, 49: 20763,... 781: 2.3,881:4.2..
— — Random
read/write

5:1.3,28:2.2, ...
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Parallel Sliding Windows Layout

Shard: in-edges for subset of vertices; sorted by source_id

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

o

S Shard 1 Shard 2 Shard 3 Shard 4

- 2

o S

E 5

o 3

> >

- O

L -

n

L

= 2

¢

=

Shards small enougf ta fit.in memaory; balance size of shards 9



Parallel Sliding Windows Execution
Load subgraph for vertices 1..100

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

Shard 4

in-edges for vertices 1..100
sorted by source_id

Load all in-edges RUWALELS:]ele]0)Re]IU)ET=To fo{1Yy
in memory Arranged in sequence in other shards!

And seauential writes!



Parallel Sliding Windows Execution
Load subgraph for vertices 101..700

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

o

- Shard 3 Shard 4

1 ©

i '_I

o S

E 5

s 2

> >

- O

L -

n O

o

S 2

¢

£

Load all in-edges Only O(P?) random reads
In memory

per pass on entire graph



Triangle Counting on Twitter Graph

40M Users  Total: 34.8 Billion Triangles
1.2B Edges

Hadoop

59 Minutes, 1 Mac Mini!
GraphChi
64 Machines, 1024 Cores

1.5 Minutes
GraphlLab?2
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N
Graph Lab\
Release 2.2 available now
http:/graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now
http:/graphchi.org



What you need to know...
" A
m Data-parallel versus graph-parallel computation

m Bulk synchronous processing versus
asynchronous processing

m GraphLab system for graph-parallel computation
Data representation

Update functions
Scheduling

Consistency model
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