
1

Logistic Regression

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014
©Carlos Guestrin 2005-2014

Reading Your Brain, Simple Example

Animal Person

Pairwise classification accuracy: 85%
[Mitchell et al.]

2 ©Carlos Guestrin 2005-2014

Classification

n  Learn: h:X ! Y
¨ X – features
¨ Y – target classes

n  Simplest case: Thresholding

©Carlos Guestrin 2005-2014 3

©Carlos Guestrin 2005-2014 4

Linear (Hyperplane) Decision
Boundaries

Classification

n  Learn: h:X ! Y
¨  X – features
¨  Y – target classes

n  Thus far: just a decision boundary

n  What if you want probability of each class? P(Y|X)

©Carlos Guestrin 2005-2014 5

Ad Placement Strategies

n  Companies bid on ad prices

n  Which ad wins? (many simplifications here)
¨  Naively:

¨  But:

¨  Instead:

©Carlos Guestrin 2005-2014 6

Link Functions

n  Estimating P(Y|X): Why not use standard linear
regression?

n  Combing regression and probability?

¨ Need a mapping from real values to [0,1]
¨ A link function!

©Carlos Guestrin 2005-2014 7

Logistic Regression
Logistic
function
(or Sigmoid):

n  Learn P(Y|X) directly
¨  Assume a particular functional form for link

function
¨  Sigmoid applied to a linear function of the input

features:

Z

Features can be discrete or continuous!
8 ©Carlos Guestrin 2005-2014

Understanding the sigmoid

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0=0, w1=-1

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0=-2, w1=-1

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0=0, w1=-0.5

9 ©Carlos Guestrin 2005-2014

Logistic Regression –
a Linear classifier

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 ©Carlos Guestrin 2005-2014

Very convenient!

implies

11 ©Carlos Guestrin 2005-2014

0

1

implies

0

1

implies

linear
classification

rule!

0

1

Loss function: Conditional Likelihood

n  Have a bunch of iid data of the form:

n  Discriminative (logistic regression) loss function:
 Conditional Data Likelihood

12 ©Carlos Guestrin 2005-2014

Expressing Conditional Log Likelihood

13 ©Carlos Guestrin 2005-2014

`(w) =
X

j

yj lnP (Y = 1|xj ,w) + (1� yj) lnP (Y = 0|xj ,w)

Maximizing Conditional Log Likelihood

Good news: l(w) is concave function of w, no local optima
problems

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions easy to optimize

14 ©Carlos Guestrin 2005-2014

Optimizing concave function –
Gradient ascent

n  Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

n  Gradient ascent is simplest of optimization approaches
¨  e.g., Conjugate gradient ascent can be much better

Gradient:

Step size, η>0

Update rule:

15 ©Carlos Guestrin 2005-2014

Coordinate Descent v. Gradient Descent

©Carlos Guestrin 2005-2014 16

Illustration from Wikipedia

Maximize Conditional Log Likelihood:
Gradient ascent

17 ©Carlos Guestrin 2005-2014

@`(w)

@wi
=

NX

j=1

x

j
i (y

j–P (Y = 1|xj
,w)

Gradient Descent for LR: Intuition

1.  Encode data as numbers

2.  Until convergence: for each
feature

a.  Compute average gradient
over data points

b.  Update parameter

©Carlos Guestrin 2005-2014 18

Gender Age Location Income Referrer New or
Returning

Clicked?

F

Young US High Google New N

M Middle US Low Direct New N

F Old BR Low Google Returning Y

M Young BR Low Bing Returning N

Gender
(F=1,
M=0)

Age
(Young=0,
Middle=1,
Old=2)

Location
(US=1,
Abroad=0)

Income
(High=1,
Low=0)

Referrer New or
Returning
(New=1,,
Returning =0)

Clicked?
(Click=1,
NoClick=0)

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ε	

 For i=1,…,k,

repeat

19 ©Carlos Guestrin 2005-2014

(t)

(t)

Regularization in linear regression

n  Overfitting usually leads to very large parameter choices, e.g.:

n  Regularized least-squares (a.k.a. ridge regression), for λ>0:

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + …

20 ©Carlos Guestrin 2005-2014

©Carlos Guestrin 2005-2014 21

Linear Separability

22

Large parameters → Overfitting

n  If data is linearly separable, weights go to infinity

¨  In general, leads to overfitting:
n  Penalizing high weights can prevent overfitting…

©Carlos Guestrin 2005-2014

Regularized Conditional Log Likelihood

n  Add regularization penalty, e.g., L2:

n  Practical note about w0:

n  Gradient of regularized likelihood:

©Carlos Guestrin 2005-2014 23

`(w) = ln
NY

j=1

P (yj |xj ,w)� �

2
||w||22

24

Standard v. Regularized Updates

n  Maximum conditional likelihood estimate

n  Regularized maximum conditional likelihood estimate

©Carlos Guestrin 2005-2014

(t)

