Boosting

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

February 3, 2014

©Carlos Guestrin 2005-2014

Fighting the bias-variance tradeoff

- 100
 - Simple (a.k.a. weak) learners are good
 - □ e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - □ Low variance, don't usually overfit too badly
 - Simple (a.k.a. weak) learners are bad
 - ☐ High bias, can't solve hard learning problems

- Can we make weak learners always good???
 - □ No!!!
 - But often yes…

The Simplest Weak Learner: Thresholding, a.k.a. Decision Stumps

- X = (6PA, grade,... **Learn**: h: $X \mapsto Y$
 - □ X features
 - □ Y target classes Ythick, not hind)

Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
 - ☐ Classifiers that are most "sure" will vote with more conviction
 - □ Classifiers will be most "sure" about a particular part of the space
 - On average, do better than single classifier!

H(x) = $\lim_{t \to \infty} \left(\frac{1}{t} + \frac{1}{t} + \frac{1}{t} \right)$

Stationt

e.g. ht(x) = GPA>3.7?

the weight of classific

- But how do you ???
 - force classifiers to learn about different parts of the input space?
 - □ weigh the votes of different classifiers?

Boosting [Schapire, 1989]

 Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote

- On each iteration t:
- 🛶 🗆 weight each training example by how incorrectly it was classified,
 - □ Learn a hypothesis h_t
 - \Box A strength for this hypothesis α_t
- Final classifier:

$$H(X) = \text{list}\left(\sum_{i=1}^{4=1} \alpha^{i} + \mu^{i}(X)\right)$$

- Practically useful
- Theoretically interesting

Learning from weighted data

- Some data points are more equal than others
- Consider a weighted dataset
 - D(j) weight of j th training example ($\mathbf{x}^{j}, \mathbf{y}^{j}$)
 - Interpretations:
 - *j*th training example counts as D(j) examples
 - If I were to "resample" data, I would get more samples of "heavier" data points

Boosting Cartoon

AdaBoost

- For t = 1...T

 - Train weak learner h_t on distribution D_t over the data Choose weight $\alpha_t \leftarrow M^* ji($, for wat slike based quelity if h_t (if $g^j h_t(x^j) < 0$)

 Update weights:
 - Update weights:

$$D_{t+1}(j) = \frac{D_t(j) \exp(-\alpha_t y^j h_t(x^j))}{Z_t}$$

Where Z_t is normalizer:

$$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y^j h_t(x^j))$$

Output final classifier:

$$H(x) = Sign \left(\frac{1}{2} x_{+} k_{+}(x) \right)$$

=) weight D(1)

Picking Weight of Weak Learner

(weighted by D_t):

Magic:
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

 \square Where ε_t is the weighted training error:

$$\underbrace{\xi_{t}}_{j=1} \underbrace{\sum_{j=1}^{y}}_{D_{t}(j)} \mathbb{1}[h_{t}(x^{j}) + y^{j}]$$

if $\xi t = \frac{1}{2} = \int dt = 0$ (a) Classifier is as sand as random

no point including it

$$D_{t+1}(j) = \frac{D_t(j) \exp(-\alpha_t y^j h_t(x^j))}{7}$$

Why choose α_t for hypothesis h_t this way?

[Schapire, 1989]

$$Z_t = \sum_{j=1}^{N} D_t(j) \exp(-\alpha_t y^j h_t(x^j))$$

Training error upper-bounded by product of normalizers

$$\frac{1}{N}\sum_{j=1}^{N}\mathbb{1}[H(x^{j}) \neq y^{j}] \leq \prod_{t=1}^{N}Z_{t}$$

$$\text{product of normalizations}$$

train errory decreases with +

- Pick $lpha_{\!\scriptscriptstyle f}$ to minimize upper-bound
 - Take derivative and set to zero!

Strong, weak classifiers How down the thirt 71 < 1

- If each classifier is (at least slightly) better than random

- 1 8+>0 such that E+ < 0.5-8+
- AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{N} \sum_{j=1}^{N} \mathbb{1}[H(x^j) \neq y^j] \le \prod_{t=1}^{N} Z_t \le \exp\left(-2\sum_{t=1}^{N} (1/2 - 2)^2\right)$$

Easy in first iteration

9 with weighted data, you may not always

Is it hard to achieve better than random training error?

