Logistic Regression

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014

Reading Your Brain, Simple Example

[Mitchell et al.]

Pairwise classification accuracy: 85%

Classification

sx = (GPA, grade, resume,...)

- Learn: h:X →
 - □ X features
 - ☐ Y target classes

Simplest case: Thresholding

X: Load Comparks

Y: alarm?

Load 799% => alarm = trac Xi 1/se -> alarm = false

Xi>. 27°C

Linear (Hyperplane) Decision Boundaries

Classification

- Learn: h:X → Y
 - □ X features
 - ☐ Y target classes
- Thus far: just a decision boundary

What if you want probability of each class? P(Y|X)

Ad Placement Strategies

Link Functions

Estimating P(Y|X): Why not use standard linear regression?

- Combing regression and probability?
 - □ Need a mapping from real values to [0,1]
 - □ A link function!

Logistic Regression

Logistic function (or Sigmoid):

$$\frac{1}{1 + exp(-z)}$$

- Learn P(Y|X) directly
 - Assume a particular functional form for link function
 - ☐ Sigmoid applied to a linear function of the input features:

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

Understanding the sigmoid

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$

$$w_0 = 0, w_1 = -0.5$$

Logistic Regression – a Linear classifier

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$

Very convenient!

$$P(Y = 0 \mid X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 1 \mid X = < X_1, ...X_n >) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y = 1 | X)}{P(Y = 0 | X)} = exp(w_0 + \sum_i w_i X_i)$$

implies

$$\ln \frac{P(Y = 1 | X)}{P(Y = 0 | X)} = w_0 + \sum_i w_i X_i$$

linear classification rule!

Loss function: Conditional Likelihood

Have a bunch of iid data of the form:

Discriminative (logistic regression) loss function:

Conditional Data Likelihood

$$\ln P(\mathcal{D}_Y \mid \mathcal{D}_{\mathbf{X}}, \mathbf{w}) = \sum_{j=1}^{N} \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$

Expressing Conditional Log Likelihood

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) \equiv \sum_{j} \ln P(y^{j}|\mathbf{x}^{j},\mathbf{w})$$

$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$\ell(\mathbf{w}) = \sum_{j} y^{j} \ln P(Y = 1 | \mathbf{x}^{j}, \mathbf{w}) + (1 - y^{j}) \ln P(Y = 0 | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} y^{j} (w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}))$$

Maximizing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$P(Y = 0 | X, W) = \frac{1}{1 + exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$P(Y = 1 | X, W) = \frac{exp(w_{0} + \sum_{i} w_{i} X_{i})}{1 + exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$= \sum_{j} y^{j}(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}))$$

Good news: *I*(**w**) is concave function of **w**, no local optima problems

Bad news: no closed-form solution to maximize *I*(w)

Good news: concave functions easy to optimize

Optimizing concave function – Gradient ascent

Conditional likelihood for Logistic Regression is concave. Find optimum with gradient ascent

Gradient:
$$\nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$$

Update rule:

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

- Gradient ascent is simplest of optimization approaches
 - □ e.g., Conjugate gradient ascent can be much better

Coordinate Descent v. Gradient Descent

Maximize Conditional Log Likelihood: Gradient ascent

$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) = \sum_{j} y^{j}(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j}))$$

$$\frac{\partial \ell(\mathbf{w})}{\partial w_i} = \sum_{j=1}^{N} x_i^j (y^j - P(Y = 1 | x^j, \mathbf{w}))$$

Gradient Descent for LR: Intuition

Gender	Age	Location	Income	Referrer	New or Returning	Clicked?
F	Young	US	High	Google	New	N
М	Middle	US	Low	Direct	New	N
F	Old	BR	Low	Google	Returning	Y
М	Young	BR	Low	Bing	Returning	N

Gender (F=1, M=0)	Age (Young=0, Middle=1, Old=2)	Location (US=1, Abroad=0)	Income (High=1, Low=0)	Referrer	New or Returning (New=1,, Returning =0)	Clicked? (Click=1, NoClick=0)

Encode data as numbers

- Until convergence: for each feature
 - a. Compute average gradient over data points
 - b. Update parameter

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ε

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For i=1,...,k,
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:

$$-2.2 + 3.1 X - 0.30 X^2$$

$$-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + ...$$

■ Regularized least-squares (a.k.a. ridge regression), for λ >0:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^k w_i^2$$

Linear Separability

Large parameters → Overfitting

If data is linearly separable, weights go to infinity

- ☐ In general, leads to overfitting:
- Penalizing high weights can prevent overfitting...

