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What is Machine Learning ? 
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Machine Learning 

Study of algorithms that 
n  improve their performance  
n  at some task  
n  with experience 

Data Understanding Machine  
Learning 
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Classification 
 

from data to discrete classes 
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Spam filtering  
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data prediction 
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Text classification 

Company home page 

 vs 

Personal home page 

 vs 

Univeristy home page 

 vs 

… 
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Object detection 

Example training images 
for each orientation 

(Prof. H. Schneiderman) 
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Reading 
a noun 
(vs verb) 

[Rustandi et al., 
2005] 
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Weather prediction 
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The classification pipeline 
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Training 

Testing 
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Regression 
 

predicting a numeric value 

Stock market 
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Weather prediction revisted 
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Temperature 
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Modeling sensor data 

n  Measure temperatures at 
some locations 

n  Predict temperatures 
throughout the environment 
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Similarity 
 

finding data 

Given image, find similar images 
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Similar products 
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Clustering 
 

discovering structure in data 
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Clustering Data: Group similar things 
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Clustering images 
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Set of Images 
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Clustering web search results 
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Recommender Systems 
 

figuring out what your customers want 
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Collaborative Filtering 

n  Goal: Find movies of interest to a user based on 
movies watched by the user and others 

n  Methods: matrix factorization 
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recommend 

City of God 

Wild Strawberries 

The Celebration 

La Dolce Vita 

Women on the Verge of a 
Nervous Breakdown 

What do I  
recommend??? 

©2005-2014 Carlos Guestrin 24 
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Embedding 
 

visualizing data 

Embedding images 
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Images have thousands or 
millions of pixels. 

 
Can we give each image a 

coordinate,  
such that similar images 

are near each other? 

[Saul & Roweis ‘03] 
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Embedding words 
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Embedding words (zoom in) 
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Reinforcement Learning 
 

training by feedback 
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Learning to act 

n  Reinforcement learning 
n  An agent  

¨  Makes sensor observations 
¨  Must select action 
¨  Receives rewards  

n  positive for “good” states 
n  negative for “bad” states 

[Ng et al. ’05]  
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Bringing it all together… 

HURLEY:  Uh ... the 
Chinese people have 
water. 
(Sayid and Kate go 
to check it out.)   
 
[EXT. BEACH - 
CRASH SITE]   
 
(Sayid holds the 
empty bottle in his 
hand and questions 
Sun.)   
 
SAYID:  (quietly)  
Where did you get 
this?  
(He looks at her.)  
 
[EXT. JUNGLE] 
 
(Sawyer is walking 
through the jungle.  
He reaches a spot.  
He kneels down and 
looks back to check 
that no one's 
followed him. 

 
SAYID 

 
SUN 

 
BOTTLE 

 
BEACH 

 
HOLDING 

32 

Combining video, text and audio 

Taskar et al. ©2005-2014 Carlos Guestrin 



17 

Automatically Discovered and  
Labeled Actions shout	



swim	



wake	



smile	



point	



sit down	



follow	



grab	

 kiss	

 open door	
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Growth of Machine Learning 

n  Machine learning is preferred approach to 
¨  Speech recognition, Natural language processing 
¨  Computer vision 
¨  Medical outcomes analysis 
¨  Robot control 
¨  Computational biology 
¨  Sensor networks 
¨  … 

n  This trend is accelerating, especially with Big Data 
¨  Improved machine learning algorithms  
¨  Improved data capture, networking, faster computers 
¨  Software too complex to write by hand 
¨  New sensors / IO devices 
¨  Demand for self-customization to user, environment 

One of the most sought for specialties in industry today!!!!  
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Syllabus 

n  Covers a wide range of Machine Learning 
techniques  –  from basic to state-of-the-art 

n  You will learn about the methods you heard about: 
¨  Point estimation, regression, naïve Bayes, logistic regression, nearest-neighbor, 

decision trees, boosting, perceptron, overfitting, regularization, dimensionality 
reduction, PCA, recommender systems, matrix factorization, SVMs, kernels, margin 
bounds, K-means, EM, mixture models, semi-supervised learning, neural networks, 
reinforcement learning…  

n  Covers algorithms, theory and applications 
n  It’s going to be fun and hard work J 
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Prerequisites 

n  Formally: 
¨  STAT 341, STAT 391, or equivalent 

n  Probabilities  
¨  Distributions, densities, marginalization… 

n  Basic statistics 
¨  Moments, typical distributions, regression… 

n  Algorithms 
¨  Dynamic programming, basic data structures, complexity… 

n  Programming 
¨  Python will be very useful 

n  We provide some background, but the class will be fast paced 

n  Ability to deal with “abstract mathematical concepts” 
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Staff 

n  Two Great TAs: Great resource for learning, interact 
with them! 
¨  Akshay Srinivasan 