Boosting results – Digit recognition

[Schapire, 1989]

Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - □ Weak classifier slightly better than random on training data
 - □ Resulting very strong classifier can eventually provide zero training error
- AdaBoost algorithm
- Most popular application of Boosting:
 - □ Boosted decision stumps!
 - □ Very simple to implement, very effective classifier

Decision Trees

Machine Learning – CSEP546
Carlos Guestrin
University of Washington

February 3, 2014
©Carlos Guestrin 2005-2014

Linear separability

- A dataset is linearly separable iff there exists a separating hyperplane:
 - □ Exists w, such that:
 - $w_0 + \sum_i w_i x_i > 0$; if $\mathbf{x} = \{x_1, \dots, x_k\}$ is a positive example
 - $w_0 + \sum_i w_i x_i < 0$; if $\mathbf{x} = \{x_1, \dots, x_k\}$ is a negative example

Not linearly separable data

Some datasets are not linearly separable!

Addressing non-linearly separable data – Option 1, non-linear features

- Choose non-linear features, e.g.,
 - □ Typical linear features: $w_0 + \sum_i w_i x_i$
 - Example of non-linear features:
 - Degree 2 polynomials, $w_0 + \sum_i w_i x_i + \sum_{ij} w_{ij} x_i x_j$
- Classifier h_w(x) still linear in parameters w
 - □ As easy to learn
 - □ Data is linearly separable in higher dimensional spaces

Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier $h_{\mathbf{w}}(\mathbf{x})$ that is non-linear in parameters \mathbf{w} , e.g.,
 - □ Decision trees, boosting, nearest neighbor, neural networks...
- More general than linear classifiers
- But, can often be harder to learn (non-convex/concave optimization required)
- But, but, often very useful

A small dataset: Miles Per Gallon

Suppose we want to predict MPG

X-9 Y: MPG

		+						
mpg	9 /	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
	1							
good	d	4	low	low	low	high	75to78	asia
bad		6	medium	medium	medium	medium	70to74	america
bad		4	medium	medium	medium	low	75to78	europe
bad		8	high	high	high	low	70to74	america
bad		6	medium	medium	medium	medium	70to74	america
bad		4	low	medium	low	medium	70to74	asia
bad		4	low	medium	low	low	70to74	asia
bad		8	high	high	high	low	75to78	america
:			:	:	:	:	:	:
:		:	:	:	:	:	:	:
:		:	:	:	:	:	:	:
bad		8	high	high	high	low	70to74	america
good	d	8	high	medium	high	high	79to83	america
bad		8	high	high	high	low	75to78	america
good	d	4	low	low	low	low	79to83	america
bad		6	medium	medium	medium	high	75to78	america
good	d	4	medium	low	low	low	79to83	america
good	d	4	low	low	medium	high	79to83	america
bad		8	high	high	high	low	70to74	america
good	d	4	low	medium	low	medium	75to78	europe
bad		5	medium	medium	medium	medium	75to78	europe

40 training examples

From the UCI repository (thanks to Ross Quinlan)

A Decision Stump

Recursion Step

Recursion Step

Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia (Similar recursion in the other cases)

Classification of a new example

Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!
 - \square e.g., $\phi = A \land B \lor \neg A \land C$ ((A and B) or (not A and C))

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - □ Start from empty decision tree
 - □ Split on next best attribute (feature)

Choosing a good attribute

 X_1 X_2 F

Χı	
t/\t	
Y: +: 4 +: 3	1
-:0 -:	3
1	"\
'	Kindo
Vry	Sher

	X	L
	<i>t/\</i>	ţ
\bigvee	4:3	4:2
1	-:1	4:2
1		^
of		`

totally unsur

After colit, X, makes me man sher than Xz

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad

$$P(Y=A) = 1/2$$
 $P(Y=B) = 1/4$ $P(Y=C) = 1/8$ $P(Y=D) = 1/8$

$$P(Y=A) = 1/4$$
 $P(Y=B) = 1/4$ $P(Y=C) = 1/4$ $P(Y=D) = 1/4$

Entropy

Entropy H(X) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Andrew Moore's Entropy in a nutshell

