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Reading Your Brain, Simple Example 

Animal Person 

Pairwise classification accuracy: 85% 
[Mitchell et al.] 
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Classification 

n  Learn: h:X ! Y 
¨ X – features 
¨ Y – target classes 

n  Simplest case: Thresholding 
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Linear (Hyperplane) Decision 
Boundaries 



Classification 

n  Learn: h:X ! Y 
¨  X – features 
¨  Y – target classes 

n  Thus far: just a decision boundary 

n  What if you want probability of each class? P(Y|X) 
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Ad Placement Strategies 

n  Companies bid on ad prices 

n  Which ad wins? (many simplifications here) 
¨  Naively:  

¨  But: 

¨  Instead: 
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Link Functions 

n  Estimating P(Y|X): Why not use standard linear 
regression? 

 
 
n  Combing regression and probability? 

¨ Need a mapping from real values to [0,1] 
¨ A link function! 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨  Assume a particular functional form for link 

function 
¨  Sigmoid applied to a linear function of the input 

features: 

Z 

Features can be discrete or continuous! 
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Understanding the sigmoid 
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Logistic Regression –  
a Linear classifier 
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Very convenient! 

implies 
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Loss function: Conditional Likelihood 

n  Have a bunch of iid data of the form: 

 

n  Discriminative (logistic regression) loss function: 
 Conditional Data Likelihood 
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Expressing Conditional Log Likelihood 
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Maximizing Conditional Log Likelihood 

Good news: l(w) is concave function of w, no local optima 
problems 

Bad news: no closed-form solution to maximize l(w) 

Good news: concave functions easy to optimize 
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Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, η>0 

Update rule: 
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Coordinate Descent v. Gradient Descent 
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Illustration from Wikipedia 



Maximize Conditional Log Likelihood: 
Gradient ascent 
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Gradient Descent for LR: Intuition  

1.  Encode data as numbers 

2.  Until convergence: for each 
feature  

a.  Compute average gradient 
over data points 

b.  Update parameter 
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Gender Age Location Income Referrer  New or 
Returning 

Clicked? 

F 
 

Young US High Google New N 

M Middle US  Low Direct New N 

F Old BR Low Google Returning Y 

M Young BR Low Bing Returning N 

Gender 
(F=1, 
M=0) 

Age 
(Young=0, 
Middle=1, 
Old=2) 

Location  
(US=1, 
Abroad=0) 

Income 
(High=1, 
Low=0) 

Referrer  New or 
Returning 
(New=1,, 
Returning =0) 

Clicked? 
(Click=1, 
NoClick=0) 



Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	


    

 

  

 For i=1,…,k,  

 

 

repeat    
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Regularization in linear regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized least-squares (a.k.a. ridge regression), for λ>0: 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Linear Separability 
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Large parameters → Overfitting 

n  If data is linearly separable, weights go to infinity 

¨  In general, leads to overfitting: 
n  Penalizing high weights can prevent overfitting… 
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Regularized Conditional Log Likelihood 

n  Add regularization penalty, e.g., L2: 

n  Practical note about w0: 

n  Gradient of regularized likelihood: 
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Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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Please Stop!! Stopping criterion 

n  When do we stop doing gradient descent?  

n  Because l(w) is strongly concave: 
¨  i.e., because of some technical condition 

n  Thus, stop when: 
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Digression: Logistic regression for 
more than 2 classes 

n  Logistic regression in more general case (C classes), where 
Y in {0,…,C-1} 
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Digression: Logistic regression more 
generally 

n  Logistic regression in more general case, where  
Y in {0,…,C-1} 

 for c>0 
 
 
 

 for c=0 (normalization, so no weights for this class) 
 
 

 

Learning procedure is basically the same  
as what we derived! 

27 ©Carlos Guestrin 2005-2014 

P (Y = c|x,w) =

exp(wc0 +
Pk

i=1 wcixi)

1 +

PC�1
c0=1 exp(wc00 +

Pk
i=1 wc0ixi)

P (Y = 0|x,w) =

1

1 +

PC�1
c0=1 exp(wc00 +

Pk
i=1 wc0ixi)



28 

Stochastic Gradient 
Descent 

Machine Learning – CSEP546 
Carlos Guestrin 
University of Washington 
 

January 27, 2014 
©Carlos Guestrin 2005-2014 



The Cost, The Cost!!! Think about 
the cost… 

n  What’s the cost of a gradient update step for LR??? 
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Learning Problems as Expectations 

n  Minimizing loss in training data: 
¨  Given dataset: 

n  Sampled iid from some distribution p(x) on features: 