Office hours: Wednesdays 4:30-6:30pm 

¨  TianyiZhou 
Office hours: Tuesdays 4:30-6:30pm 

 

¨  Prof: Carlos Guestrin 
Office hours: Mondays 5:30-6:30pm 
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Communication Channels 

n  Only channel for announcements, questions, 
etc. – Catalyst Group: 
¨ https://catalyst.uw.edu/gopost/board/tianyizh/35317/ 
¨ Subscribe! 
¨ All non-personal questions should go here 
¨ Answering your question will help others 
¨ Feel free to chime in 

n  For e-mailing instructors about personal issues, 
use: 
¨   csep546-instructors@cs.washington.edu 
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Text Books 

n  Required Textbook:  
¨  Machine Learning: a Probabilistic Perspective; Kevin Murphy 

n  Optional Books: 
¨  Pattern Recognition and Machine Learning; Chris Bishop 
¨  The Elements of Statistical Learning: Data Mining, Inference, 

and Prediction; Trevor Hastie, Robert Tibshirani, Jerome 
Friedman 

¨  Machine Learning; Tom Mitchell 
¨  Information Theory, Inference, and Learning Algorithms; David 

MacKay 
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Grading 

n  4 homeworks (70%) 
¨ First one goes out this week 

n  Start early, Start early, Start early, Start early, Start early, 
Start early, Start early, Start early, Start early, Start early, 
Start early, Start early, Start early, Start early, Start early, 
Start early, Start early, Start early, Start early, Start early 

n  Final project (30%) 
¨ Full details out around next week 

¨ Projects done individually, or groups of two students   
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Homeworks 
n  Homeworks are hard, start early J 
n  Due in the beginning of class 
n  33% subtracted per late day 
n  All homeworks must be handed in, even for zero credit 
n  Use Catalyst to submit homeworks 

n  Collaboration 
¨  You may discuss the questions 
¨  Each student writes their own answers 
¨  Write on your homework anyone with whom you collaborate 
¨  Each student must write their own code for the programming part 
¨  Please don’t search for answers on the web, Google, previous years’ 

homeworks, etc.   
n  please ask us if you are not sure if you can use a particular reference 

Projects 
n  An opportunity to exercise what you learned and to learn new things 
n  Individually or groups of two 
n  Must involve real data 

¨  Must be data that you have available to you by the time of the project proposals 
n  Must involve machine learning 
n  It’s encouraged to be related to your research, but must be something new 

you did this quarter 
¨  Not a project you worked on during the summer, last year, etc. 

n  Full details in a week or so 

n  Mon., January 27 by 6:30pm: Project Proposals 
n  Mon., February 24 by 6:30pm: Project Milestone 
n  Mon., March 17 by 6:30pm: Poster Session 
n  Mon., March 19 by 6:30pm: Project Report 
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Enjoy! 

n  ML is becoming ubiquitous in science, 
engineering and beyond 

n  It’s one of the hottest topics in industry today  
n  This class should give you the basic foundation 

for applying ML and developing new methods 
n  The fun begins… 

©2005-2014 Carlos Guestrin 44 

Point Estimation 
MLE 

Machine Learning – CSEP546 
Carlos Guestrin 
University of Washington 
 

January 6, 2014 
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Your first consulting job 

n  A billionaire from the suburbs of Seattle asks you 
a question: 
¨ He says: I have thumbtack, if I flip it, what’s the 

probability it will fall with the nail up? 
¨ You say: Please flip it a few times: 

¨ You say: The probability is: 

¨ He says: Why??? 
¨ You say: Because… 
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Thumbtack – Binomial Distribution 

n  P(Heads) = θ,  P(Tails) = 1-θ	



n  Flips are i.i.d.: 
¨  Independent events 
¨  Identically distributed according to Binomial 

distribution 
n  Sequence D of αH Heads and αT Tails   
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Maximum Likelihood Estimation 

n  Data: Observed set D of αH Heads and αT Tails   
n  Hypothesis: Binomial distribution  
n  Learning θ is an optimization problem 

¨ What’s the objective function? 

n  MLE: Choose θ that maximizes the probability of 
observed data: 
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Your first learning algorithm 

n  Set derivative to zero: 
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What about continuous variables? 

n  Billionaire says: If I am measuring a continuous 
variable, what can you do for me? 

n  You say: Let me tell you about Gaussians… 
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Some properties of Gaussians 

n  affine transformation (multiplying by scalar and 
adding a constant) 
¨ X ~ N(µ,σ2) 
¨ Y = aX + b    è Y ~ N(aµ+b,a2σ2) 

n  Sum of Gaussians 
¨ X ~ N(µX,σ2

X) 
¨ Y ~ N(µY,σ2

Y) 
¨ Z = X+Y    è  Z ~ N(µX+µY, σ2

X+σ2
Y) 
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Learning a Gaussian 

n  Collect a bunch of data 
¨ Hopefully, i.i.d. samples 
¨ e.g., exam scores 

n  Learn parameters 
¨ Mean 
¨ Variance 
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MLE for Gaussian 

n  Prob. of i.i.d. samples D={x1,…,xN}: 

n  Log-likelihood of data: 
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Your second learning algorithm: 
MLE for mean of a Gaussian 

n  What’s MLE for mean? 
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MLE for variance 

n  Again, set derivative to zero: 



28 

55 ©2005-2014 Carlos Guestrin 

Learning Gaussian parameters 

n  MLE: 

n  BTW. MLE for the variance of a Gaussian is biased 
¨ Expected result of estimation is not true parameter!  
¨ Unbiased variance estimator: 

What you need to know… 

n  Learning is… 
¨  Collect some data 

n  E.g., thumbtack flips 
¨  Choose a hypothesis class or model 

n  E.g., binomial 
¨  Choose a loss function 

n  E.g., data likelihood 
¨  Choose an optimization procedure 

n  E.g., set derivative to zero to obtain MLE 
¨  Collect the big bucks 

n  Like everything in life, there is a lot more to learn… 
¨  Many more facets… Many more nuances…  
¨  The fun will continue… 
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Linear Regression 

Machine Learning – CSEP546 
Carlos Guestrin 
University of Washington 
 

January 6, 2014 
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Prediction of continuous variables 

n  Billionaire sayz: Wait, that’s not what I meant!      
n  You sayz: Chill out, dude. 
n  He sayz: I want to predict a continuous variable 

for continuous inputs: I want to predict salaries 
from GPA. 

n  You sayz: I can regress that…  

©2005-2014 Carlos Guestrin 
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The regression problem 
n  Instances: <xj, tj> 
n  Learn: Mapping from x to t(x) 
n  Hypothesis space: 

¨  Given, basis functions 
¨  Find coeffs w={w1,…,wk} 

¨  Why is this called linear regression??? 
n  model is linear in the parameters 

n  Precisely, minimize the residual squared error: 

©2005-2014 Carlos Guestrin 
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The regression problem in matrix notation 

N
 data points 

K basis functions 

N
 data points 

observations weights 

K basis func
 

©2005-2014 Carlos Guestrin 
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Minimizing the Residual 

61 ©2005-2014 Carlos Guestrin 
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Regression solution = simple matrix operations 

where 

k×k matrix  
for k basis functions  

k×1 vector 

©2005-2014 Carlos Guestrin 
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n  Billionaire (again) says: Why sum squared error??? 
n  You say: Gaussians, Dr. Gateson, Gaussians… 

n  Model: prediction is linear function plus Gaussian noise 
¨  t(x) = ∑i wi hi(x) + εx	



n  Learn w using MLE 

But, why? 

©2005-2014 Carlos Guestrin 
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Maximizing log-likelihood 

Maximize: 

Least-squares Linear Regression is MLE for Gaussians!!! 
©2005-2014 Carlos Guestrin 
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Bias-Variance Tradeoff 

Machine Learning – CSEP546 
Carlos Guestrin 
University of Washington 
 

January 6, 2014 
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Bias-Variance tradeoff – Intuition  

n  Model too “simple” è does not fit the data well 
¨ A biased solution 

n  Model too complex è small changes to the 
data, solution changes a lot 
¨ A high-variance solution 

©2005-2014 Carlos Guestrin 



34 

67 

(Squared) Bias of learner 

n  Given dataset D with N samples,  
learn function hD(x) 

n  If you sample a different dataset D’ with N samples,  
you will learn different hD’(x) 

n  Expected hypothesis: ED[hD(x)] 

n  Bias: difference between what you expect to learn and truth 
¨  Measures how well you expect to represent true solution 
¨  Decreases with more complex model  
¨  Bias2 at one point x: 
¨  Average Bias2: 

©2005-2014 Carlos Guestrin 
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Variance of learner 

n  Given dataset D with N samples,  
learn function hD(x) 

n  If you sample a different dataset D’ with N samples,  
you will learn different hD’(x) 

n  Variance: difference between what you expect to learn and 
what you learn from a particular dataset  
¨  Measures how sensitive learner is to specific dataset 
¨  Decreases with simpler model 
¨  Variance at one point x: 
¨  Average variance: 

©2005-2014 Carlos Guestrin 
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Bias-Variance Tradeoff 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 
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Bias-Variance Decomposition of Error 

n  Expected mean squared error: 

n  To simplify derivation, drop x:  

n  Expanding the square: 

70 ©2005-2014 Carlos Guestrin 

MSE = E

D

h
E

x

h
(t(x)� h

D

(x))2
ii

h̄N (x) = ED[hD(x)]
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Moral of the Story: 
Bias-Variance Tradeoff Key in ML 

n  Error can be decomposed: 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 

MSE = E

D

h
E

x

h
(t(x)� h

D

(x))2
ii

= E

x

h�
t(x)� h̄

N

(x)
�2i

+ E

D

h
E

x

h�
h̄(x)� h

D

(x)
�2ii
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What you need to know 

n  Regression 
¨ Basis function = features 
¨ Optimizing sum squared error 
¨ Relationship between regression and Gaussians 

n  Bias-variance trade-off 
n  Play with Applet 

©2005-2014 Carlos Guestrin 
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Overfitting 

Machine Learning – CSE446 
Carlos Guestrin 
University of Washington 
 

January 6, 2014 

Bias-Variance Tradeoff 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 

©2005-2014 Carlos Guestrin 74 
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Training set error 

n  Given a dataset (Training data) 
n  Choose a loss function 

¨ e.g., squared error (L2) for regression 

n  Training set error: For a particular set of 
parameters, loss function on training data: 

©2005-2014 Carlos Guestrin 75 

Training set error as a function of 
model complexity 

©2005-2014 Carlos Guestrin 76 
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Prediction error 

n  Training set error can be poor 
measure of “quality” of solution 

n  Prediction error: We really care 
about error over all possible input 
points, not just training data: 
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Prediction error as a function of model 
complexity: Bias/Variance tradeoff 
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40 

Prediction error as a function of 
model complexity: train v. true error  
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Computing prediction error 

n  Computing prediction  
¨  Hard integral 
¨  May not know t(x) for every x 

n  Monte Carlo integration (sampling approximation) 
¨  Sample a set of i.i.d. points {x1,…,xM} from p(x) 
¨  Approximate integral with sample average 

©2005-2014 Carlos Guestrin 80 
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Why training set error doesn’t 
approximate prediction error? 

n  Sampling approximation of prediction error: 

n  Training error : 

n  Very similar equations!!!  
¨  Why is training set a bad measure of prediction error??? 
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Why training set error doesn’t 
approximate prediction error? 

n  Sampling approximation of prediction error: 

n  Training error : 

n  Very similar equations!!!  
¨  Why is training set a bad measure of prediction error??? 

Because you cheated!!!  
 

Training error good estimate for a single w,  
But you optimized w with respect to the training error,  

and found w that is good for this set of samples 
 

Training error is a (optimistically) biased  
estimate of prediction error  
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Test set error 

n  Given a dataset, randomly split it into two parts:  
¨ Training data – {x1,…, xNtrain} 
¨ Test data – {x1,…, xNtest} 

n  Use training data to optimize parameters w 
n  Test set error: For the final output w, evaluate 

the error using: 
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^ 

Test set error as a function of 
model complexity 
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Overfitting 

n  Overfitting: a learning algorithm overfits the 
training data if it outputs a solution w when there 
exists another solution w’ such that: 
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How many points to I use for 
training/testing? 

n  Very hard question to answer! 
¨  Too few training points, learned w is bad 
¨  Too few test points, you never know if you reached a good solution 
¨  Some theoretical bounds can be useful in theory… J 

 
n  More on this later this quarter, but still hard to answer 
n  Typically: 

¨  If you have a reasonable amount of data, pick test set “large enough” 
for a “reasonable” estimate of error, and use the rest for learning 

¨  If you have little data, then you need to pull out the big guns… 
n  e.g., bootstrapping  
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Error estimators  

©2005-2014 Carlos Guestrin 87 

Error as a function of number of training 
examples for a fixed model complexity 

little data infinite data 
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Error estimators  

Be careful!!!  
 

Test set only unbiased if you never never ever ever 
do any any any any learning on the test data 

 
For example, if you use the test set to select 

the degree of the polynomial… no longer unbiased!!! 
(We will address this problem later in the quarter) 
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What you need to know 

n  True error, training error, test error 
¨  Never learn on the test data 
¨  Never learn on the test data 
¨  Never learn on the test data 
¨  Never learn on the test data 
¨  Never learn on the test data 

n  Overfitting 
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