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Clustering images 

[Goldberger et al.] 

Set of Images 
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Clustering web search results 
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Example 
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(Taken from Kevin Murphy’s ML textbook) 
n  Data: gene expression levels 
n  Goal: cluster genes with similar expression trajectories 
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Some Data 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints) 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns… 

5.  …and jumps there 

6.  …Repeat until 
terminated! ©Carlos Guestrin 2005-2014 10 



K-means 

n  Randomly initialize k centers 
¨   µ(0) = µ1

(0),…, µk
(0) 

n  Classify: Assign each point j∈{1,…N} to nearest 
center: 
¨    

n  Recenter: µi becomes centroid of its point: 
¨     

¨ Equivalent to µi ← average of its points! 
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What is K-means optimizing?  

n  Potential function F(µ,C) of centers µ and point 
allocations C: 

¨    

n  Optimal K-means: 
¨ minµminC F(µ,C)  

N 
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Does K-means converge??? Part 1 

n  Optimize potential function: 

n  Fix µ, optimize C 
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Does K-means converge??? Part 2 

n  Optimize potential function: 

n  Fix C, optimize µ	
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Coordinate descent algorithms 

n  Want: mina minb F(a,b) 
n  Coordinate descent: 

¨  fix a, minimize b 
¨  fix b, minimize a 
¨  repeat 

n  Converges!!! 
¨  if F is bounded 
¨  to a (often good) local optimum  

n  as we saw in applet (play with it!) 
¨  (For LASSO it converged to the global  

optimum, because of convexity) 

n  K-means is a coordinate descent algorithm! 
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(One) bad case for k-means 

n  Clusters may overlap 
n  Some clusters may be 

“wider” than others 
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Non-
spherical 
data 
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Quick Review of Gaussians 
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n  Univariate and multivariate Gaussians 
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Two-Dimensional Gaussians 
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Gaussians in d Dimensions 
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P(x) = 1
(2π )d /2 || Σ ||1/2

exp − 1
2
x−µ( )T Σ−1 x−µ( )

#

$%
&

'(
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Learning Gaussians 

n  Given data: 
n  MLE for mean: 

n  MLE for covariance: 
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P(x) = 1
(2π )d /2 || Σ ||1/2

exp − 1
2
x−µ( )T Σ−1 x−µ( )

#
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When the world is not Gaussian 
n  Distribution of male heights in US 

n  Distribution of male heights in Sweden  

n  What if we mix these together? 
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Gaussian Mixture Model 

©Carlos Guestrin 2005-2014 

n  Most commonly used mixture model 
n  Observations: 

n  Parameters: 

n  Cluster indicator: 

n  Per-cluster likelihood: 

n  Ex.      = country of origin,      = height of ith person 
¨  kth mixture component = distribution of heights in country k 

x

izi

(a)

0 0.5 1

0

0.5

1
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Generative Model 

n  We can think of sampling observations  
from the model 

 
n  For each observation i, 

¨  Sample a cluster assignment 

¨  Sample the observation from the  
selected Gaussian 
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(a)
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n  Estimate a density based on x1,…,xN 

Density Estimation 
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Density Estimation 

Contour Plot of Joint Density 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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p(xi|⇡, µ,⌃) =

29 



Density as Mixture of Gaussians 

n  Approximate with density with a mixture of Gaussians 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)

0 0.5 1

0

0.5

1

Complete data labeled 
by true cluster assignments 

(a)
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 
by true cluster assignments 

(a)

0 0.5 1

0

0.5

1

n  Introduce latent cluster 
indicator variable zi 

 

n  Then we have 
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p(xi|zi,⇡, µ,⌃) =

32 



Clustering our Observations 

n  We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

n  Posterior probabilities of 
assignments to each cluster 
*given* model parameters: 

Soft assignments to clusters 

(c)

0 0.5 1

0

0.5

1
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rik = p(zi = k|xi
,⇡, µ,⌃) =

33 



Unsupervised Learning: 
not as hard as it looks 

 
Sometimes easy 

 
Sometimes impossible 

 
and sometimes in between 
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n  Estimate a density based on x1,…,xN 

Summary of GMM Concept 

Surface Plot of Joint Density, 
Marginalizing Cluster Assignments 

Complete data labeled 
by true cluster assignments 

(a)

0 0.5 1

0

0.5

1
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p(xi|⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi|µzi
,⌃zi)
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Summary of GMM Components 
n  Observations 

n  Hidden cluster labels 

n  Hidden mixture means 

n  Hidden mixture covariances 

n  Hidden mixture probabilities 

xi 2 Rd
, i = 1, 2, . . . , N

µk 2 Rd, k = 1, 2, . . . ,K

zi 2 {1, 2, . . . ,K}, i = 1, 2, . . . , N

⌃k 2 Rd⇥d, k = 1, 2, . . . ,K

⇡k,
KX

k=1

⇡k = 1
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x

i

Gaussian mixture marginal and conditional likelihood : 

p(xi|zi, µ,⌃) = N (xi|µzi
,⌃zi)

p(xi|⇡, µ,⌃) =
KX

zi=1

⇡zi
p(xi|zi, µ,⌃)
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Cluster Documents 

©Carlos Guestrin 2005-2014 

n  Cluster documents based on topic 
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Document Representation 
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n  Bag of words model 
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Issues with Document Representation 

©Carlos Guestrin 2005-2014 

n  Words counts are bad for standard similarity metrics 

 
 
 
 
n  Term Frequency – Inverse Document Frequency (tf-idf) 

¨  Increase importance of rare words 
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TF-IDF 

©Carlos Guestrin 2005-2014 

n  Term frequency: 

¨  Could also use  
n  Inverse document frequency: 

n  tf-idf: 

¨  High for document d with high frequency of term t (high “term frequency”) and few 
documents containing term t in the corpus (high “inverse doc frequency”) 

tf(t, d) =

{0, 1}, 1 + log f(t, d), . . .

idf(t,D) =

tfidf(t, d,D) =

t 
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A Generative Model 

©Carlos Guestrin 2005-2014 

n  Documents: 
n  Associated topics:  
n  Parameters simple 

mixture of Gaussians: 
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What you get from mixture 
model for documents 
n  Words give topic: 

n  Topic proportions: 

n  Topic distribution of each document: 
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Results from Wikipedia data 
using similar model (LDA) 
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Expectation 
Maximization 

Machine Learning – CSEP546 
Carlos Guestrin 

University of Washington 

February 18, 2014 
©Carlos Guestrin 2005-2014 45 



Next…   back to Density Estimation 
 
What if we want to do density estimation with 
multimodal or clumpy data? 
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Learning Model Parameters 

n  Want to learn model parameters 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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ML Estimate of Mixture Model Params 
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n  Log likelihood 

 
n  Want ML estimate 

 

n  Neither convex nor concave and local optima 

L

x

(✓) , log p({xi} | ✓) =
X

i

log

X

z

i

p(x

i

, z

i | ✓)

✓̂ML =
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Complete Data 

n  Imagine we have an assignment of each xi to a cluster 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)

0 0.5 1
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Complete data labeled 
by true cluster assignments 
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n  Assume class labels     were observed in addition to   

n  Compute ML estimates 
¨  Separates over clusters k! 

n  Example: mixture of Gaussians (MoG) 

If “complete” data were observed… 

zi x

i

L

x,z

(✓) =

X

i

log p(x

i

, z

i | ✓)

✓ = {⇡k, µk,⌃k}Kk=1
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Cluster Responsibilities 

n  We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

n  Posterior probabilities of 
assignments to each cluster 
*given* model parameters: 

Soft assignments to clusters 

(c)
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rik = p(zi = k | xi
,⇡,�) =
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n  Motivates a coordinate ascent-like algorithm: 
1.  Infer missing values      given estimate of parameters   
2.  Optimize parameters to produce new      given “filled in” data 
3.  Repeat 

 
n  Example: MoG 

1.  Infer “responsibilities” 

2.  Optimize parameters 

Iterative Algorithm 

zi ✓̂
✓̂ zi

rik = p(zi = k | xi
, ✓̂

(t�1)) =

max w.r.t. ⇡k :

max w.r.t. �k :
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E.M. Convergence 

n  This algorithm is REALLY USED.  And in high dimensional state spaces, too.  
E.G. Vector Quantization for Speech Data 

•  EM is coordinate 
ascent on an 
interesting potential 
function 

•  Coord. ascent for 
bounded pot. func. è 
convergence to a 
local optimum 
guaranteed 
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Gaussian Mixture Example: Start 
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After first iteration 
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After 2nd iteration 
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After 3rd iteration 
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After 4th iteration 
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After 5th iteration 
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After 6th iteration 
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After 20th iteration 
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Some Bio Assay data 
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GMM clustering of the assay data 
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Resulting 
Density 
Estimator 
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n  In mixture model case where    there are 
many ways to initialize the EM algorithm 
 

n  Examples: 
¨  Choose K observations at random to define each cluster.  

Assign other observations to the nearest “centriod” to form 
initial parameter estimates 

¨  Pick the centers sequentially to provide good coverage of data 
¨  Grow mixture model by splitting (and sometimes removing) 

clusters until K clusters are formed 
 

n  Can be quite important to convergence rates in practice 

Initialization 

y

i = {zi, xi}
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Label switching 

©Carlos Guestrin 2005-2014 

n  Color = label does not matter 
n  Can switch labels and likelihood 

is unchanged 
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What you should know 

n  K-means for clustering: 
¨  algorithm 
¨  converges because it’s coordinate ascent 

n  EM for mixture of Gaussians: 
¨  How to “learn” maximum likelihood parameters (locally max. like.) in 

the case of unlabeled data 

n  Remember, E.M. can get stuck in local minima, and 
empirically it DOES 

n  EM is coordinate ascent 
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