¨  Loss function, e.g., squared error, logistic loss,… 
¨  We often minimize loss in training data: 

n  However, we should really minimize expected loss on all data: 

n  So, we are approximating the integral by the average on the training data 
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SGD: Stochastic Gradient Ascent (or Descent) 

n  “True” gradient: 
 
n  Sample based approximation: 

n  What if we estimate gradient with just one sample??? 
¨  Unbiased estimate of gradient 
¨  Very noisy! 
¨  Called stochastic gradient ascent (or descent) 

n  Among many other names 
¨  VERY useful in practice!!! 
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Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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Stochastic Gradient Descent for LR: 
Intuition  

1.  Until convergence: get a 
data point 

a.  Encode data as numbers 

b.  For each feature  
i.  Compute gradient for this data 

point 
ii.  Update parameter 
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Gender Age Location Income Referrer  New or 
Returning 

Clicked? 

F 
 

Young US High Google New N 

M Middle US  Low Direct New N 

F Old BR Low Google Returning Y 

M Young BR Low Bing Returning N 

Gender 
(F=1, 
M=0) 

Age 
(Young=0, 
Middle=1, 
Old=2) 

Location  
(US=1, 
Abroad=0) 

Income 
(High=1, 
Low=0) 

Referrer  New or 
Returning 
(New=1,, 
Returning =0) 

Clicked? 
(Click=1, 
NoClick=0) 
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Stochastic Gradient Ascent: 
general case 

n  Given a stochastic function of parameters: 
¨  Want to find maximum 

n  Start from w(0) 
n  Repeat until convergence: 

¨  Get a sample data point xt 
¨  Update parameters: 

n  Works on the online learning setting! 
n  Complexity of each gradient step is constant in number of examples! 
n  In general, step size changes with iterations 
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What you should know… 

n  Classification: predict discrete classes rather than 
real values 

n  Logistic regression model: Linear model 
¨ Logistic function maps real values to [0,1] 

n  Optimize conditional likelihood 
n  Gradient computation 
n  Overfitting 
n  Regularization 
n  Regularized optimization 
n  Cost of gradient step is high, use stochastic 

gradient descent 
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Remember our friend the  
Perceptron Algorithm 

n  At each time step: 
¨ Observe a data point: 

 
¨ Update parameters if make a mistake:  
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What is the Perceptron Doing??? 

n  When we discussed logistic regression: 
¨ Started from maximizing conditional log-likelihood 

n  When we discussed the Perceptron: 
¨ Started from description of an algorithm 

n  What is the Perceptron optimizing???? 
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Perceptron Prediction: Margin of 
Confidence 



Hinge Loss 

n  Perceptron prediction: 

n  Makes a mistake when:  

n  Hinge loss (same as maximizing the margin used by SVMs) 
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Stochastic Gradient Descent for Hinge Loss 

n  SGD: observe data point x(t), update each parameter 

 

n  How do we compute the gradient for hinge loss? 
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(Sub)gradient of Hinge  

n  Hinge loss: 

 

n  Subgradient of hinge loss: 
¨  If  y(t) (w.x(t)) > 0: 
¨  If  y(t) (w.x(t)) < 0: 
¨  If  y(t) (w.x(t)) = 0: 
¨  In one line: 
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Stochastic Gradient Descent for Hinge Loss 

n  SGD: observe data point x(t), update each parameter 

 

n  How do we compute the gradient for hinge loss? 
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Perceptron Revisited 
n  SGD for hinge loss: 

n  Perceptron update: 

 

 

n  Difference? 
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What you need to know 
n  Perceptron is optimizing hinge loss 
n  Subgradients and hinge loss 
n  (Sub)gradient decent for hinge objective 
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Support Vector Machines 

n  One of the most effective classifiers to date! 
n  Popularized kernels 

n  There is a complicated derivation, but… 
n  Very simple based on what you’ve learned  

thus far! 
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Linear classifiers – Which line is better? 
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Pick the one with the largest margin! 

w
.x

 +
 w

0 
= 

0 

“confidence” = yj(w · xj
+ w0)
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Maximize the margin 

w
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0 
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SVMs = Hinge Loss + L2 Regularization 

n  Maximizing Margin same as regularized hinge loss 

n  But, SVM “convention” is confidence has to be at least 1… 
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L2 Regularized Hinge Loss 
n  Final objective, adding regularization: 

n  But, again, in SVMs, convention slightly different (but equivalent) 
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SVMs for Non-Linearly Separable meet 
my friend the Perceptron…  

n  Perceptron was minimizing the hinge loss: 

 
 

n  SVMs minimizes the regularized hinge loss!!  
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Stochastic Gradient Descent for SVMs 

n  Perceptron minimization: 

n  SGD for Perceptron: 

n  SVMs minimization: 

n  SGD for SVMs: 
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What you need to know 

n  Maximizing margin 
n  Derivation of SVM formulation 
n  Non-linearly separable case 

¨ Hinge loss 
¨ A.K.A. adding slack variables 

n  SVMs = Perceptron + L2 regularization 
n  Can also use kernels with SVMs 
n  Can optimize SVMs with SGD 

¨ Many other approaches possible 
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Fighting the bias-variance tradeoff 

n  Simple (a.k.a. weak) learners are good 
¨ e.g., naïve Bayes, logistic regression, decision stumps 

(or shallow decision trees) 
¨ Low variance, don’t usually overfit too badly 

n  Simple (a.k.a. weak) learners are bad 
¨ High bias, can’t solve hard learning problems 

n  Can we make weak learners always good??? 
¨ No!!! 
¨ But often yes… 
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The Simplest Weak Learner: 
Thresholding, a.k.a. Decision Stumps  

n  Learn: h:X ! Y 
¨ X – features 
¨ Y – target classes 

n  Simplest case: Thresholding 
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Voting  (Ensemble Methods) 
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are 

good at different parts of the input space 
n  Output class: (Weighted) vote of each classifier 

¨  Classifiers that are most “sure” will vote with more conviction 
¨  Classifiers will be most “sure” about a particular part of the space 
¨  On average, do better than single classifier! 

n  But how do you ???  
¨  force classifiers to learn about different parts of the input space? 
¨  weigh the votes of different classifiers? 
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Boosting 
n  Idea: given a weak learner, run it multiple times on (reweighted) 

training data, then let learned classifiers vote 

n  On each iteration t:  
¨  weight each training example by how incorrectly it was classified 
¨  Learn a hypothesis – ht 
¨  A strength for this hypothesis – αt  

n  Final classifier: 

n  Practically useful 
n  Theoretically interesting 

[Schapire, 1989] 
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Learning from weighted data 
n  Sometimes not all data points are equal 

¨  Some data points are more equal than others 
n  Consider a weighted dataset 

¨  D(j) – weight of j th training example (xj,yj) 
¨  Interpretations: 

n  j th training example counts as D(j) examples 
n  If I were to “resample” data, I would get more samples of “heavier” data points 

n  Now, in all calculations, whenever used, j th training example counts as 
D(j) “examples” 
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Boosting Cartoon 
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AdaBoost 
n  Initialize weights to uniform dist: D1(j) = 1/N 
n  For t = 1…T 

¨  Train weak learner ht on distribution Dt over the data 
¨  Choose weight αt  

¨  Update weights: 

n  Where Zt is normalizer: 

 
 
n  Output final classifier: 
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Picking Weight of Weak Learner 

n  Weigh ht higher if it did well on training data 
(weighted by Dt): 

¨ Where εt is the weighted training error: 

©Carlos Guestrin 2005-2014 64 

↵t =
1

2
ln

✓
1� ✏t
✏t

◆

✏t =
NX

j=1

Dt(j) [ht(x
j) 6= y

j ]



AdaBoost Cartoon 
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Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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n  Simple theoretical analysis: 
¨  Training error upper-bounded by product of normalizers 

¨  Pick αt to minimize upper-bound  
n  Take derivative and set to zero! 
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Strong, weak classifiers 

n  If each classifier is (at least slightly) better than random 
¨   εt < 0.5 

n  AdaBoost will achieve zero training error (exponentially fast): 

n  Is it hard to achieve better than random training error? 
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Boosting results – Digit recognition 

n  Boosting often 
¨ Robust to overfitting 
¨ Test set error decreases even after training error is zero 

[Schapire, 1989] 
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Boosting: Experimental Results 

Comparison of C4.5, Boosting C4.5, Boosting decision 
stumps (depth 1 trees), 27 benchmark datasets 

[Freund & Schapire, 1996] 
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What you need to know about Boosting 

n  Combine weak classifiers to obtain very strong classifier 
¨  Weak classifier – slightly better than random on training data 
¨  Resulting very strong classifier – can eventually provide zero training error 

n  AdaBoost algorithm 
n  Most popular application of Boosting: 

¨  Boosted decision stumps! 
¨  Very simple to implement, very effective classifier 
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