(t)

w

⇤
= argmax

w
ln

NY

j=1

P (yj |xj ,w)� �

2

kX

i=1

w2
i

w

⇤
= argmax

w
ln

NY

j=1

P (yj |xj ,w)

Please Stop!! Stopping criterion

n  When do we stop doing gradient descent?

n  Because l(w) is strongly concave:
¨  i.e., because of some technical condition

n  Thus, stop when:

©Carlos Guestrin 2005-2014 25

`(w) = ln
Y

j

P (yj |xj ,w))� �||w||22

`(w⇤)� `(w) 1

2�
||r`(w)||22

Digression: Logistic regression for
more than 2 classes

n  Logistic regression in more general case (C classes), where
Y in {0,…,C-1}

26 ©Carlos Guestrin 2005-2014

Digression: Logistic regression more
generally

n  Logistic regression in more general case, where
Y in {0,…,C-1}

 for c>0

 for c=0 (normalization, so no weights for this class)

Learning procedure is basically the same
as what we derived!

27 ©Carlos Guestrin 2005-2014

P (Y = c|x,w) =

exp(wc0 +
Pk

i=1 wcixi)

1 +

PC�1
c0=1 exp(wc00 +

Pk
i=1 wc0ixi)

P (Y = 0|x,w) =

1

1 +

PC�1
c0=1 exp(wc00 +

Pk
i=1 wc0ixi)

28

Stochastic Gradient
Descent

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014
©Carlos Guestrin 2005-2014

The Cost, The Cost!!! Think about
the cost…

n  What’s the cost of a gradient update step for LR???

©Carlos Guestrin 2005-2014 29

(t)

Learning Problems as Expectations

n  Minimizing loss in training data:
¨  Given dataset:

n  Sampled iid from some distribution p(x) on features:

¨  Loss function, e.g., squared error, logistic loss,…
¨  We often minimize loss in training data:

n  However, we should really minimize expected loss on all data:

n  So, we are approximating the integral by the average on the training data
©Carlos Guestrin 2005-2014 30

`(w) = E
x

[`(w,x)] =

Z
p(x)`(w,x)dx

`D(w) =
1

N

NX

j=1

`(w,xj)

SGD: Stochastic Gradient Ascent (or Descent)

n  “True” gradient:

n  Sample based approximation:

n  What if we estimate gradient with just one sample???
¨  Unbiased estimate of gradient
¨  Very noisy!
¨  Called stochastic gradient ascent (or descent)

n  Among many other names
¨  VERY useful in practice!!!

©Carlos Guestrin 2005-2014 31

r`(w) = E
x

[r`(w,x)]

Stochastic Gradient Ascent for
Logistic Regression

n  Logistic loss as a stochastic function:

n  Batch gradient ascent updates:

n  Stochastic gradient ascent updates:
¨  Online setting:

©Carlos Guestrin 2005-2014 32

E
x

[`(w,x)] = E
x

⇥
lnP (y|x,w)� �||w||22

⇤

w

(t+1)
i w

(t)
i + ⌘

8
<

:��w
(t)
i +

1

N

NX

j=1

x

(j)
i [y(j) � P (Y = 1|x(j)

,w

(t))]

9
=

;

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

Stochastic Gradient Descent for LR:
Intuition

1.  Until convergence: get a
data point

a.  Encode data as numbers

b.  For each feature
i.  Compute gradient for this data

point
ii.  Update parameter

©Carlos Guestrin 2005-2014 33

Gender Age Location Income Referrer New or
Returning

Clicked?

F

Young US High Google New N

M Middle US Low Direct New N

F Old BR Low Google Returning Y

M Young BR Low Bing Returning N

Gender
(F=1,
M=0)

Age
(Young=0,
Middle=1,
Old=2)

Location
(US=1,
Abroad=0)

Income
(High=1,
Low=0)

Referrer New or
Returning
(New=1,,
Returning =0)

Clicked?
(Click=1,
NoClick=0)

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

Stochastic Gradient Ascent:
general case

n  Given a stochastic function of parameters:
¨  Want to find maximum

n  Start from w(0)
n  Repeat until convergence:

¨  Get a sample data point xt
¨  Update parameters:

n  Works on the online learning setting!
n  Complexity of each gradient step is constant in number of examples!
n  In general, step size changes with iterations

©Carlos Guestrin 2005-2014 34

What you should know…

n  Classification: predict discrete classes rather than
real values

n  Logistic regression model: Linear model
¨ Logistic function maps real values to [0,1]

n  Optimize conditional likelihood
n  Gradient computation
n  Overfitting
n  Regularization
n  Regularized optimization
n  Cost of gradient step is high, use stochastic

gradient descent

35 ©Carlos Guestrin 2005-2014

36

What’s the Perceptron
Optimizing?

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014
©Carlos Guestrin 2005-2014

Remember our friend the
Perceptron Algorithm

n  At each time step:
¨ Observe a data point:

¨ Update parameters if make a mistake:

©Carlos Guestrin 2005-2014 37

What is the Perceptron Doing???

n  When we discussed logistic regression:
¨ Started from maximizing conditional log-likelihood

n  When we discussed the Perceptron:
¨ Started from description of an algorithm

n  What is the Perceptron optimizing????

©Carlos Guestrin 2005-2014 38

©Carlos Guestrin 2005-2014 39

Perceptron Prediction: Margin of
Confidence

Hinge Loss

n  Perceptron prediction:

n  Makes a mistake when:

n  Hinge loss (same as maximizing the margin used by SVMs)

©Carlos Guestrin 2005-2014 40

Stochastic Gradient Descent for Hinge Loss

n  SGD: observe data point x(t), update each parameter

n  How do we compute the gradient for hinge loss?

©Carlos Guestrin 2005-2014 41

w

(t+1)
i w

(t)
i � ⌘t

@`(w(t)
, x

(t))

@wi

(Sub)gradient of Hinge

n  Hinge loss:

n  Subgradient of hinge loss:
¨  If y(t) (w.x(t)) > 0:
¨  If y(t) (w.x(t)) < 0:
¨  If y(t) (w.x(t)) = 0:
¨  In one line:

©Carlos Guestrin 2005-2014 42

w

(t+1)
i w

(t)
i � ⌘t

@`(w(t)
, x

(t))

@wi

Stochastic Gradient Descent for Hinge Loss

n  SGD: observe data point x(t), update each parameter

n  How do we compute the gradient for hinge loss?

©Carlos Guestrin 2005-2014 43

w

(t+1)
i w

(t)
i � ⌘t

@`(w(t)
, x

(t))

@wi

Perceptron Revisited
n  SGD for hinge loss:

n  Perceptron update:

n  Difference?

©Carlos Guestrin 2005-2014 44

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t)) 0

i
y(t)x(t)

w

(t+1) w

(t) + ⌘t
h
y(t)(w(t) · x(t)) 0

i
y(t)x(t)

What you need to know
n  Perceptron is optimizing hinge loss
n  Subgradients and hinge loss
n  (Sub)gradient decent for hinge objective

©Carlos Guestrin 2005-2014 45

46

Support Vector
Machines

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014
©Carlos Guestrin 2005-2014

Support Vector Machines

n  One of the most effective classifiers to date!
n  Popularized kernels

n  There is a complicated derivation, but…
n  Very simple based on what you’ve learned

thus far!

©Carlos Guestrin 2005-2014 47

©Carlos Guestrin 2005-2014 48

Linear classifiers – Which line is better?

©Carlos Guestrin 2005-2014 49

Pick the one with the largest margin!

w
.x

 +
 w

0
=

0

“confidence” = yj(w · xj
+ w0)

©Carlos Guestrin 2005-2014 50

Maximize the margin

w
.x

 +
 w

0
=

0

SVMs = Hinge Loss + L2 Regularization

n  Maximizing Margin same as regularized hinge loss

n  But, SVM “convention” is confidence has to be at least 1…

©Carlos Guestrin 2005-2014 51

w
.x

 +
 w

0
=

+1

w
.x

 +
 w

0
=

-1

w
.x

 +
 w

0
=

0

L2 Regularized Hinge Loss
n  Final objective, adding regularization:

n  But, again, in SVMs, convention slightly different (but equivalent)

©Carlos Guestrin 2005-2014 52

||w||22
2

+ C
NX

j=1

�
1� yj(w · xj + w0)

�
+

SVMs for Non-Linearly Separable meet
my friend the Perceptron…

n  Perceptron was minimizing the hinge loss:

n  SVMs minimizes the regularized hinge loss!!

©Carlos Guestrin 2005-2014 53

NX

j=1

�
�yj(w · xj + w0)

�
+

||w||22 + C
NX

j=1

�
1� yj(w · xj + w0)

�
+

Stochastic Gradient Descent for SVMs

n  Perceptron minimization:

n  SGD for Perceptron:

n  SVMs minimization:

n  SGD for SVMs:

©Carlos Guestrin 2005-2014 54

NX

j=1

�
�yj(w · xj + w0)

�
+

||w||22 + C
NX

j=1

�
1� yj(w · xj + w0)

�
+

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t)) 0

i
y(t)x(t)

©Carlos Guestrin 2005-2014 55

What you need to know

n  Maximizing margin
n  Derivation of SVM formulation
n  Non-linearly separable case

