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Reading Your Brain, Simple Example

" A [Mitchell et al.]
Pairwise classification accuracy: 85%
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Classification

" A
m Learn: h: X Y

X — features
Y — target classes

m Thus far: just a decision boundary
,(j: §19n (wx() ¢ ’7‘[/”‘) d‘-“)’!“’\

m \What if you want probability of each class? P(Y|X)
—
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Ad Placement Strategies

Gougle big data

m Companies bid on ad prices
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Ads related to big data ®
What is Big Data? - SAS.com

www.sas.com/Big-Data

Top Orgs Explain How They Gained Insights From Big Data. Free Report
642 people +1'd or follow SAS Software

Big Data Explained - SAS & Hadoop - Deployment Options - Success Stories

Dell™ Big Data Solutions - dell.com
‘www.dell.com/BigData

3,139 reviews for dell.com
Contact Dell & Get Info on Storage Solutions from Dell™ w/ Intel®

Big Data - Learn About Oracle & Big Data - Oracle.com
'www.oracle.com/BigData

Simplify & Put Your Data To Work.

12,806 people +1'd or follow Oracle

Big data - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Big_data

In information technology, big data is a collection of data sets so large and complex
that it becomes difficult to process using on-hand database management ...
Definition - Examples - Market - Technologies

IBM What is big data? - Bringing big data to the enterprise
www.ibm.com/software/data/bigdata/

Everyday, we create 2.5 quintillion bytes of data-so much that 90% of the data in the
world today has been created in the last two years alone. This data comes ...

Big data: The next frontier for innovation, competition, and productivity

www.mckinsey.com/.../big_data_the_next_frontier_for_innov...

MGI studied big data in five domains—healthcare in the United States, the public ... For

example, a retailer using big data to the full could increase its operating ...

Big Data — What s It? | SAS

www.sas.com/big-data/

Leam about big data challenges and opportunities, along with how to apply the latest
and ies to extract i value from big data.

Oracle Big Data

www.oracle.com/us/technologies/big-data/index.html

racle offers the broadest and most integrated portfolio of products to help you acquire
d organize these diverse data sources and analyzdiitbem alongside ...
o=
| 0.0l ¥ Jloo - l

Ads @
Big Data Cloud Analytics

cloud.google.com/bigquery
Sign-up for real-time Big Data
Analytics on Google BigQuery

Big Data Monitoring
www.feedzai.com/BusinessMonitoring
Uncover and Manage Anomalies.
With Real-Time Processing, See How!

New: Big Data in 2013
www.tableausoftware.com/big-data
7 Things you Need to Do About Big
Data in 2013. Get the Free Article!

Future Data Management
www.fidelity.com/thinkingbig
Using Data to Find Value & Profit
Watch Fidelity's Big Data Video.

NetApp® Big Data
www.netapp.com/Big-Data
Discover our Intelligent, Immortal
& Infinite Agile Data Technology.

PROS® Big Data Research

www.pros.com/Gartner
Featuring Gartner Research For Big
Data. Download Free Newsletter!

Extend Big Data With UIA

www.attivio.com/Big-Data
Attivio's Software Bridges The Gap.
Unify Structured and Unstructured!

Big Data Solutions
www.quantum.com/big-data
Quantum Big Data Management -
Professional Large File Sharing!

See your ad here »
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Link Functions
" J
m Estimating P(Y|X): Why not use standard linear
regression?

m Combing regression and probability?
Need a mapping from real values to [0,1]
A link function!



Logistic Regression
" SN
m Learn P(Y|X) directly

Assume a particular functional form for link
function

Sigmoid applied to a linear function of the input

features:

1
P(Y =0|X,W) =

Logistic 1
function
(or Sigmoid): 1 1 exp(=2)

09rF

0.8F

logit(x)

1 + exp(wo + >o; wi X;)

Features can be discrete or continuous!
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Understanding the sigmoid
" I

g(wo + Z’wifﬂi) =

WO='2, W1 ='1

1

W0=O, W1 ='1

©Carlos Guestrin 2005-2014
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Logistic Regression— ¢
a Linear classifier T+ eap(—2) ¢
" :

0
----------

g(wo + Zwiwz’) =
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Very convenient!