Low Entropy

High Entropy

Andrew Moore's Entropy in a nutshell

Low Entropy

High Entropy

..the values (locations of soup) sampled entirely from within the soup bowl ..the values (locations of soup) unpredictable... almost uniformly sampled throughout our dining room

X109 x ->0 45 x ->0

Information gain

- Advantage of attribute decrease in uncertainty
 - □ Entropy of Y before you split H(Y) = ∑ P(y) log P(y)
 - □ Entropy after split
 - Weight by probability of following each branch, i.e., normalized number of records

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

$$H(Y|X_1) = 4(-\frac{4}{6}\log \frac{4}{4} - \frac{9}{4}\log \frac{9}{4}) + \frac{2}{6}(-\frac{1}{2}\log \frac{1}{2} - \frac{1}{2}\log \frac{1}{2}) = \frac{1}{3}$$

Information gain is difference $IG(X) = H(Y) - H(Y \mid X)$ $IG(X_1) = H(Y) - H(Y \mid X_1) = 0.6J - \frac{1}{3} \approx 0.32$

Learning decision trees

- - Start from empty decision tree
 - Split on next best attribute (feature)
 - □ Use, for example, information gain to select attribute
 - Split on arg max $IG(X_i) = \arg \max_i H(Y) H(Y \mid X_i)$
 - Recurse for each split

then do I stop?

I when info gain is small ???????

I when info gain is small ???????

2. (ntropy in leaf is 0, perfect dassitiation

3. nothing to split on

An flatures split data

Suppose we want to predict MPG

A Decision Stump

Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

•Is this a good idea?

The problem with Base Case 3

If we omit Base Case 3:

а	b	У
0	О	0
О	1	1
1	0	1
1	1	0

$$y = a XOR b$$

The resulting decision tree:

Basic Decision Tree Building Summarized

- If all output values are the same in *DataSet*, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - \square Create and return a non-leaf node with n_X children.
 - □ The i'th child should be built by calling

BuildTree(*DS_i*, *Output*)

Where DS_i built consists of all those records in DataSet for which X = ith distinct value of X.

Decision trees & Learning Bias

Suppose no "label noise"

Le two dat points

Jame & different y

Decision trees eventually have

Zho train error

Le over fit!!

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Decision trees will overfit

- Standard decision trees me have no learning bias
 - □ Training set error is always zero!
 - (If there is no label noise)
 - □ Lots of variance
 - □ Will definitely overfit!!!
 - Must bias towards simpler trees
- Many strategies for picking simpler trees:
 - □ Fixed depth
 - □ Fixed number of leaves
 - □ Or something smarter...

A chi-square test

- Suppose that MPG was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

if prob of thence correlation high, don't keepsplit

A chi-square test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 7.2%

(Such simple hypothesis tests are very easy to compute, unfortunately, not enough time to cover in the lecture, but see readings...)

Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - □ Beginning at the bottom of the tree, delete splits in which $p_{chance} > MaxPchance$
 - Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

Pruning example

■ With MaxPchance = 0.1, you will see the following MPG decision tree:

Note the improved test set accuracy compared with the unpruned tree

	Num Errors	Set Size	Percent higher thein to Wrong	10_
Training Set	5	40	12.50	
Test Set	56	352	15.91 - love tester	111-

MaxPchance

 Technical note MaxPchance is a regularization parameter that helps us bias towards simpler models

Real-Valued inputs

)			
mpg	cylinders	displacemen	orsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value

"One branch for each numeric value" idea:

Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

Binary tree, split on attribute X:

□ One branch: X;< t</p>

□ Other branch: X ≥ t

Choosing threshold split

- Binary tree, split on attribute X;
 - □ One branch: X; < t</p>
 - Other branch: X;≥ t