Regularized Conditional Log Likelihood

Add regularization penalty, e.g., L₂:

$$\ell(\mathbf{w}) = \ln \prod_{j=1}^{N} P(y^j | \mathbf{x}^j, \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

Practical note about w₀:

Gradient of regularized likelihood:

Standard v. Regularized Updates

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \quad \ln\prod_{j=1} P(y^j | \mathbf{x}^j, \mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

Regularized maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \quad \ln\prod_{j=1}^N P(y^j|\mathbf{x}^j, \mathbf{w}) - \frac{\lambda}{2} \sum_{i=1}^k w_i^2$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \widehat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

Please Stop!! Stopping criterion

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \lambda ||\mathbf{w}||_{2}^{2}$$

When do we stop doing gradient descent?

- Because *l*(**w**) is strongly concave:
 - i.e., because of some technical condition

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

Thus, stop when:

Digression: Logistic regression for more than 2 classes

Logistic regression in more general case (C classes), where Y in {0,...,C-1}

Digression: Logistic regression more generally

Logistic regression in more general case, where Y in {0,...,C-1}

for
$$c>0$$

$$P(Y = c|\mathbf{x}, \mathbf{w}) = \frac{\exp(w_{c0} + \sum_{i=1}^{k} w_{ci}x_i)}{1 + \sum_{c'=1}^{C-1} \exp(w_{c'0} + \sum_{i=1}^{k} w_{c'i}x_i)}$$

for c=0 (normalization, so no weights for this class)

$$P(Y = 0 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + \sum_{c'=1}^{C-1} \exp(w_{c'0} + \sum_{i=1}^{k} w_{c'i} x_i)}$$

Learning procedure is basically the same as what we derived!

Stochastic Gradient Descent

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014 ©Carlos Guestrin 2005-2014

The Cost, The Cost!!! Think about the cost...

What's the cost of a gradient update step for LR???

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \widehat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

Learning Problems as Expectations

- Minimizing loss in training data:
 - □ Given dataset:
 - Sampled iid from some distribution p(x) on features:
 - □ Loss function, e.g., squared error, logistic loss,...
 - □ We often minimize loss in training data:

$$\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{w}, \mathbf{x}^j)$$

However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

So, we are approximating the integral by the average on the training data

SGD: Stochastic Gradient Ascent (or Descent)

"True" gradient:

$$\nabla \ell(\mathbf{w}) = E_{\mathbf{x}} \left[\nabla \ell(\mathbf{w}, \mathbf{x}) \right]$$

Sample based approximation:

- What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient
 - □ Very noisy!
 - Called stochastic gradient ascent (or descent)
 - Among many other names
 - □ VERY useful in practice!!!

Stochastic Gradient Ascent for Logistic Regression

$$E_{\mathbf{x}}\left[\ell(\mathbf{w}, \mathbf{x})\right] = E_{\mathbf{x}}\left[\ln P(y|\mathbf{x}, \mathbf{w}) - \lambda ||\mathbf{w}||_{2}^{2}\right]$$

Batch gradient ascent updates:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^N x_i^{(j)} [y^{(j)} - P(Y = 1 | \mathbf{x}^{(j)}, \mathbf{w}^{(t)})] \right\}$$

- Stochastic gradient ascent updates:
 - □ Online setting:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\}$$

Stochastic Gradient Descent for LR: Intuition

Gender (F=1, M=0)	Age (Young=0, Middle=1, Old=2)	Location (US=1, Abroad=0)	Income (High=1, Low=0)	Referrer	New or Returning (New=1,, Returning =0)	Clicked? (Click=1, NoClick=0)

Until convergence: get a data point

a. Encode data as numbers

b. For each feature

- Compute gradient for this data point
- ii. Update parameter

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\}$$

Stochastic Gradient Ascent: general case

- Given a stochastic function of parameters:
 - Want to find maximum

- Start from **w**⁽⁰⁾
- Repeat until convergence:
 - □ Get a sample data point x^t
 - □ Update parameters:

- Works on the online learning setting!
- Complexity of each gradient step is constant in number of examples!
- In general, step size changes with iterations

What you should know...