¨ Hinge loss
¨ A.K.A. adding slack variables

n  SVMs = Perceptron + L2 regularization
n  Can also use kernels with SVMs
n  Can optimize SVMs with SGD

¨ Many other approaches possible

56

Boosting

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014
©Carlos Guestrin 2005-2014

57

Fighting the bias-variance tradeoff

n  Simple (a.k.a. weak) learners are good
¨ e.g., naïve Bayes, logistic regression, decision stumps

(or shallow decision trees)
¨ Low variance, don’t usually overfit too badly

n  Simple (a.k.a. weak) learners are bad
¨ High bias, can’t solve hard learning problems

n  Can we make weak learners always good???
¨ No!!!
¨ But often yes…

©Carlos Guestrin 2005-2014

The Simplest Weak Learner:
Thresholding, a.k.a. Decision Stumps

n  Learn: h:X ! Y
¨ X – features
¨ Y – target classes

n  Simplest case: Thresholding

©Carlos Guestrin 2005-2014 58

59

Voting (Ensemble Methods)
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are

good at different parts of the input space
n  Output class: (Weighted) vote of each classifier

¨  Classifiers that are most “sure” will vote with more conviction
¨  Classifiers will be most “sure” about a particular part of the space
¨  On average, do better than single classifier!

n  But how do you ???
¨  force classifiers to learn about different parts of the input space?
¨  weigh the votes of different classifiers?

©Carlos Guestrin 2005-2014

60

Boosting
n  Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let learned classifiers vote

n  On each iteration t:
¨  weight each training example by how incorrectly it was classified
¨  Learn a hypothesis – ht
¨  A strength for this hypothesis – αt

n  Final classifier:

n  Practically useful
n  Theoretically interesting

[Schapire, 1989]

©Carlos Guestrin 2005-2014

61

Learning from weighted data
n  Sometimes not all data points are equal

¨  Some data points are more equal than others
n  Consider a weighted dataset

¨  D(j) – weight of j th training example (xj,yj)
¨  Interpretations:

n  j th training example counts as D(j) examples
n  If I were to “resample” data, I would get more samples of “heavier” data points

n  Now, in all calculations, whenever used, j th training example counts as
D(j) “examples”

©Carlos Guestrin 2005-2014

Boosting Cartoon

©Carlos Guestrin 2005-2014 62

AdaBoost
n  Initialize weights to uniform dist: D1(j) = 1/N
n  For t = 1…T

¨  Train weak learner ht on distribution Dt over the data
¨  Choose weight αt

¨  Update weights:

n  Where Zt is normalizer:

n  Output final classifier:

©Carlos Guestrin 2005-2014 63

Dt+1(j) =
Dt(j) exp(�↵ty

j
ht(x

j
))

Zt

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

Picking Weight of Weak Learner

n  Weigh ht higher if it did well on training data
(weighted by Dt):

¨ Where εt is the weighted training error:

©Carlos Guestrin 2005-2014 64

↵t =
1

2
ln

✓
1� ✏t
✏t

◆

✏t =
NX

j=1

Dt(j) [ht(x
j) 6= y

j]

AdaBoost Cartoon

©Carlos Guestrin 2005-2014 65

Dt+1(j) =
Dt(j) exp(�↵ty

j
ht(x

j
))

Zt

↵t =
1

2
ln

✓
1� ✏t
✏t

◆

66

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Carlos Guestrin 2005-2014

n  Simple theoretical analysis:
¨  Training error upper-bounded by product of normalizers

¨  Pick αt to minimize upper-bound
n  Take derivative and set to zero!

Zt =

NX

j=1

Dt(j) exp(�↵ty
j
ht(x

j
))

1

N

NX

j=1

[H(xj) 6= yj]
TY

t=1

Zt

67

Strong, weak classifiers

n  If each classifier is (at least slightly) better than random
¨  εt < 0.5

n  AdaBoost will achieve zero training error (exponentially fast):

n  Is it hard to achieve better than random training error?

©Carlos Guestrin 2005-2014

1

N

NX

j=1

[H(xj
) 6= yj]

TY

t=1

Zt exp

�2

TX

t=1

(1/2� ✏t)
2

!

68

Boosting results – Digit recognition

n  Boosting often
¨ Robust to overfitting
¨ Test set error decreases even after training error is zero

[Schapire, 1989]

©Carlos Guestrin 2005-2014

69

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]

error error

er
ro

r

©Carlos Guestrin 2005-2014

70 ©Carlos Guestrin 2005-2014

71

What you need to know about Boosting

n  Combine weak classifiers to obtain very strong classifier
¨  Weak classifier – slightly better than random on training data
¨  Resulting very strong classifier – can eventually provide zero training error

n  AdaBoost algorithm
n  Most popular application of Boosting:

¨  Boosted decision stumps!
¨  Very simple to implement, very effective classifier

©Carlos Guestrin 2005-2014