- 1
P(Y =0 |X =< Xq,..Xn>) =
| " 1 + exp(wo + >0; w; X;)

implies
exp(wo + X w;X;)

P(Y =1|X =< Xq,..Xn>) =
| " 14+ exp(wg + >; w; X;)

implies
P(Y =1|X)
= exp(wo + > w; X;)
P =0]X) z’: o linear
classification
implies 1 rule!
P(Y =1]X)
In — - X
Py =0 x) o2 wiki

©Carlos Guestrin 2005-2014 11



Loss function: Conditional Likelihood
" S

m Have a bunch of iid data of the form:

m Discriminative (logistic regression) loss function:
Conditional Data Likelihood

N
InP(Dy | Dx,w) = > InP(y | x/,w)
J=1

©Carlos Guestrin 2005-2014 12



Expressing Conditional Log Likelihood

P(Y =0|X =
" = OB = e + 55 wiX)

I(w) = Z IN P(yj|Xj, W) P(Y = 11X, w) = exp(wo + 2 wiX;)
J 7 1+ exp(wo + X wiX;)

l(w) = Zyj mPY =1|x),w)+ (1 -9/ ) InP(Y =0|x/, w)
J

— Zyj(wo + Zwia}‘g) —In(1 4 exp(wg + Zwix:f))
j i :

©Carlos Guestrin 2005-2014 13



Maximizing Conditional Log Likelihood

= B PO = O W = (w0 + 5 wiX)
L P(Y =1|X, W) = : exp(wo + i wiX‘i;(‘
I(w) = In[[ PG/ 1x, w) T eap(uwo + T, wi X))

J

— Zyj(wO + Zwixg) —In(1 4 exp(wg + sz-:c{))
j i :

Good news: /(w) is concave function of w, no local optima
problems

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize

©Carlos Guestrin 2005-2014 14



Optimizing concave function —

radient ascent

m Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

ol(w) ol(w)

wo 7 Own,

]/

Gradient: Vwl(w) = |

Update rule: Aw — nvwl(W)

ol(w
WD O 4 (w)
8wi
m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent can be much better

©Carlos Guestrin 2005-2014 15



Coordinate Descent v. Gradient Descent
" B

536 X y+5 y°-0.0259 = 0

©Carlos Guestrin 2005-2014 16



Maximize Conditional Log Likelihood:

Gradient ascent
" A

P(Y = 1|X,W) = exp(wo + > w; X;)

1+ exp(wo + >; w; X;)

(W) = S yi(wo+ Y wiad) - In(L+ eap(uo + Y wia)))
J v )

0l(w) Yoo |
Do ;flf" (v —P(Y = 1|27, w)



Gradient Descent for LR: Intuition

F Young
M Middle
F Old

M Young

us

us

BR

BR

1. Encode data as numbers
s 2. Until convergence: for each
] feature

Compute average gradient
over data points

Update parameter

wi(t+1) - wi(t) 4+ nzxg[yj _ p(yj =1| Xj’w)]
J

©Carlos Guestrin 2005-2014 18



Gradient Ascent for LR
"

Gradient ascent algorithm: iterate until change < ¢

w(()t—l—l) — ,wc()t) 4 UZ[yj _ p(yj =1 XJ,V{P)]
j

Fori=1,...,k,
w,§t+1) — wi(t) + nzgc‘g[yj —P(Y) =1 Xj,V\(ftB]
J

repeat

©Carlos Guestrin 2005-2014



Regularization in linear regression
" I

m Overfitting usually leads to very large parameter choices, e.g.:
2.2 +3.1 X-0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized least-squares (a.k.a. ridge regression), for A>0:

2 k
w'o= argxrzsnz(uxj)—zwihxx») +AY - u?
j 7 =1

©Carlos Guestrin 2005-2014 20



Linear Separability



Large parameters — Overfitting
i

1 1 1

1+e 7 1+ 6—2:10 14+ 6—1OOx

m If data is linearly separable, weights go to infinity

In general, leads to overfitting:
m Penalizing high weights can prevent overfitting...