- Search through possible values of t
 - □ Seems hard!!!
- But only finite number of t's are important
 - □ Sort data according to X into $\{x_1,...,x_m\}$
 - \square Consider split points of the form $x_i + (x_{i+1} x_i)/2$

A better idea: thresholded splits

- 100
 - Suppose X is real valued
 - Define IG(Y|X:t) as H(Y) H(Y|X:t)
 - Define H(Y|X:t) = H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)
 - *IG*(*Y*|*X:t*) is the information gain for predicting Y if all you know is whether X is greater than or less than *t*
 - Then define $IG^*(Y|X) = max_t IG(Y|X:t)$
 - For each real-valued attribute, use IG*(Y|X) for assessing its suitability as a split
 - Note, may split on an attribute multiple times, with different thresholds

Example with MPG

Example tree using reals

What you need to know about decision trees

- Easy to understand
- □ Easy to implement
- □ Easy to use
- Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)

 Presented for classification, can be used for regression and density estimation too

- Decision trees will overfit!!!
 - □ Zero bias classifier! Lots of variance
 - □ Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

Instance-based Learning

Nearest Neighbors/Non-Parametric Methods

Machine Learning – CSEP546
Carlos Guestrin

University of Washington

February 3, 2014 ©Carlos Guestrin 2005-2014

Why not just use Linear Regression?

Using data to predict new data

Nearest neighbor

Univariate 1-Nearest Neighbor

Given datapoints (x^1, y^1) (x^2, y^2) .. (x^N, y^N) , where we assume $y^i = f(x^i)$ for some unknown function f.

Given query point x^q , your job is to predict $\hat{y} \approx f(x^q)$ Nearest Neighbor:

1. Find the closest x_i in our set of datapoints

$$j(nn) = \underset{j}{\operatorname{argmin}} |x^{j} - x^{q}|$$

2. Predict $\hat{y} = y^{i(nn)}$

Here's a dataset with one input, one output and four datapoints.

1-Nearest Neighbor is an example of

Instance-based learning

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

Four things make a memory based learner:

- A distance metric
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to fit with the local points?

1-Nearest Neighbor

Four things make a memory based learner:

- 1. A distance metric Euclidian (and many more)
- 2. How many nearby neighbors to look at?
 One
- 3. A weighting function (optional) **Unused**
- 4. How to fit with the local points?

Just predict the same output as the nearest neighbor.

i = argmin | xi - xt| they point

prodict
$$G = G^i$$

Multivariate 1-NN examples

Multivariate distance metrics

Suppose the input vectors x^1 , x^2 , ... x^N are two dimensional:

$$\mathbf{x}^1 = (x_1^1, x_2^1), \mathbf{x}^2 = (x_1^2, x_2^2), \dots \mathbf{x}^N = (x_1^N, x_2^N).$$

One can draw the nearest-neighbor regions in input space.

The relative scalings in the distance metric affect region shapes

Euclidean distance metric

Or equivalently,

$$D(\mathbf{x}, \mathbf{x}') = \sqrt{\sum_{i} \sigma_{i}^{2} (x_{i} - x'_{i})^{2}}$$

where

$$D(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^T \sum (\mathbf{x} - \mathbf{x}')}$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_N^2 \end{bmatrix}$$

Other Metrics...

Mahalanobis, Rank-based, Correlation-based,...

Notable distance metrics (and their level sets)

Consistency of 1-NN

- Consider an estimator f_n trained on n examples
 - □ e.g., 1-NN, neural nets, regression,...
- Estimator is consistent if true error goes to zero as amount of data increases
 - □ e.g., for no noise data, consistent if:

$$\lim_{n\to\infty} MSE(f_n) = 0$$

- Regression is not consistent!
 - □ Representation bias
- 1-NN is consistent (under some mild fineprint)

What about variance???

1-NN overfits?

k-Nearest Neighbor

Four things make a memory based learner:

- 1. A distance metric

 Euclidian (and many more)
- 2. How many nearby neighbors to look at?

k

- 1. A weighting function (optional)

 Unused
- 2. How to fit with the local points?

Just predict the average output among the k nearest neighbors.

regrission

$$\hat{S} = \frac{1}{K} \sum_{i \in NN(XP)} \hat{S}^{i}$$

Mediabors

Classification

majority vote over neighbors

majority vote over neighbors

k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but there are clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?

Weighted k-NNs

Neighbors are not all the same

$$\hat{G} = \prod_{1} y^{1} + \prod_{2} y^{2} + \prod_{3} y^{3}$$

$$= \prod_{1} + \prod_{2} + \prod_{3}$$

$$T_i$$
 is some weight, e.g.,
$$T_i = \frac{1}{\|y^{\mu} - y^i\|}$$

Kernel regression

Four things make a memory based learner:

- 1. A distance metric **Euclidian (and many more)**
- 2. How many nearby neighbors to look at?

 All of them
- 3. A weighting function (optional) $\pi_i^i = \exp(-D(x^i, query)^2 / \rho^2)$

Nearby points to the query are weighted strongly, far points weakly. The *p* parameter is the **Kernel Width**. Very important.

4. How to fit with the local points?

Predict the weighted average of the outputs: $predict = Σπ^{i}y^{i} / Σπ^{i}$

Weighting functions

Typically optimize ρ using gradient descent

(Our examples use Gaussian)

Kernel regression predictions

shoothness in output

Increasing the kernel width ρ means further away points get an opportunity to influence you.

As $\rho \rightarrow \infty$, the prediction tends to the global average.

Kernel regression on our test cases

Choosing a good ρ is important. Not just for Kernel Regression, but for all the locally weighted learners we're about to see.

Kernel regression can look bad

Time to try something more powerful...

Locally weighted regression

Kernel regression:

Take a very very conservative function approximator called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

Locally weighted regression

- Four things make a memory based learner:
- A distance metric

Any

How many nearby neighbors to look at?

All of them

A weighting function (optional)

Kernels

- How to fit with the local points?

General weighted regression:

$$\hat{w}^{q} = \underset{w}{\operatorname{argmin}} \sum_{k=1}^{N} \pi_{q}^{k} \left(y^{k} - w^{T} x^{k} \right)$$
bealty weighted

How LWR works

Linear regression

Same parameters for all queries

$$\hat{w} = \left(X^{T}X\right)^{-1}X^{T}Y$$

$$\downarrow \text{Some matrix}$$

$$\text{invirsion}$$

Locally weighted regression

 Solve weighted linear regression for each query

$$W^{q} = \left(\left(\Pi X \right)^{T} \Pi X \right)^{-1} \left(\Pi X \right)^{T} \Pi Y$$

$$\Pi = \begin{pmatrix} \pi_{1} & 0 & 0 & 0 \\ 0 & \pi_{2} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \pi_{n} \end{pmatrix}$$

Another view of LWR

LWR on our test cases

Locally weighted polynomial regression

Kernel Regression Kernel width ρ at optimal level.

$$\rho = 1/100 \text{ x-axis}$$

LW Linear Regression Kernel width ρ at optimal level.

$$\rho$$
 = 1/40 x-axis

LW Quadratic Regression Kernel width p at optimal level.

$$\rho$$
 = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the X matrix. As the regression degree increases, the kernel width can increase without introducing bias.

Curse of dimensionality for instance-based learning

- Must store and retreve all data!
 - Most real work done during testing
 - □ For every test sample, must search through all dataset very slow!
 - □ There are (sometimes) fast methods for dealing with large datasets
- Instance-based learning often poor with noisy or irrelevant features

Curse of the irrelevant feature

What you need to know about instance-based learning

Missier Sources 1 NN Voronoi diagner

■ k-NN

- □ Simplest learning algorithm
- With sufficient data, very hard to beat "strawman" approach
- □ Picking k?
- Kernel regression
 - Set k to n (number of data points) and optimize weights by gradient descent
 - □ Smoother than k-NN
- Locally weighted regression
 - ☐ Generalizes kernel regression, not just local average
- Curse of dimensionality
 - Must remember (very large) dataset for prediction
 - □ Irrelevant features often killers for instance-based approaches

lars sligned Uplits

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials