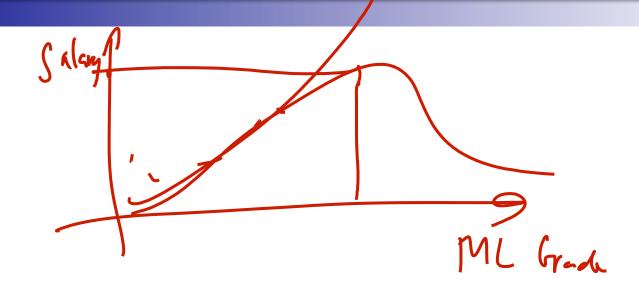
Classification Perceptron

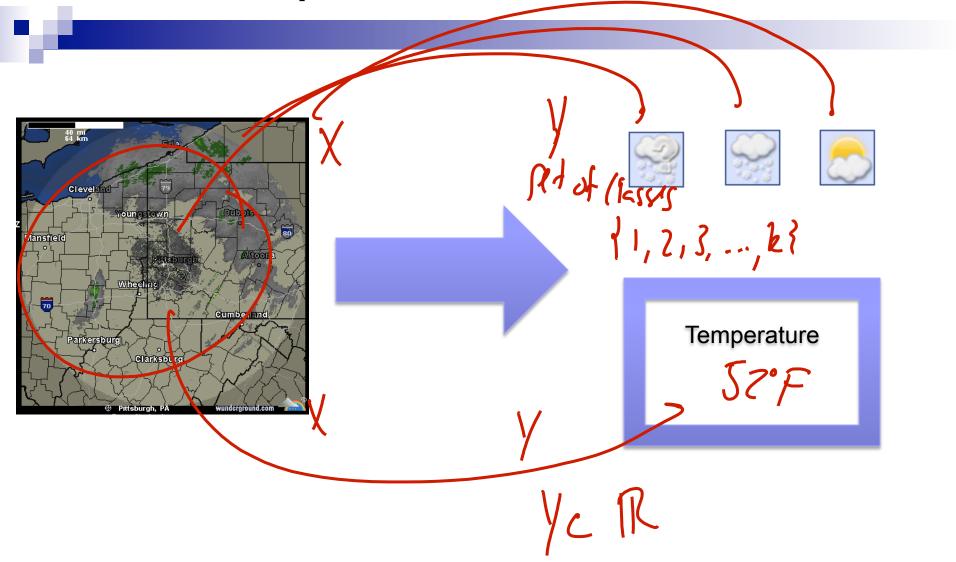
Machine Learning – CSEP546
Carlos Guestrin
University of Washington

January 21, 2014



THUS FAR, REGRESSION: PREDICT A CONTINUOUS VALUE GIVEN SOME INPUTS

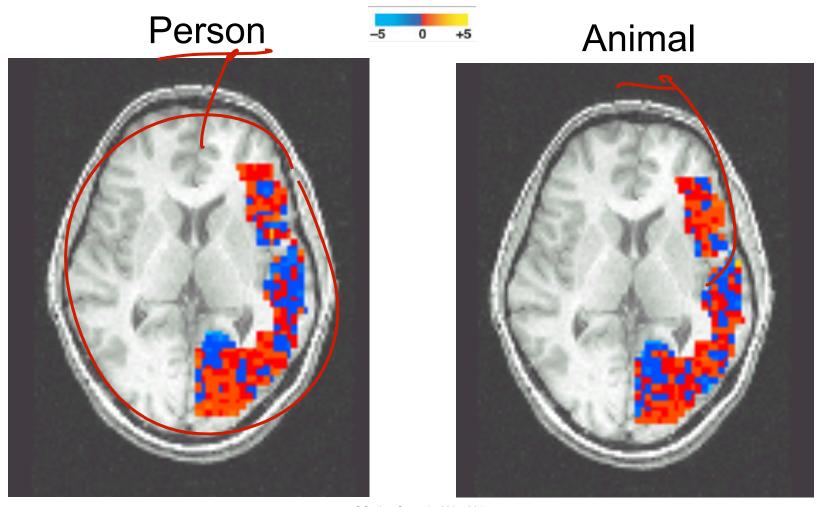
Weather prediction revisted



Reading Your Brain, Simple Example

[Mitchell et al.]

Pairwise classification accuracy: 85%



Classification

sx = (GPA, grade, resume,...)

- Learn: h:X →
 - □ X features
 - ☐ Y target classes

Simplest case: Thresholding

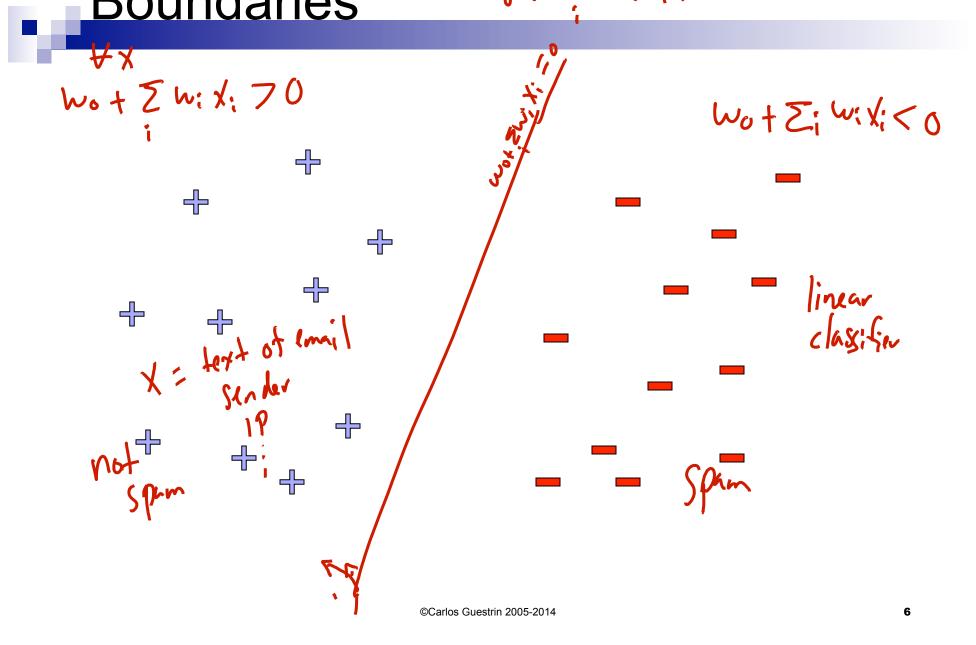
X: Load Compake

Y: alarm?

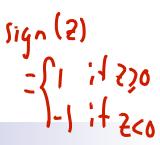
Load 799% => alarm = trac Xi 1/se -> alarm = false

Xi>. 27°C

Linear (Hyperplane) Decision Boundaries



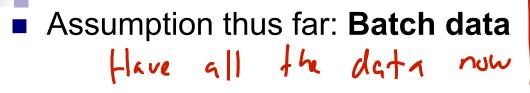
Learning a Linear Classifier - Lite

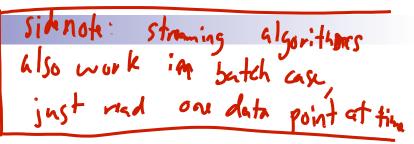


- **Learn**: h: $X \mapsto Y$
 - □ X features
 - ☐ Y target classes

■ Decision rule: γ Sign $(w_0 + \sum_{i=1}^{\infty} w_i x_i)$ $w_0 + \sum_{i=1}^{\infty} w_i x_i > 0$: $\gamma = Sign(w_0 + \sum_{i=1}^{\infty} w_i x_i)$

Challenge: Data is streaming





- But, e.g., in click prediction for ads is a streaming data task:
 - □ User enters query, and ad must be selected:

- □ User either clicks or doesn't click on ad:
 - Label y is revealed afterwards
 - Google gets a reward if user clicks on add (1) = 1
- Weights must be updated for next time:

what's 17 model persons

Online Learning Problem

- At each time step t:
 - Observe features of data point: (4)
 - Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course

Make a prediction:
$$y'' = Sign(w'') + \sum w''(x') + \sum w''(x') = Sign(w'') + \sum w''(x') + \sum w'$$

- For simplicity, use vector notation

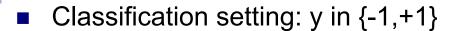
For simplicity, use vector notation
$$w_0(t) + \sum_i w_i(t) \chi_i(t) > 0 \qquad \text{(i)} \qquad y = +1$$
Observe true label:

- Observe true label:
 - Note: other observation models are possible, e.g., we don't observe the label directly, but only a noisy version... Details beyond scope of course

Update model:
$$W^{(+)} \leftarrow W^{(+)} + \Delta^{(+)} \leftarrow learn next$$

If X. is categorical => turn into rumaic value s e.g. binary

The Perceptron Algorithm [Rosenblatt '58, '62]



- Linear model
- Training:

- WW (-9., 0 or random
- Initialize weight vector:
- At each time step:
 - Observe features: Make prediction:
 - Observe true class:
 - Update model:
 - If prediction is not equal to truth

mistake:
$$\hat{y}(t) \neq \hat{y}(t)$$

add

 $x(t) \neq \hat{y}(t) = +1$

or

add

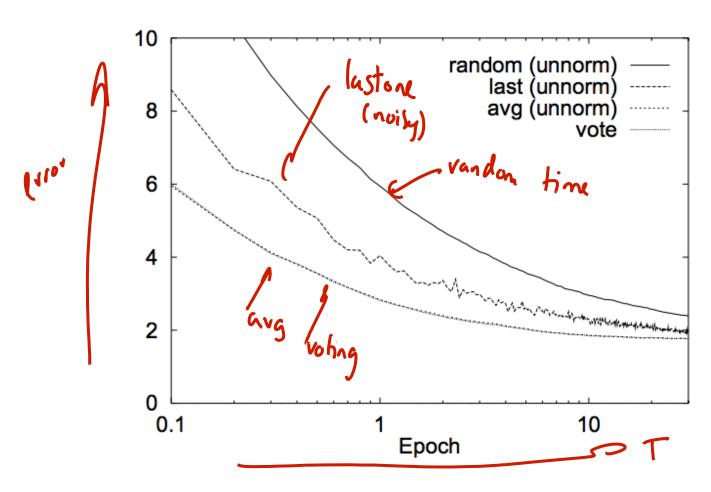
 $x(t) \neq \hat{y}(t) = -1$

Fundamental Practical Problem for All Online Learning Methods: Which weight vector to report?

- Perceptron prediction:
- Suppose you run online learning method and want to sell your learned weight vector... Which one do you sell???
- Last one? w(r)? ← very noisy
- Randon time stop? + very noisy

 average: $\hat{V} = \frac{1}{T} \hat{V}(H) \leftarrow use to show ads$
 - uoting see reading

Choice can make a huge difference!!



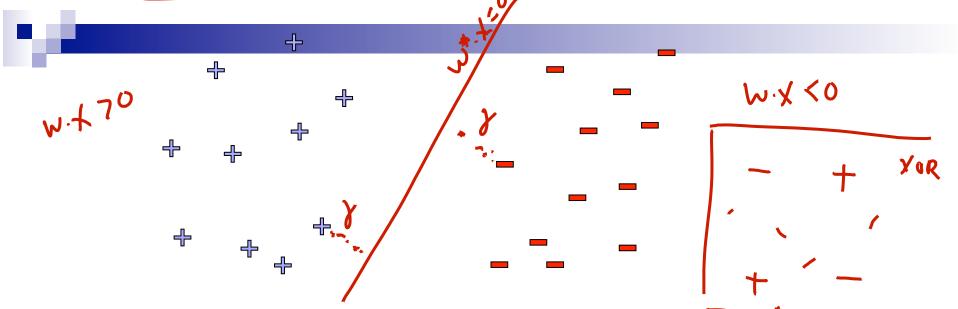
[Freund & Schapire '99]

Mistake Bounds

Algorithm "pays" every time it makes a mistake:

How many mistakes is it going to make?

Linear Separability: More formally, Using Margin



- Data linearly separable, if there exists

 □ a vector 3 w*, || w*||:|

 - □ a margin Y 7,0
- Such that

th that
$$\psi_{x,x}(t) = 1$$
 $\psi_{x,x}(t) = 1$ $\psi_{x,x}(t) = 1$

Perceptron Analysis: Linearly Separable Case

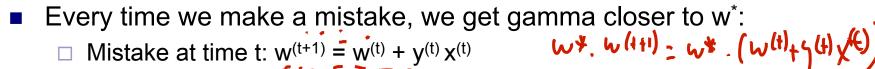
Theorem [Block, Novikoff]:

- $(x^{(1)}, y^{(1)}) \dots (x^{(2)}, y^{(2)}) \dots$
- Given a sequence of labeled examples:
 - Each feature vector has bounded norm: $\forall t \mid |x^{(t)}| \leq R$
- □ If dataset is linearly separable:

Then the number of mistakes made by the online perceptron on any such sequence is bounded by

77 13 kde y=1 wx <0 =) mishle a b. < 11a | 11b1|

Perceptron Proof for Linearly Separable case



- Mistake at time t: $w^{(t+1)} = w^{(t)} + y^{(t)} x^{(t)}$
- Taking dot product with w*:
- Thus after m mistakes:

Similarly, norm of w⁽ⁱ⁺¹⁾ doesn't grow too fast:

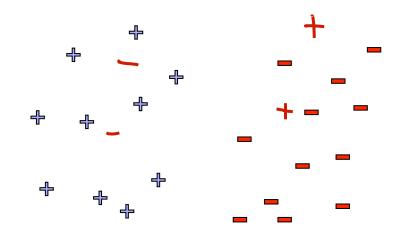
$$||\mathbf{w}^{(t+1)}||^2 = ||\mathbf{w}^{(t)}||^2 + 2y^{(t)}(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(t)}) + ||\mathbf{x}^{(t)}||^2 \leq ||\mathbf{w}^{(t)}||^2 + ||\mathbf{w}^{(t)}||^2 \leq ||\mathbf{w}^{(t)}||^2 + ||\mathbf{x}^{(t)}||^2 + ||\mathbf{x}^{(t)}||^2 \leq ||\mathbf{w}^{(t)}||^2 + ||\mathbf{x}^{(t)}||^2 + ||\mathbf{x}^{(t)$$

Putting all together:

$$m \forall \leq w^{*} \cdot w^{(t+1)} \leq \|w^{*}\| \|w^{(t+1)}\| \leq \sqrt{m} \cdot R$$
 $m \leq (R)^{2} |w^{*}| ||w^{*}|| ||w^{*}|||w^{*}|| ||w^{*}|||w^{*}|| ||w^{*}|| ||w^{*}|| ||w^{*}|||w^{*}|||w^{*}||$

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data
- However, real world not linearly separable
 - Can't expect never to make mistakes again
 - Analysis extends to non-linearly separable case
 - □ Very similar bound, see Freund & Schapire
 - Converges, but ultimately may not give good accuracy (make many many many mistakes)



What you need to know

- - Notion of online learning
 - Perceptron algorithm
 - Mistake bounds and proof
 - In online learning, report averaged weights at the end

Kernels

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

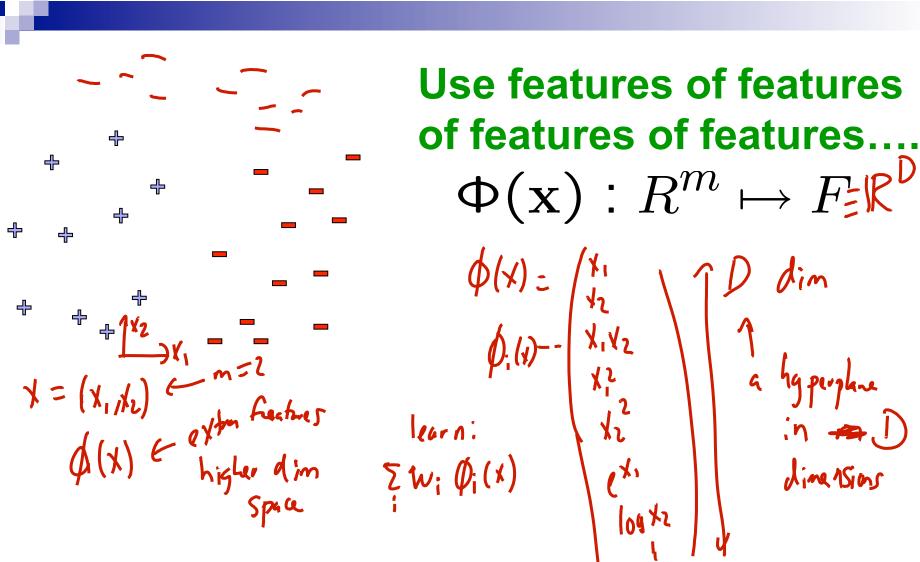
January 21, 2014 ©Carlos Guestrin 2005-2014

Summary Thus Far

- □ Extremely simple classifier, works well in practice, (5716; ally when you add
 - If you generalize it slightly by adding regularization → called a support vector machine (more next time)
- Constant number of mistakes in the linearly separable case
 - □ More general results in the non-linearly separable case
- In general, performance depends on how well we can

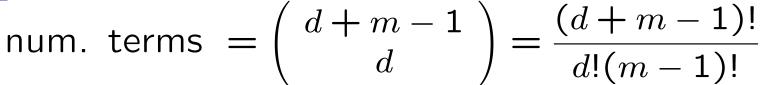
separate the data

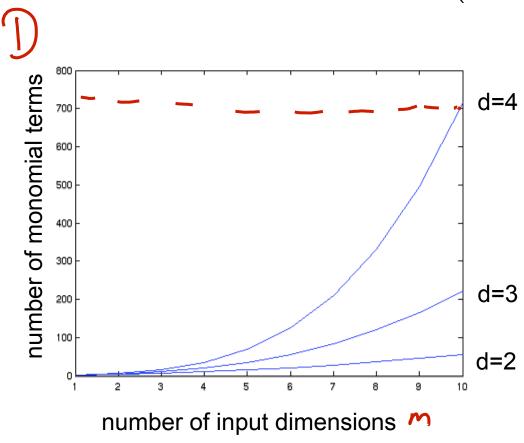
What if the data is not linearly separable?



Feature space can get really large really quickly!

Higher order polynomials





d - degree of polynomial

Kernoli:

eg, barn high degree poky

same cost as

m – input features

grows fast! d = 6, m = 100 about 1.6 billion terms

Perceptron Revisited

Given weight vector w^(t), predict point **x** by:

$$\frac{1}{9} = Sign(w^{(4)} \cdot x)$$

- Mistake at time t: $w^{(t+1)} \leftarrow w^{(t)} + y^{(t)} x^{(t)}$
- Thus, write weight vector in terms of mistaken data points only:
 - Let $M^{(t)}$ be time steps up to t when mistakes were made:

$$W^{(t)} = \sum_{i \in \mathcal{M}(t)} \mathcal{Y}^{(i)} \chi^{(j)}$$

Prediction rule now:

Sign
$$(w^{(i)}, \chi^{(i)}) = Sign(\chi^{(i)}, \chi^{(i)}$$

When using high dimensional features:

Sign
$$(w^{(k)} \cdot \phi(x^{(k)})) = sign \left(\sum_{j \in N^{(k)}} y^{(j)} \cdot \phi(x^{(k)}) \cdot \phi(x^{(k)})\right)$$

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$ $d = \varphi(\mathbf{u}) \cdot \varphi(\mathbf{v}) = \left(\begin{matrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{matrix}\right) \cdot \left(\begin{matrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{matrix}\right) = \left(\begin{matrix} \mathbf{u}_1 \\ \mathbf{v}_1 \end{matrix}\right) + \left(\begin{matrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{matrix}\right) = \left(\begin{matrix} \mathbf{u}_1 \\ \mathbf{v}_2 \end{matrix}\right) = \left(\begin{matrix} \mathbf{v}_1 \\$

$$\frac{d}{d} = 1 \qquad \phi(u) \cdot \phi(v) = \begin{pmatrix} u_1^2 \\ u_1 u_2 \\ u_2 u_3 \\ u_3^2 \end{pmatrix} \cdot \begin{pmatrix} v_1^2 \\ v_1 v_2 \\ v_2^2 \end{pmatrix} = \left(u_1^2 V_1^2 + 2 u_1 u_2 V_2 \right)^2 = \left(u_2 V_1^2 \right)^2$$

$$= \left(u_1 V_1 + u_2 V_2 \right)^2 = \left(u_2 V_1^2 \right)^2$$

"Proof by one sty of induction"

Poly of degree exactly of

$$\phi(u) \phi(v) = (u.v)^d = K(u,v)$$

"kernel | |

Finally the Kernel Trick!!! (Kernelized Perceptron

- Every time you make a mistake, remember $(x^{(t)}, y^{(t)})$ Ly keep index $M^{(t)}$ into mistakes

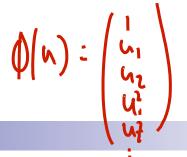
 keep mistake as a list
- Kernelized Perceptron prediction for x:

$$sign(\mathbf{w}^{(t)} \cdot \phi(\mathbf{x})) = \lim_{j \in M^{(t)}} y^{(j)} \phi(\mathbf{x}^{(j)}) \cdot \phi(\mathbf{x})$$

$$fine per all missles \\ for det \\ for dect.$$

$$= \lim_{j \in M^{(t)}} y^{(j)} k(\mathbf{x}^{(j)}, \mathbf{x})$$

Polynomial kernels



$$\Phi(\mathbf{u})\cdot\Phi(\mathbf{v})=(\mathbf{u}\cdot\mathbf{v})^d=$$
 polynomials of degree exactly d

- How about all monomials of degree up to d?

 □ Solution 0: $\phi(v) = \sum_{i=1}^{\infty} (a_i^i) (v_i v_i)^i$

F2:
$$(u,v)^{2} + (u,v)^{2} + (u,v)^{2} = (u,v+1)^{2}$$

$$\frac{1}{(u,v)^{2} + (u,v)^{2} + (u,v)^{2} + (u,v)^{2} = (u,v+1)^{2}}{\phi(u) \cdot \phi(v) = (u,v+1)^{2} = \kappa(u,v)}$$

Common kernels

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian (squared exponential) kernel

moid
$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)^{\kappa}$$
 $\rho_{\alpha c m}$ choose by cross valid

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

What you need to know

- - Notion of online learning
 - Perceptron algorithm
 - Mistake bounds and proofs
 - The kernel trick
 - Kernelized Perceptron
 - Derive polynomial kernel
 - Common kernels
 - In online learning, report averaged weights at the end

Naïve Bayes

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

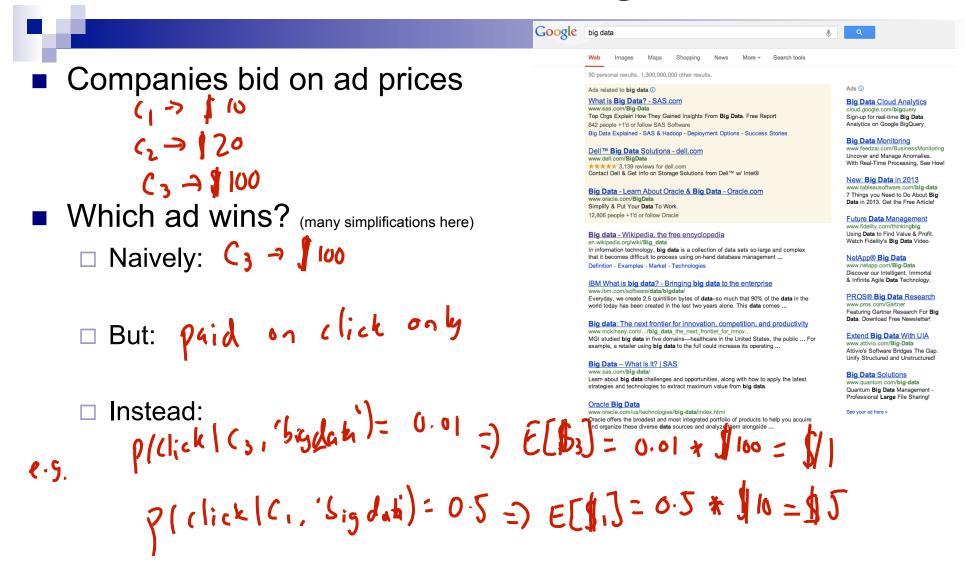
January 21, 2014 ©Carlos Guestrin 2005-2014

Classification

- **Learn**: h: $X \mapsto Y$
 - □ X features
 - □ Y target classes
- Thus far: just a decision boundary

What if you want probability of each class? P(Y|X)

Ad Placement Strategies



Key Task: Estimating Click Probabilities

- What is the probability that user i will click on ad j
- Not important just for ads:
 - Optimize search results
 - □ Suggest news articles
 - □ Recommend products
- Methods much more general, useful for:
 - Classification
 - □ Regression
 - Density estimation

Learning Problem for Click Prediction

Prediction task:
$$\chi \rightarrow [0,1]$$
 $P((k = 1 | \chi))$

Features:

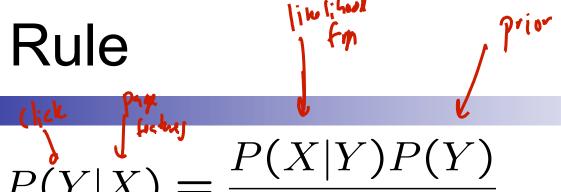
- (X,Y) -) (Wespengel, user 17, ad 27, time:12) -) (lick:true Data:
 - Batch:

Online:

data stream

- Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision trees, boosting,...)
 - Focus on naïve Bayes and logistic regression; captures main concepts, ideas generalize to other approaches

Bayes Rule



$$(\forall i,j)P(Y=y_i|X=x_j) = \frac{P(X=x_j|Y=y_i)P(Y=y_i)}{P(X=x_j)}$$

$$(\forall i,j)P(Y=y_i|X=x_j) = \frac{P(X=x_j|Y=y_i)P(Y=y_i)}{P(X=x_j)}$$

UWCSE

How hard is it to learn the optimal

classifier?

	Gender	Age	Location	Income	Referrer	New or Returning	Clic	ked?	
	F	Young	US	High	Google	New	#	6	
)	M	Middle	US	Low	Direct	New	艺	0	
	F	Old	BR	Low	Google	Returning	*	1	
	M	Young	BR	Low	Bing	Returning	4	6	

■ Data =

P(Y=1|X1, Y2, X3, X4, X5, X6) = P(X1Y1P(Y)/P(X)

How do we represent these? How many parameters?

□ Prior, P(Y): <

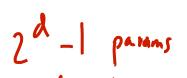
Suppose Y is composed of k classes

P(1) = 1 2 3 1 2 3 1 2 3 K-1 parems

□ Likelihood, P(**X**|Y):

Suppose X is composed of d binary features

P(X=x | Y=y)
For each Y



Y=1

(X=Z|Y= 0-1 0-3 0-2 0-4

because pross. add up & 1

Complex model! High variance with limited data!!!

Conditional Independence (X1) P(y,y) = P(y,y) = P(y) P(y)

independence.

- X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z $(\forall i, j, k) P(X = i | Y = j, Z = k) = P(X = i | Z = k)$
- \blacksquare e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Equivalent to:

$$P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

What if features are independent?

- Predict Thunder $= \bigvee \{\{T_i\}\} \bigvee \{\{Y_i\}\} \} = \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\}\} \bigvee \{\{Y_i\} \bigvee$
 - From two conditionally Independent features

Lightening
$$(x_1)$$
Rain (x_2)

$$(x_1) = 6$$

$$(x_2) = 6$$

$$(x_1) = 6$$

$$(x_2) =$$

The Naïve Bayes assumption

Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

$$= P(X_1|Y)P(X_2|Y)$$
assumption =)
$$= P(X_1|Y)P(X_2|Y)$$
more biast less

More generally:

$$P(X_1...X_d|Y) = \prod_{i \in I} P(X_i|Y)$$

How many parameters now?

The Naïve Bayes Classifier

- Given: □ Prior P(Y d conditionally independent features X given the class Y For each X_i , we have likelihood $P(X_i|Y) \subset P(X_i='(a_i)) = \sum_{i=1}^{n-1} A_i$ argman P(Y=y|x) = argman P(y) P(x|y) y = argman P(y) P(x|y) $p(x) \in$ Decision rule: $= \arg \max_{u} P(y) P(x_1, \dots, x_d \mid y)$ $= \arg\max_{y} P(y) \prod_{i} P(x_i|y) \in \operatorname{Ach}_{\operatorname{value of V}}$
 - If assumption holds, NB is optimal classifier!

b(x/h) = b(x/x) MLE for the parameters of NB

- Given dataset
 - Count(A=a,B=b) == number of examples where A=a and B=b

Subtleties of NB classifier 1 – Violating the NB assumption

Usually, features are not conditionally independent:

$$P(X_1...X_d|Y) \neq \prod_i P(X_i|Y)$$

- Actual probabilities P(Y|X) often biased towards 0 or 1
- Nonetheless, NB is the single most used classifier out there
 - □ NB often performs well, even when assumption is violated
 - [Domingos & Pazzani '96] discuss some conditions for good performance

Subtleties of NB classifier 2 – Insufficient training data

What if you never see a training instance where X₁=a when Y=b?

when Y=b?

(culle,b)
$$\Box$$
 e.g., Y={SpamEmail}, X₁={'CSEP546'}
$$P(Y|X) = P(Y) \prod_{i} P(X_i|Y)$$
alway product
$$P(Y|X) = P(Y|X) = P(Y) \prod_{i} P(X_i|Y)$$

- Thus, no matter what the values $X_2,...,X_d$ take:
 - \square P(Y=b | X₁=a,X₂,...,X_d) = 0

$$Snooth(ant)(X:=X:,Y:y) = (ount(X:,y) + Q.()n;lm(x;y))$$

$$Snooth(ant)(X:=X:,y) = (ount(X:,y) + Q.()n;lm(x;y))$$

$$Snooth(ant)(X:=X:,y) = (ount(X:=X:,y) + Q.()n;lm(x;y)$$

$$Snooth(ant)(X:=X:,y) = (ount(X$$

- Add "fake" counts, usually uniformly distributed ?
- Equivalent to "Bayesian Learning"

Text classification

- Classify e-mails
 - \square Y = {Spam,NotSpam}
- Classify news articles
 - ☐ Y = {what is the topic of the article?}

- ☐ Y = {student, professor, project, ...}
- What about the features X?
 - □ The text!

Features **X** are entire document – X_i for ith word in article

Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.e

From: xxx@yyy.zzz.edu (John Doe)

Subject: Re: This year's biggest and worst (opinic

Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most obvious candidate for pleasant surprise is Alex Zhitnik. He came highly touted as a defensive defenseman, but he's clearly much more than that. Great skater and hard shot (though wish he were more accurate). In fact, he pretty much allowed the Kings to trade away that huge defensive liability Paul Coffey. Kelly Hrudey is only the biggest disappointment if you thought he was any good to begin with. But, at best, he's only a mediocre goaltender. A better choice would be Tomas Sandstrom, though not through any fault of his own, but because someonotheasgepoints.

NB for Text classification

- P(X|Y) is huge!!!
 - \square Article at least 1000 words, $\mathbf{X} = \{X_1, \dots, X_{1000}\}$
 - □ X_i represents ith word in document, i.e., the domain of X_i is entire vocabulary, e.g., Webster Dictionary (or more), 10,000 words, etc.
- NB assumption helps a lot!!!

Bag of words model

- Typical additional assumption Position in document doesn't matter: P(X_i=x_i|Y=y) = P(X_k=x_i|Y=y)
 - □ "Bag of words" model order of words on the page ignored
 - Sounds really silly, but often works very well!

$$P(y) \prod_{i=1}^{LengthDoc} P(x_i|y)$$

When the lecture is over, remember to wake up the person sitting next to you in the lecture room.

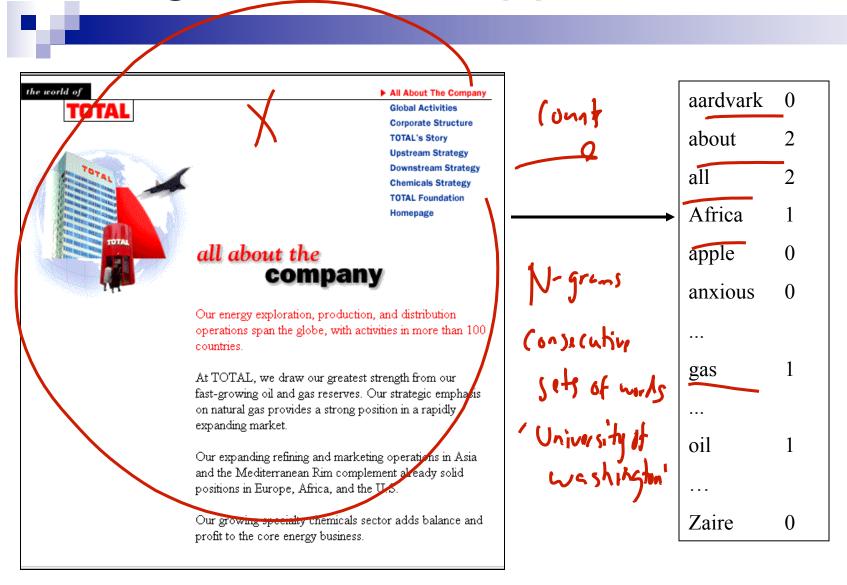
Bag of words model

- Typical additional assumption Position in document doesn't matter: P(X_i=x_i|Y=y) = P(X_k=x_i|Y=y)
 - □ "Bag of words" model order of words on the page ignored
 - □ Sounds really silly, but often works very well!

$$P(y) \prod_{i=1}^{LengthDoc} P(x_i|y)$$

in is lecture lecture next over person remember room sitting the the to to up wake when you

Bag of Words Approach

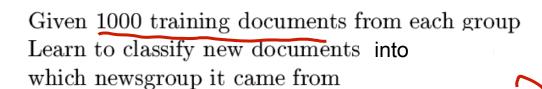


NB with Bag of Words for text classification

- Learning phase:
 - □ Prior P(Y)
 - Count how many documents you have from each topic (+ prior)
 - $\square P(X_i|Y)$
 - For each topic, count how many times you saw word in documents of this topic (+ prior)
- Test phase:
 - □ For each document
 - Use naïve Bayes decision rule

$$h_{NB}(\mathbf{x}) = \arg\max_{y} P(y) \prod_{i=1}^{LengthDoc} P(x_i|y)$$

Twenty News Groups results



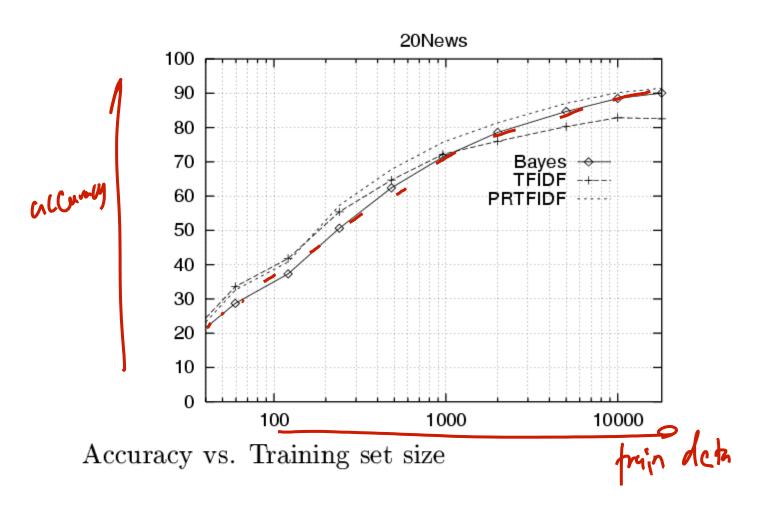
comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.guns

sci.space sci.crypt sci.electronics sci.med

Naive Bayes: 89% classification accuracy

Learning curve for Twenty News Groups



What you need to know

- Click prediction problem
- Probabilities rather than classification
- Naïve Bayes model
 - □ Assumption
 - □ Formulation
- Application to text data
 - □ Bag of words model