©Carlos Guestrin 2005-2014 22



Regularized Conditional Log Likelihood

" J
= Add regularlzatlon penalty, e.g., L

m Practical note about wy;:

m Gradient of regularized likelihood:

©Carlos Guestrin 2005-2014



Standard v. Regularized Updates
" JE
@ Maximum conditional Iikelih%od estimate

w" = argmax In H Py |x7, w)
j=1

w,i(t—l_l) — wi(t) + nZa:g[yj —P(Y) =1 Xj,“%:
J

m Regularized maximum conditional likelihood estimate

N k

o i\

* _ J |xcJ _Z 2

W’ = arg max In | |1P(y x7, W) 5 Elwi
]= 1=

WD O gy {/\wg) +Y 2l — P(YI =1 ijv%]}
j

©Carlos Guestrin 2005-2014
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Please Stop!! Stopping criterion
" A
{(w) = lnHP(y”'!xj,w)) — Alw]|3

m \When do we stop doing gradient descent?

m Because /(w) is strongly concave:
i.e., because of some technical condition

* 1 2
tw?) —lw) = S l[VEw)]);

m Thus, stop when:



Digression: Logistic regression for
__more than 2 classes
B
m Logistic regression in more general case (C classes), where
Y in{0,...,C-1}



Digression: Logistic regression more

generally
"

m Logistic regression in more general case, where

Y in {0,...,C-1}
for c>0 .
P(Y — C‘X, W) _ eXp(ch + Zizl wcz-a;i)

C_
1+ Zc/:% eXp(wc’O + Zle wc’z'iliz')

for c=0 (normalization, so no weights for this class)
1

C— k
1 -+ Zc/:i eXp(wCIO + Z’iZl wc’ix’i)

P(Y =0|x,w) =

Learning procedure is basically the same
as what we derived!

©Carlos Guestrin 2005-2014 27



Stochastic Gradient

Descent

Machine Learning — CSEP546
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The Cost, The Cost!!l Think about

) the cost...
o
m What's the cost of a gradient update step for LR?7??

WD Oy {—/\w@-(t) +S 2l — P(YI =1 XJ',VSS]}
j




Learning Problems as Expectations
"

m  Minimizing loss in training data:

Given dataset:
m  Sampled iid from some distribution p(x) on features:

Loss function, e.g., squared error, logistic loss,...
We often minimize loss in training data:

N
1 .
Ip(w) = N Zg(WaXJ)
j=1
m However, we should really minimize expected loss on all data:

l(w) = FEx [l(w,x)] = /p(x)f(w,x)dx

m S0, we are approximating the integral by the average on the training data

©Carlos Guestrin 2005-2014 30



SGD: Stochastic Gradient Ascent (or Descent)

"
m “True” gradient: VZ(W) — b [VZ(W, X)]

m Sample based approximation:

m \What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!

©Carlos Guestrin 2005-2014 31



Stochastic Gradient Ascent for

] Logistic Reﬁression

m Logistic loss as a stochastic function:

Ex [6(w,x)] = Ex [In P(y|x, w) — A|[w|[3]
m Batch gradient ascent updates:

N
(t+1) (t) L IO — 1 1x0) w®
w, — w, +77{ Aw; +szlxi [y P(Y =1|xY w'")]

m Stochastic gradient ascent updates:
Online setting:

wl™D o p® 4o, {_ Mo 4+ 2O® Py = 1yx<t>,w<t>)]}

©Carlos Guestrin 2005-2014 32



Stochastic Gradient Descent for LR:

Intuition

F Young
M Middle
F Old

M Young

us

us

BR

BR

1. Until convergence: get a
data point
— Encode data as numbers
Sl For each feature

. Compute gradient for this data
point
i Update parameter

wEtH) — wgt) + 7 {—)\wgt) + xEt) [y(t) — P(Y = 1|X(t)7W(t))]}

©Carlos Guestrin 2005-2014 33



Stochastic Gradient Ascent:

] general case

m Given a stochastic function of parameters:
Want to find maximum

m Start from w(©

m Repeat until convergence:
Get a sample data point xt
Update parameters:

m Works on the online learning setting!
m Complexity of each gradient step is constant in number of examples!
m |n general, step size changes with iterations

©Carlos Guestrin 2005-2014 34



What you should know...
" A
m Classification: predict discrete classes rather than

real values

m Logistic regression model: Linear model
Logistic function maps real values to [0,1]

m Optimize conditional likelihood
m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent



What's the Perceptron

Optimizing?

Machine Learning — CSEP546
Carlos Guestrin

University of Washington

Januasr¥627, 2014
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Remember our friend the

] Perceﬁtron Alﬁorithm

m At each time step:
Observe a data point:

Update parameters if make a mistake:

©Carlos Guestrin 2005-2014



What is the Perceptron Doing???
" A
m \When we discussed logistic regression:
Started from maximizing conditional log-likelihood

m WWhen we discussed the Perceptron:
Started from description of an algorithm

m What is the Perceptron optimizing????



Perceptron Prediction: Margin of
nfiden



Hinge Loss
" J———
m Perceptron prediction:

m Makes a mistake when:

m Hinge loss (same as maximizing the margin used by SVMs)

©Carlos Guestrin 2005-2014
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Stochastic Gradient Descent for Hinge Loss
" A
m SGD: observe data point x, update each parameter
t t
00(w®), (0
8?1]2'

w§t+1) A w@(t) — Mt

m How do we compute the gradient for hinge loss?

©Carlos Guestrin 2005-2014
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(Sub)gradient of Hinge
" S

m Hinge loss:

((wt) ()
w§t+1) %wgt) _ma (W y L )

8?1]2'

m Subgradient of hinge loss:
If y® (w.x®)>0:
If y® (w.x®) < 0:
If y® (w.x®)=0:
In one line:

©Carlos Guestrin 2005-2014
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Stochastic Gradient Descent for Hinge Loss
" A
m SGD: observe data point x, update each parameter
t t
00(w®), (0
8?1]2'

w§t+1) A w@(t) — Mt

m How do we compute the gradient for hinge loss?

©Carlos Guestrin 2005-2014
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Perceptron Revisited

"
m SGD for hinge loss:

wttD) o w® 4 [yos) (w® . x®) < 0] D x®

m Perceptron update:

wlt D o w® g {y@) (w® . x(®) < o} D x®

m Difference?



What you need to know
"
m Perceptron is optimizing hinge loss

m Subgradients and hinge loss
m (Sub)gradient decent for hinge objective

©Carlos Guestrin 2005-2014
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Support Vector

Machines

Machine Learning — CSEP546
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Support Vector Machines

" A
m One of the most effective classifiers to date!
m Popularized kernels

m [here is a complicated derivation, but...

m Very simple based on what you've learned
thus far!



Linear classifiers — Which line is better?
" B



Pick the one with the largest margin!

&f  “confidence” = y! (w - x? 4 wp)
+
5
+ s
ob )
== =
ob )
T+
o0
4 -



Maximize the margin
" S

]

=

+
X
=



SVMs = Hinge Loss + L2 Regularization
"

m Maximizing Margin same as regularized hinge loss

m But, SVM “convention” is confidence has to be at least 1...

©Carlos Guestrin 2005-2014
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L2 Regularized Hinge Loss
"

m Final objective, adding regularization:

m But, again, in SVMs, convention slightly different (but equivalent)

©Carlos Guestrin 2005-2014



SVMs for Non-Linearly Separable meet

my friend the Perceptron...
"
m Perceptron was minimizing the hinge loss:
N

Z (_yj (W : Xj + wo))—l—

j=1

m SVMs minimizes the regularized hinge loss!!

N
[wll3+C>  (1—9/(w-x) +wy)),
j=1



Stochastic Gradient Descent for SVMs
" B

m Perceptron minimization: m SVMs minimization:
N N
S (P (w X +w)), wiZ+C 3" (1— ¢/ (w-x! +wp)),
j=1 j=1

m SGD for Perceptron: m SGD for SVMs:

wttD w® g [yu) (w® . x®) < o] MONO

©Carlos Guestrin 2005-2014
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What you need to know
" J
m Maximizing margin
m Derivation of SVM formulation

m Non-linearly separable case

Hinge loss
A.K.A. adding slack variables

m SVMs = Perceptron + L2 regularization
m Can also use kernels with SVMs
m Can optimize SVMs with SGD

Many other approaches possible



Boosting

Machine Learning — CSEP546
Carlos Guestrin
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Fighting the bias-variance tradeoff
" JE
m Simple (a.k.a. weak) learners are good

e.g., haive Bayes, logistic regression, decision stumps
(or shallow decision trees)

Low variance, don’t usually overfit too badly

m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

m Can we make weak learners always good???
No!!!
But often yes...

©Carlos Guestrin 2005-2014
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The Simplest Weak Learner:

Thresholding, a.k.a. Decision Stumps
" A
m Learn: h: X Y
X — features
Y — target classes

m Simplest case: Thresholding



Voting (Ensemble Methods)
"

m Instead of learning a single (weak) classifier, learn many weak classifiers that are
good at different parts of the input space

m  Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more conviction
Classifiers will be most “sure” about a particular part of the space

On average, do better than single classifier!

m But how do you ??7?
force classifiers to learn about different parts of the input space?

weigh the votes of different classifiers?

©Carlos Guestrin 2005-2014 59



Boosting [Schapire, 1989]
" A

m |dea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote

m On each iteration t:

weight each training example by how incorrectly it was classified
Learn a hypothesis — h,
A strength for this hypothesis — o,

m Final classifier:

m Practically useful
m Theoretically interesting

©Carlos Guestrin 2005-2014
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Learning from weighted data
"

m Sometimes not all data points are equal
Some data points are more equal than others
m Consider a weighted dataset
D(j) — weight of jth training example (xi,y))
Interpretations:

m jth training example counts as D(j) examples
m If | were to “resample” data, | would get more samples of “heavier” data points

m Now, in all calculations, whenever used, jth training example counts as
D(j) “examples”

©Carlos Guestrin 2005-2014 61



Boosting Cartoon
"



AdaBoost

"
m [nitialize weights to uniform dist: D,(j) = 1/N
m Fort=1...T

Train weak learner h, on distribution D, over the data
Choose weight a,

Update weights: . Dy(j) exp(—ouy? he(x?))
Di1(j) =

Z
m Where Z; is normalizer:

Zy = Z Dy(5) exp(—azy” he(27))

m Output final classifier:

©Carlos Guestrin 2005-2014
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Picking Weight of Weak Learner
" J
m Weigh h, higher if it did well on training data
(weighted by D,):

11 1_€t
Oy — — 111
' 2 €t

Where ¢, is the weighted training error:

N
Z htxj #y]



a |
da

Zy

1_€t>
1ln(
" A

€¢
Ay —




Why choose ¢, for hypothesis 7, this way?

m Simple theoretical analysis:

[Schapire, 1989]

-3 0

exp( oztyj ht(a:j))

Training error upper—bounded by product of normallzers

—Z]l H(27) # 7] <HZt
71=1

Pick a; to minimize upper-bound
m [ake derivative and set to zero!

©Carlos Guestrin 2005-2014
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Strong, weak classifiers
" JE

m If each classifier is (at least slightly) better than random
£ <0.5

O AdaBoost will achieve zero training error (exponentially fast):

Z H(a?) £ 4] < HZt < exp <_2 > o/2- et)2>

t=1

m Is it hard to achieve better than random training error?

©Carlos Guestrin 2005-2014
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Boosting results — Digit recognition

[Schapire, 1989]

S ﬁb . ....ibo . ..jdoo

# rounds

m Boosting often
Robust to overfitting
Test set error decreases even after training error is zero

©Carlos Guestrin 2005-2014 68



Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

error C4.5
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AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]

30
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14 / ',. lbor /". labor "/\ promoters 0 - promoters
12- %\ 25 -

1o
3

- I‘/ll

oON &0
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sonal
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. . . 17 -
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8
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What you need to know about Boosting
" S

m Combine weak classifiers to obtain very strong classifier

Weak classifier — slightly better than random on training data
Resulting very strong classifier — can eventually provide zero training error

m AdaBoost algorithm

m  Most popular application of Boosting:
Boosted decision stumps!
Very simple to implement, very effective classifier
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