Parallel Programming Map-Reduce

Machine Learning – CSEP546
Carlos Guestrin
University of Washington
February 24, 2014

Needless to Say, We Need Machine Learning for Big Data

6 Billion Flickr Photos

28 Million Wikipedia Pages

BUSINESS

TEC

1 Billion Facebook Users

72 Hours a Minute
YouTube

NEWS ANALYSIS

The Age of Big Data

U.S. N.Y. / REGION

By STEVE LOHR

Published: February 11, 2012

"... data a new class of economic asset, like currency or gold."

CPUs Stopped Getting Faster...

ML in the Context of Parallel Architectures

GPUs

Multicore

Clusters

Clouds

Supercomputers

- But scalable ML in these systems is hard, especially in terms of:
 - 1. Programmability
 - 2. Data distribution
 - 3. Failures

Programmability Challenge 1: Designing Parallel programs

 \Box For each data point $\mathbf{x}^{(t)}$:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(\mathbf{x}^{(t)}) [y^{(t)} - P(Y = 1 | \phi(\mathbf{x}^{(t)}), \mathbf{w}^{(t)})] \right\}$$

Programmability Challenge 2: Race Conditions

- We are used to sequential programs:
 - Read data, think, write data, think, write data, think, write data, think, write data...
- But, in parallel, you can have non-deterministic effects:
 - One machine reading data will other is writing

- Called a race-condition:
 - Very annoying
 - □ One of the hardest problems to debug in practice:
 - because of non-determinism, bugs are hard to reproduce

Data Distribution Challenge

- Accessing data:
 - □ Main memory reference: 100ns (10⁻⁷s)
 - □ Round trip time within data center: 500,000ns (5 * 10⁻⁴s)
 - □ Disk seek: 10,000,000ns (10⁻²s)
- Reading 1MB sequentially:
 - \square Local memory: 250,000ns (2.5 * 10⁻⁴s)
 - □ Network: 10,000,000ns (10⁻²s)
 - □ Disk: 30,000,000ns (3*10⁻²s)
- Conclusion: Reading data from local memory is much faster → Must have data locality:
 - Good data partitioning strategy fundamental!
 - ☐ "Bring computation to data" (rather than moving data around)

Robustness to Failures Challenge

- From Google's Jeff Dean, about their clusters of 1800 servers, in first year of operation:
 - 1,000 individual machine failures
 - thousands of hard drive failures
 - one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
 - 20 racks will fail, each time causing 40 to 80 machines to vanish from the network
 - □ 5 racks will "go wonky," with half their network packets missing in action
 - □ the cluster will have to be rewired once, affecting 5 percent of the machines at any given moment over a 2-day span
 - □ 50% chance cluster will overheat, taking down most of the servers in less than 5 minutes and taking 1 to 2 days to recover
- How do we design distributed algorithms and systems robust to failures?
 - It's not enough to say: run, if there is a failure, do it again... because you may never finish

Move Towards Higher-Level Abstraction

- 1. Programmability
- Data distribution
- Failures
- High-level abstractions try to simplify distributed programming by hiding challenges:
 - Provide different levels of robustness to failures, optimizing data movement and communication, protect against race conditions...
 - ☐ Generally, you are still on your own WRT designing parallel algorithms
- Some common parallel abstractions:
 - Lower-level:
 - Pthreads: abstraction for distributed threads on single machine
 - MPI: abstraction for distributed communication in a cluster of computers
 - Higher-level:
 - Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
 - GraphLab: for graph-structured distributed problems

Simplest Type of Parallelism: Data Parallel Problems

- You have already learned a classifier
 - ☐ What's the test error?
- You have 10B labeled documents and 1000 machines

- Problems that can be broken into independent subproblems are called data-parallel (or embarrassingly parallel)
- Map-Reduce is a great tool for this...
 - □ Focus of today's lecture
 - but first a simple example

Data Parallelism (MapReduce)

Solve a huge number of **independent** subproblems, e.g., extract features in images

Counting Words on a Single Processor

- (This is the "Hello World!" of Map-Reduce)
- Suppose you have 10B documents and 1 machine
- You want to count the number of appearances of each word on this corpus
 - Similar ideas useful, e.g., for building Naïve Bayes classifiers and computing TF-IDF
- Code:

Naïve Parallel Word Counting

Simple data parallelism approach:

■ Merging hash tables: annoying, potentially not parallel → no gain from parallelism???

Counting Words in Parallel & Merging Hash Tables in Parallel

- Generate pairs (word,count)
- Merge counts for each word in parallel
 - ☐ Thus parallel merging hash tables

Map-Reduce Abstraction

Map:

- □ Data-parallel over elements, e.g., documents
- □ Generate (key,value) pairs
 - "value" can be any data type

Reduce:

- Aggregate values for each key
- Must be commutative-associate operation
- Data-parallel over keys
- ☐ Generate (key,value) pairs

- Map-Reduce has long history in functional programming
 - □ But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

Map Code (Hadoop): Word Count


```
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context) throws <stuff>
        {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens()) {
                 word.set(tokenizer.nextToken());
                  context.write(word, one);
            }
        }
    }
}
```

Reduce Code (Hadoop): Word Count

Map-Reduce Parallel Execution

Map-Reduce – Execution Overview

Map-Reduce – Robustness to Failures 1: Protecting Data: **Save To Disk Constantly**

Distributed File Systems

- 100
 - Saving to disk locally is not enough → If disk or machine fails, all data is lost
 - Replicate data among multiple machines!
 - Distributed File System (DFS)
 - Write a file anywhere
 automatically replicated
 - □ Can read a file anywhere → read from closest copy
 - If failure, try next closest copy

- Common implementations:
 - □ Google File System (GFS)
 - Hadoop File System (HDFS)
- Important practical considerations:
 - Write large files
 - Many small files → becomes way too slow
 - □ Typically, files can't be "modified", just "replaced" → makes robustness much simpler

Map-Reduce – Robustness to Failures 2: Recovering From Failures: **Read from DFS**

- Communication in initial distribution & shuffle phase "automatic"
 - Done by DFS
- If failure, don't restart everything
 - Otherwise, never finish
- Only restart Map/ Reduce jobs in dead machines

Improving Performance: Combiners

- Combiner: Simple solution, perform reduce locally before communicating for global reduce
 - Works because reduce is commutative-associative

(A few of the) Limitations of Map-Reduce

- Too much synchrony
 - E.g., reducers don't start until all mappers are done
- "Too much" robustness
 - Writing to disk all the time
- Not all problems fit in Map-Reduce
 - E.g., you can't communicate between mappers
- Oblivious to structure in data
 - E.g., if data is a graph, can be much more efficient
 - For example, no need to shuffle nearly as much
- Nonetheless, extremely useful; industry standard for Big Data
 - ☐ Though many many companies are moving away from Map-Reduce (Hadoop)

What you need to know about Map-Reduce

- Distributed computing challenges are hard and annoying!
 - Programmability
 - Data distribution
 - Failures
- High-level abstractions help a lot!
- Data-parallel problems & Map-Reduce
- Map:
 - Data-parallel transformation of data
 - Parallel over data points
- Reduce:
 - Data-parallel aggregation of data
 - Parallel over keys
- Combiner helps reduce communication
- Distributed execution of Map-Reduce:
 - ☐ Map, shuffle, reduce
 - Robustness to failure by writing to disk
 - Distributed File Systems

Parallel K-Means on Map-Reduce

Machine Learning – CSEP546
Carlos Guestrin
University of Washington
February 24, 2014

Some Data

1. Ask user how many clusters they'd like. (e.g. k=5)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- Each Center finds the centroid of the points it owns

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

Randomly initialize k centers

$$\square \ \mu^{(0)} = \mu_1^{(0)}, \dots, \ \mu_k^{(0)}$$

Classify: Assign each point j∈{1,...m} to nearest center:

$$\square z^j \leftarrow \arg\min_i ||\mu_i - \mathbf{x}^j||_2^2$$

- **Recenter**: μ_i becomes centroid of its point:

 - □ Equivalent to μ_i ← average of its points!

Map-Reducing One Iteration of K-Means

Classify: Assign each point j∈{1,...m} to nearest center:

$$\square z^j \leftarrow \arg\min_i ||\mu_i - \mathbf{x}^j||_2^2$$

Recenter: μ_i becomes centroid of its point:

$$\square \ \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:z^j=i} ||\mu - \mathbf{x}^j||_2^2$$

- □ Equivalent to μ_i ← average of its points!
- Map:

Reduce:

Classification Step as Map

■ Classify: Assign each point j∈{1,...m} to nearest center:

$$\square z^j \leftarrow \arg\min_i ||\mu_i - \mathbf{x}^j||_2^2$$

Map:

Recenter Step as Reduce

Recenter: μ_i becomes centroid of its point:

$$\square \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:z^j=i} ||\mu - \mathbf{x}^j||_2^2$$

- □ Equivalent to μ_i ← average of its points!
- Reduce:

Some Practical Considerations

- K-Means needs an iterative version of Map-Reduce
 - Not standard formulation
- Mapper needs to get data point and all centers
 - □ A lot of data!
 - Better implementation: mapper gets many data points

What you need to know about Parallel K-Means on Map-Reduce

- K-Means = EM for mixtures of spherical Gaussians with hard assignments
- Map: classification step; data parallel over data point
- Reduce: recompute means; data parallel over centers

Graph-Parallel Problems

Synchronous v. Asynchronous Computation

Machine Learning – CSEP546
Carlos Guestrin
University of Washington
February 24, 2014

Issues with Map-Reduce Abstraction

- Often all data gets moved around cluster
 - □ Very bad for iterative settings

- Definition of Map & Reduce functions can be unintuitive in many apps
 - Graphs are challenging
- Computation is synchronous

SGD for Matrix Factorization in Map-Reduce?

- Map and Reduce functions???
- Map-Reduce:
 - □ Data-parallel over all mappers
 - □ Data-parallel over reducers with same key

Here, one update at a time!

Matrix Factorization as a Graph

Flashback to 1998

First Google advantage: a Graph Algorithm & a System to Support it!

Graphs encode the relationships between:

People Products Ideas Facts Interests

- Big: 100 billions of vertices and edges and rich metadata
 - Facebook (10/2012): 1B users, 144B friendships
 - Twitter (2011): 15B follower edges

Facebook Graph

Label a Face and Propagate

Pairwise similarity not enough...

Propagate Similarities & Co-occurrences for Accurate Predictions

similarity edges

co-occurring faces further evidence

Example: Estimate Political Bias

Topic Modeling (e.g., LDA)

ML Tasks Beyond Data-Parallelism

Data-Parallel

Graph-Parallel

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

Gibbs Sampling **Belief Propagation** Variational Opt.

Collaborative **Filtering**

Tensor Factorization

Graphical Models Semi-Supervised Learning

> **Label Propagation** CoEM

Graph Analysis

PageRank **Triangle Counting**

Example of a Graph-Parallel Algorithm

PageRank Iteration

$$R[i] = \alpha + (1 - \alpha) \sum_{(j,i) \in E} w_{ji} R[j]$$

- ullet lpha is the random reset probability
- w_{ji} is the prob. transitioning (similarity) from j to i ©Carlos Guestrin 2013-2014

Properties of Graph Parallel Algorithms

Dependency Graph

Local Updates

Iterative Computation

Addressing Graph-Parallel ML

Data-Parallel

Graph-Parallel

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

Graph-Parallel Abstraction

Graphical Models Semi-Supervised
Gibbs Sampling Learning

Gibbs Sampling
Belief Propagation
Variational Opt.

Collaborative Filtering

Tensor Factorization

Label Propagation CoEM

Data-Mining

PageRank
Triangle Counting

Graph Computation:

Synchronous

V.

Asynchronous

Bulk Synchronous Parallel Model: Pregel (Giraph) [Valiant '90]

Map-Reduce – Execution Overview

BSP – Execution Overview

Bulk synchronous parallel model

provably inefficient

for some ML tasks

Analyzing Belief Propagation

[Gonzalez, Low, G. '09]

Asynchronous Belief Propagation

Challenge = Boundaries

Synthetic Noisy Image

Cumulative Vertex Updates

Algorithm identifies and focuses on hidden sequential structure

BSP ML Problem: Synchronous Algorithms can be **Inefficient**

Synchronous v. Asynchronous

- Bulk synchronous processing:
 - Computation in phases
 - All vertices participate in a phase
 - □ Though OK to say no-op
 - All messages are sent
 - □ Simpler to build, like Map-Reduce
 - No worries about race conditions, barrier guarantees data consistency
 - Simpler to make fault-tolerant, save data on barrier
 - Slower convergence for many ML problems
 - □ In matrix-land, called Jacobi Iteration
 - □ Implemented by Google Pregel 2010

- Asynchronous processing:
 - Vertices see latest information from neighbors
 - Most closely related to sequential execution
 - Harder to build:
 - Race conditions can happen all the time
 - Must protect against this issue
 - More complex fault tolerance
 - When are you done?
 - Must implement scheduler over vertices
 - Faster convergence for many ML problems
 - In matrix-land, called Gauss-Seidel Iteration
 - □ Implemented by GraphLab 2010, 2012

GraphLab

Machine Learning – CSEP546
Carlos Guestrin
University of Washington
February 24, 2014

The **GraphLab** Goals

Data Graph

Data associated with vertices and edges

Graph:

Social Network

Vertex Data:

- User profile text
- Current interests estimates

Edge Data:

Similarity weights

How do we *program* graph computation?

"Think like a Vertex."

-Malewicz et al. [SIGMOD'10]

Update Functions

User-defined program: applied to **vertex** transforms data in **scope** of vertex

Update Function Example: Connected Components

Update Function Example: Connected Components

The Scheduler

The scheduler determines order vertices are updated

Example Schedulers

- Round-robin
- Selective scheduling (skipping):
 - round robin but jump over un-scheduled vertice
- FIFO
- Prioritize scheduling
 - Hard to implement in a distributed fashion
 - Approximations used (each machine has its own priority queue)

Ensuring Race-Free Code

How much can computation overlap?

Need for Consistency?

GraphLab Ensures Sequential Consistency

For **each parallel execution**, there exists a **sequential execution** of update functions which produces the same result

Consistency in Collaborative Filtering

The GraphLab Framework

Graph Based

Data Representation

Scheduler

Update Functions
User Computation

Consistency Model

Triangle Counting in Twitter Graph

Total: 34.8 Billion Triangles

CoEM (Jones et al., 2005)

Named Entity Recognition Task

Is "Dog" an animal?
Is "Catalina" a place?

Never Ending Learner Project (CoEM)

Vertices: 2 Million

Edges: 200 Million

Hadoop	95 Cores	7.5 hrs
Distributed GraphLab	32 EC2 machines	80 secs

Interpreting Low-Rank Matrix Completion (aka Matrix Factorization)

Matrix Completion as a Graph

X_{ij} known for black cells
X_{ij} unknown for white cells
Rows index users
Columns index movies

Coordinate Descent for Matrix Factorization: Alternating Least-Squares

$$\min_{L,R} \sum_{(u,v):r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2$$

- Fix movie factors, optimize for user factors
 - Independent least-squares over users

$$\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v - r_{uv})^2$$

- Fix user factors, optimize for movie factors
 - □ Independent least-squares over movies

$$\min_{R_v} \sum_{u \in U} \left(L_u \cdot R_v - r_{uv} \right)^2$$

System may be underdetermined:

Converges to

Alternating Least Squares Update Function

$$\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v - r_{uv})^2 \qquad \min_{R_v} \sum_{u \in U_v} (L_u \cdot R_v - r_{uv})^2$$

SGD for Matrix Factorization in Map-Reduce?

$$\epsilon_t = L_u^{(t)} \cdot R_v^{(t)} - r_{uv}$$

$$\begin{bmatrix} L_u^{(t+1)} \\ R_v^{(t+1)} \end{bmatrix} \leftarrow \begin{bmatrix} (1 - \eta_t \lambda_u) L_u^{(t)} - \eta_t \epsilon_t R_v^{(t)} \\ (1 - \eta_t \lambda_v) R_v^{(t)} - \eta_t \epsilon_t L_u^{(t)} \end{bmatrix}$$

GraphChi: Going small with GraphLab

Solve huge problems on small or embedded devices?

Key: Exploit non-volatile memory (starting with SSDs and HDs)

GraphChi – disk-based GraphLab

Challenge:

Random Accesses

Novel GraphChi solution:

Parallel sliding windows method

minimizes number of random accesses

Naive Graph Disk Layouts

Symmetrized adjacency file with values,

vertex	in-neighbors	out-neighbors	
5	3 :2.3, 19 : 1 .3, 49 : 0.65,	781 : 2.3, 881 : 4.2	Ran
	synchronize		
19	3 : 1.4, 9 : 12.1,	5 : 1.3, 28: 2.2,	

Random write

... or with file index pointers

vertex	in-neighbor-ptr	out-neighbors
5	3 : <u>881</u> , 19 : <u>10092</u> , 49 : <u>20763</u> ,	781 : 2.3, 881 : 4.2
	no med	1
19	3 : 882, 9 : 2872, ©Carlos Guestrin 2013-2014	5 : 1.3, 28: 2.2,

Random read/write

Parallel Sliding Windows Layout

Shard: in-edges for subset of vertices; sorted by source_id

Parallel Sliding Windows Execution

Load subgraph for vertices 1..100

Load all in-edges in memory

What about out-edges?

Arranged in sequence in other shards!

And sequential writes!

Parallel Sliding Windows Execution

Load subgraph for vertices 101..700

Triangle Counting on Twitter Graph

40M Users 1.2B Edges **Total: 34.8 Billion Triangles**

Release 2.2 available now http://graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now http://graphchi.org

What you need to know...

- Data-parallel versus graph-parallel computation
- Bulk synchronous processing versus asynchronous processing
- GraphLab system for graph-parallel computation
 - Data representation
 - □ Update functions
 - □ Scheduling
 - Consistency model