- Classification: predict discrete classes rather than real values
- Logistic regression model: Linear model
 - □ Logistic function maps real values to [0,1]
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization
- Cost of gradient step is high, use stochastic gradient descent

What's the Perceptron Optimizing?

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014 ©Carlos Guestrin 2005-2014

Remember our friend the Perceptron Algorithm

- At each time step:
 - ☐ Observe a data point:

☐ Update parameters if make a mistake:

What is the Perceptron Doing???

- When we discussed logistic regression:
 - Started from maximizing conditional log-likelihood

- When we discussed the Perceptron:
 - □ Started from description of an algorithm

What is the Perceptron optimizing????

Perceptron Prediction: Margin of Confidence

Hinge Loss

- Perceptron prediction:
- Makes a mistake when:

■ Hinge loss (same as maximizing the margin used by SVMs)

Stochastic Gradient Descent for Hinge Loss

SGD: observe data point x^(t), update each parameter

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta_t \frac{\partial \ell(\mathbf{w}^{(t)}, x^{(t)})}{\partial w_i}$$

How do we compute the gradient for hinge loss?

(Sub)gradient of Hinge

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta_t \frac{\partial \ell(\mathbf{w}^{(t)}, x^{(t)})}{\partial w_i}$$

- Subgradient of hinge loss:
 - □ If $y^{(t)}(w.x^{(t)}) > 0$:
 - □ If $y^{(t)}(w.\mathbf{x}^{(t)}) < 0$:
 - □ If $y^{(t)}(w.x^{(t)}) = 0$:
 - □ In one line:

Stochastic Gradient Descent for Hinge Loss

■ SGD: observe data point x^(t), update each parameter

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta_t \frac{\partial \ell(\mathbf{w}^{(t)}, x^{(t)})}{\partial w_i}$$

How do we compute the gradient for hinge loss?

Perceptron Revisited

SGD for hinge loss:

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \eta_t \mathbb{1} \left[y^{(t)} (\mathbf{w}^{(t)} \cdot \mathbf{x}^{(t)}) \le 0 \right] y^{(t)} \mathbf{x}^{(t)}$$

Perceptron update:

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \mathbb{1} \left[y^{(t)} (\mathbf{w}^{(t)} \cdot \mathbf{x}^{(t)}) \le 0 \right] y^{(t)} \mathbf{x}^{(t)}$$

Difference?

What you need to know

- Perceptron is optimizing hinge loss
- Subgradients and hinge loss
- (Sub)gradient decent for hinge objective

Support Vector Machines

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014 ©Carlos Guestrin 2005-2014

Support Vector Machines

- One of the most effective classifiers to date!
- Popularized kernels
- There is a complicated derivation, but...
- Very simple based on what you've learned thus far!

Linear classifiers – Which line is better?

Pick the one with the largest margin!

Maximize the margin

SVMs = Hinge Loss + L2 Regularization

Maximizing Margin same as regularized hinge loss

But, SVM "convention" is confidence has to be at least 1...

L2 Regularized Hinge Loss

Final objective, adding regularization:

But, again, in SVMs, convention slightly different (but equivalent)

$$\frac{||\mathbf{w}||_2^2}{2} + C \sum_{j=1}^N (1 - y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0))_+$$

SVMs for Non-Linearly Separable meet my friend the Perceptron...

$$\sum_{j=1}^{N} \left(-y^{j} (\mathbf{w} \cdot \mathbf{x}^{j} + w_{0}) \right)_{+}$$

SVMs minimizes the regularized hinge loss!!

$$||\mathbf{w}||_2^2 + C \sum_{j=1}^N (1 - y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0))_+$$

Stochastic Gradient Descent for SVMs

Perceptron minimization:

$$\sum_{j=1}^{N} \left(-y^{j} (\mathbf{w} \cdot \mathbf{x}^{j} + w_{0}) \right)_{+}$$

SGD for Perceptron:

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \mathbb{1} \left[y^{(t)} (\mathbf{w}^{(t)} \cdot \mathbf{x}^{(t)}) \le 0 \right] y^{(t)} \mathbf{x}^{(t)}$$

SVMs minimization:

$$||\mathbf{w}||_2^2 + C \sum_{j=1}^N (1 - y^j (\mathbf{w} \cdot \mathbf{x}^j + w_0))_+$$

SGD for SVMs:

What you need to know

- 100
 - Maximizing margin
 - Derivation of SVM formulation
 - Non-linearly separable case
 - ☐ Hinge loss
 - □ A.K.A. adding slack variables
 - SVMs = Perceptron + L2 regularization
 - Can also use kernels with SVMs
 - Can optimize SVMs with SGD
 - Many other approaches possible

Boosting

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 27, 2014

©Carlos Guestrin 2005-2014

Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
 - □ e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - □ Low variance, don't usually overfit too badly
- Simple (a.k.a. weak) learners are bad
 - ☐ High bias, can't solve hard learning problems
- Can we make weak learners always good???
 - □ No!!!
 - But often yes...

The Simplest Weak Learner: Thresholding, a.k.a. Decision Stumps

- **Learn**: $h: X \mapsto Y$
 - □ X features
 - ☐ Y target classes
- Simplest case: Thresholding

Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
 - Classifiers that are most "sure" will vote with more conviction
 - Classifiers will be most "sure" about a particular part of the space
 - □ On average, do better than single classifier!

- But how do you ????
 - force classifiers to learn about different parts of the input space?
 - weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - □ Learn a hypothesis h_t
 - \square A strength for this hypothesis α_{t}
- Final classifier:

- Practically useful
- Theoretically interesting

Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others
- Consider a weighted dataset
 - \Box D(j) weight of j th training example ($\mathbf{x}^{j}, \mathbf{y}^{j}$)
 - Interpretations:
 - jth training example counts as D(j) examples
 - If I were to "resample" data, I would get more samples of "heavier" data points
- Now, in all calculations, whenever used, j th training example counts as D(j) "examples"

Boosting Cartoon

AdaBoost

- Initialize weights to uniform dist: D₁(j) = 1/N
- For t = 1...T
 - □ Train weak learner h_t on distribution D_t over the data
 - \Box Choose weight α_t
 - □ Update weights:

$$D_{t+1}(j) = \frac{D_t(j) \exp(-\alpha_t y^j h_t(x^j))}{Z_t}$$

■ Where Z_t is normalizer:

$$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y^j h_t(x^j))$$

Output final classifier:

Picking Weight of Weak Learner

Weigh h_t higher if it did well on training data (weighted by D_t):

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

 \square Where ε_t is the weighted training error:

$$\epsilon_t = \sum_{j=1}^{N} D_t(j) \mathbb{1}[h_t(x^j) \neq y^j]$$

AdaBoost Cartoon $D_{t+1}(j) = \frac{D_t(j) \exp(-\alpha_t y^j h_t(x^j))}{Z_t}$

$$D_{t+1}(j) = \frac{D_t(j) \exp(-\alpha_t y^j h_t(x^j))}{Z_t}$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Why choose α_t for hypothesis h_t this way?

[Schapire, 1989]

$$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y^j h_t(x^j))$$

Training error upper-bounded by product of normalizers

$$\frac{1}{N} \sum_{j=1}^{N} \mathbb{1}[H(x^j) \neq y^j] \le \prod_{t=1}^{T} Z_t$$

- \square Pick α_t to minimize upper-bound
 - Take derivative and set to zero!

Strong, weak classifiers

- If each classifier is (at least slightly) better than random
 - \square $\epsilon_{\rm t} < 0.5$
- AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{N} \sum_{j=1}^{N} \mathbb{1}[H(x^j) \neq y^j] \le \prod_{t=1}^{T} Z_t \le \exp\left(-2\sum_{t=1}^{T} (1/2 - \epsilon_t)^2\right)$$

Is it hard to achieve better than random training error?

Boosting results – Digit recognition

[Schapire, 1989]

- Boosting often
 - □ Robust to overfitting
 - □ Test set error decreases even after training error is zero

Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]

What you need to know about Boosting

- 100
 - Combine weak classifiers to obtain very strong classifier
 - Weak classifier slightly better than random on training data
 - □ Resulting very strong classifier can eventually provide zero training error
 - AdaBoost algorithm
 - Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier