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Fighting the bias-variance tradeoff 

n  Simple (a.k.a. weak) learners are good 
¨ e.g., naïve Bayes, logistic regression, decision stumps 

(or shallow decision trees) 
¨ Low variance, don’t usually overfit too badly 

n  Simple (a.k.a. weak) learners are bad 
¨ High bias, can’t solve hard learning problems 

n  Can we make weak learners always good??? 
¨ No!!! 
¨ But often yes… 
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The Simplest Weak Learner: 
Thresholding, a.k.a. Decision Stumps  

n  Learn: h:X ! Y 
¨ X – features 
¨ Y – target classes 

n  Simplest case: Thresholding 
 

©Carlos Guestrin 2005-2014 3 



4 

Voting  (Ensemble Methods) 
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are 

good at different parts of the input space 
n  Output class: (Weighted) vote of each classifier 

¨  Classifiers that are most “sure” will vote with more conviction 
¨  Classifiers will be most “sure” about a particular part of the space 
¨  On average, do better than single classifier! 

n  But how do you ???  
¨  force classifiers to learn about different parts of the input space? 
¨  weigh the votes of different classifiers? 
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Boosting 
n  Idea: given a weak learner, run it multiple times on (reweighted) 

training data, then let learned classifiers vote 

n  On each iteration t:  
¨  weight each training example by how incorrectly it was classified 
¨  Learn a hypothesis – ht 
¨  A strength for this hypothesis – αt  

n  Final classifier: 

n  Practically useful 
n  Theoretically interesting 

[Schapire, 1989] 
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Learning from weighted data 
n  Sometimes not all data points are equal 

¨  Some data points are more equal than others 
n  Consider a weighted dataset 

¨  D(j) – weight of j th training example (xj,yj) 
¨  Interpretations: 

n  j th training example counts as D(j) examples 
n  If I were to “resample” data, I would get more samples of “heavier” data points 

n  Now, in all calculations, whenever used, j th training example counts as 
D(j) “examples” 
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Boosting Cartoon 
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AdaBoost 
n  Initialize weights to uniform dist: D1(j) = 1/N 
n  For t = 1…T 

¨  Train weak learner ht on distribution Dt over the data 
¨  Choose weight αt  

¨  Update weights: 

n  Where Zt is normalizer: 

 
 
n  Output final classifier: 
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Picking Weight of Weak Learner 

n  Weigh ht higher if it did well on training data 
(weighted by Dt): 

¨ Where εt is the weighted training error: 
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AdaBoost Cartoon 
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Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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n  Simple theoretical analysis: 
¨  Training error upper-bounded by product of normalizers 

¨  Pick αt to minimize upper-bound  
n  Take derivative and set to zero! 
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Strong, weak classifiers 

n  If each classifier is (at least slightly) better than random 
¨   εt < 0.5 

n  AdaBoost will achieve zero training error (exponentially fast): 

n  Is it hard to achieve better than random training error? 
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Boosting results – Digit recognition 

n  Boosting often 
¨ Robust to overfitting 
¨ Test set error decreases even after training error is zero 

[Schapire, 1989] 
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Boosting: Experimental Results 

Comparison of C4.5, Boosting C4.5, Boosting decision 
stumps (depth 1 trees), 27 benchmark datasets 

[Freund & Schapire, 1996] 
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What you need to know about Boosting 

n  Combine weak classifiers to obtain very strong classifier 
¨  Weak classifier – slightly better than random on training data 
¨  Resulting very strong classifier – can eventually provide zero training error 

n  AdaBoost algorithm 
n  Most popular application of Boosting: 

¨  Boosted decision stumps! 
¨  Very simple to implement, very effective classifier 
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Linear separability  

n  A dataset is linearly separable iff there exists a 
separating hyperplane: 
¨   Exists w, such that: 

n  w0 + ∑i wi xi > 0; if x={x1,…,xk} is a positive example 
n  w0 + ∑i wi xi < 0; if x={x1,…,xk} is a negative example 
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Not linearly separable data  

n  Some datasets are not linearly separable! 
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Addressing non-linearly separable 
data – Option 1, non-linear features 

n  Choose non-linear features, e.g., 
¨  Typical linear features: w0 + ∑i wi xi 

¨  Example of non-linear features:  
n  Degree 2 polynomials, w0 + ∑i wi xi  + ∑ij wij xi xj 

n  Classifier hw(x) still linear in parameters w 
¨  As easy to learn 
¨  Data is linearly separable in higher dimensional spaces 
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Addressing non-linearly separable 
data – Option 2, non-linear classifier 

n  Choose a classifier hw(x) that is non-linear in parameters w, e.g., 
¨  Decision trees, boosting, nearest neighbor, neural networks… 

n  More general than linear classifiers 
n  But, can often be harder to learn (non-convex/concave 

optimization required) 
n  But, but, often very useful 
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A small dataset: Miles Per Gallon 

From the UCI repository (thanks to Ross Quinlan) 

40 training 
examples 

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

Suppose we want 
to predict MPG 
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A Decision Stump 
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Recursion Step 

Take the 
Original 
Dataset.. 

And partition it 
according 
to the value of 
the attribute we 
split on 

Examples 
in which 
cylinders 

= 4  

Examples
in which 
cylinders 

= 5 

Examples
in which 
cylinders 

= 6  

Examples
in which 
cylinders 

= 8 
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Recursion Step 

Records in 
which cylinders 

= 4  

Records in 
which cylinders 

= 5 

Records in 
which cylinders 

= 6  

Records in 
which cylinders 

= 8 

Build tree from 
These examples.. 

Build tree from 
These examples.. 

Build tree from 
These examples.. 

Build tree from 
These examples.. 
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Second level of tree 

Recursively build a tree from the seven 
records in which there are four cylinders and 
the maker was based in Asia 

(Similar recursion in the 
other cases) 
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The final tree 
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Classification of a new example 

n  Classifying a test 
example – traverse tree 
and report leaf label 
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Are all decision trees equal? 

n  Many trees can represent the same concept 
n  But, not all trees will have the same size! 

¨ e.g., φ = A∧B ∨ ¬A∧C  ((A and B) or (not A and C)) 
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Learning decision trees is hard!!! 

n  Learning the simplest (smallest) decision tree is 
an NP-complete problem [Hyafil & Rivest ’76]  

n  Resort to a greedy heuristic: 
¨ Start from empty decision tree 
¨ Split on next best attribute (feature) 
¨ Recurse 
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Choosing a good attribute 
X1 X2 Y 
T T T 
T F T 
T T T 
T F T 
F T T 
F F F 
F T F 
F F F 
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Measuring uncertainty 

n  Good split if we are more certain about 
classification after split 
¨ Deterministic good (all true or all false) 
¨ Uniform distribution bad 

P(Y=A) = 1/4 P(Y=B) = 1/4 P(Y=C) = 1/4 P(Y=D) = 1/4 

P(Y=A) = 1/2 P(Y=B) = 1/4 P(Y=C) = 1/8 P(Y=D) = 1/8 
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Entropy 

Entropy H(X) of a random variable Y 
 
 
 
More uncertainty, more entropy! 
Information Theory interpretation: H(Y) is the expected number of bits needed  

to encode a randomly drawn value of Y  (under most efficient code)  
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Andrew Moore’s Entropy in a nutshell 

Low Entropy High Entropy 

©Carlos Guestrin 2005-2014 



35 

Low Entropy High Entropy 
..the values (locations of 
soup) unpredictable... 
almost uniformly sampled 
throughout our dining room 

..the values (locations 
of soup) sampled 
entirely from within the 
soup bowl 

Andrew Moore’s Entropy in a nutshell 
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Information gain 

n  Advantage of attribute – decrease in uncertainty 
¨  Entropy of Y before you split 

¨  Entropy after split 
n  Weight by probability of following each branch, i.e., 

normalized number of records  

n  Information gain is difference 

X1 X2 Y 
T T T 
T F T 
T T T 
T F T 
F T T 
F F F 
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Learning decision trees 

n  Start from empty decision tree 
n  Split on next best attribute (feature) 

¨ Use, for example, information gain to select attribute 
¨ Split on  

n  Recurse 

©Carlos Guestrin 2005-2014 
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Look at all the 
information 
gains… 

Suppose we want 
to predict MPG 
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A Decision Stump 
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Base Case 
One 

Don’t split a 
node if all 
matching 

records have 
the same 

output value 
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Base Case 
Two 

Don’t split a 
node if none 

of the 
attributes can 

create 
multiple non-

empty 
children 
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Base Case Two: 
No attributes can 

distinguish 
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Base Cases 
n  Base Case One: If all records in current data subset have the same 

output then don’t recurse 
n  Base Case Two: If all records have exactly the same set of input 

attributes then don’t recurse 
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Base Cases: An idea 
n  Base Case One: If all records in current data subset have the same 

output then don’t recurse 
n  Base Case Two: If all records have exactly the same set of input 

attributes then don’t recurse 

Proposed Base Case 3: 
 

If all attributes have zero information 
gain then don’t recurse 

 
 

• Is this a good idea? 
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The problem with Base Case 3 
a b y
0 0 0
0 1 1
1 0 1
1 1 0

Y = A XOR B 

The information gains: 
The resulting bad 
decision tree: 
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If we omit Base Case 3: 
a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b 

The resulting decision tree: 

©Carlos Guestrin 2005-2014 



47 

Basic Decision Tree Building 
Summarized 
BuildTree(DataSet,Output) 
n  If all output values are the same in DataSet, return a leaf node that says 

“predict this unique output” 
n  If all input values are the same, return a leaf node that says “predict the 

majority output” 
n  Else find attribute X with highest Info Gain 
n  Suppose X has nX distinct values (i.e. X has arity nX).  

¨  Create and return a non-leaf node with nX children.  
¨  The i’th child should be built by calling 

BuildTree(DSi,Output) 
Where DSi built consists of all those records in DataSet for which X = ith 

distinct value of X. 
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MPG Test 
set error 
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MPG Test 
set error 

The test set error is much worse than the 
training set error… 

…why? 
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Decision trees & Learning Bias 
mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe
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Decision trees will overfit 

n  Standard decision trees are have no learning bias 
¨ Training set error is always zero! 

n  (If there is no label noise) 
¨ Lots of variance 
¨ Will definitely overfit!!! 
¨ Must bias towards simpler trees 

n  Many strategies for picking simpler trees: 
¨ Fixed depth 
¨ Fixed number of leaves 
¨ Or something smarter… 
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Consider this 
split 
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A chi-square test 

n  Suppose that MPG was completely uncorrelated with maker. 
n  What is the chance we’d have seen data of at least this apparent 

level of association anyway? 
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A chi-square test 

n  Suppose that mpg was completely uncorrelated with maker. 
n  What is the chance we’d have seen data of at least this apparent level of 

association anyway? 
By using a particular kind of chi-square test, the answer is 7.2% 
 
(Such simple hypothesis tests are very easy to compute, unfortunately, 

not enough time to cover in the lecture, but see readings…) 
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Using Chi-squared to avoid overfitting 

n  Build the full decision tree as before 
n  But when you can grow it no more, start to 

prune: 
¨ Beginning at the bottom of the tree, delete splits in 

which pchance > MaxPchance 
¨ Continue working you way up until there are no more 

prunable nodes 
 
MaxPchance  is a magic parameter you must specify to the decision tree, 

indicating your willingness to risk fitting noise 
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Pruning example 

n  With MaxPchance = 0.1, you will see the 
following MPG decision tree: 

Note the improved 
test set accuracy 

compared with the 
unpruned tree 
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MaxPchance 
n  Technical note MaxPchance is a regularization parameter that helps us 

bias towards simpler models 

High Bias High Variance 

MaxPchance 
Increasing Decreasing E

xp
ec

te
d 

Tr
ue

  
E

rr
or
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Real-Valued inputs 

n  What should we do if some of the inputs are real-valued? 
mpg cylinders displacementhorsepower weight acceleration modelyear maker

good 4 97 75 2265 18.2 77 asia
bad 6 199 90 2648 15 70 america
bad 4 121 110 2600 12.8 77 europe
bad 8 350 175 4100 13 73 america
bad 6 198 95 3102 16.5 74 america
bad 4 108 94 2379 16.5 73 asia
bad 4 113 95 2228 14 71 asia
bad 8 302 139 3570 12.8 78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
good 4 120 79 2625 18.6 82 america
bad 8 455 225 4425 10 70 america
good 4 107 86 2464 15.5 76 europe
bad 5 131 103 2830 15.9 78 europe

Infinite number of possible split values!!! 

Finite dataset, only finite number of relevant splits! 

Idea One: Branch on each possible real value 
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“One branch for each numeric 
value” idea: 

Hopeless: with such high branching factor will shatter 
the dataset and overfit 
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Threshold splits 

n  Binary tree, split on attribute X 
¨ One branch: X < t 

¨ Other branch: X ≥ t 
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Choosing threshold split 

n  Binary tree, split on attribute X 
¨  One branch: X < t 
¨  Other branch: X ≥ t 

n  Search through possible values of t 
¨  Seems hard!!! 

n  But only finite number of t’s are important 
¨  Sort data according to X into {x1,…,xm} 
¨  Consider split points of the form xi + (xi+1 – xi)/2 
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A better idea: thresholded splits 

n  Suppose X is real valued 
n  Define IG(Y|X:t) as H(Y) - H(Y|X:t) 
n  Define H(Y|X:t) = 

H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)  
n  IG(Y|X:t) is the information gain for predicting Y if all you 

know is whether X is greater than or less than t 

n  Then define IG*(Y|X) = maxt IG(Y|X:t) 
n  For each real-valued attribute, use IG*(Y|X) for 

assessing its suitability as a split 

n  Note, may split on an attribute multiple times, 
with different thresholds  
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Example with MPG 
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Example tree using reals 
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What you need to know about 
decision trees 

n  Decision trees are one of the most popular data mining tools 
¨  Easy to understand 
¨  Easy to implement 
¨  Easy to use 
¨  Computationally cheap (to solve heuristically) 

n  Information gain to select attributes (ID3, C4.5,…) 
n  Presented for classification, can be used for regression and 

density estimation too 
n  Decision trees will overfit!!! 

¨  Zero bias classifier ! Lots of variance 
¨  Must use tricks to find “simple trees”, e.g., 

n  Fixed depth/Early stopping 
n  Pruning 
n  Hypothesis testing 
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Why not just use Linear Regression? 



©Carlos Guestrin 2005-2014 69 

Using data to predict new data 
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Nearest neighbor 
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Univariate 1-Nearest Neighbor 

Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume yi=f(xi) for some 
unknown function f. 
Given query point xq, your job is to predict  
Nearest Neighbor: 
1.   Find the closest xi in our set of datapoints 

ŷ ≈ f x q( )

j nn( ) =
j

argmin x j − x q

ŷ = yi nn( )2.  Predict 
 Here’s a 
dataset with 
one input, one 
output and four 
datapoints. 

x 
y 

Here, this is 
the closest 
datapoint 
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1-Nearest Neighbor is an example of…. 
 Instance-based learning 

Four things make a memory based learner: 
n  A distance metric 
n  How many nearby neighbors to look at? 
n  A weighting function (optional) 
n  How to fit with the local points? 

x1                 y1 

x2                 y2 

x3                 y3 

. 

. 
xn                yn 

A function approximator 
that has been around 
since about 1910. 

To make a prediction, 
search database for 
similar datapoints, and fit 
with the local points. 
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1-Nearest Neighbor 

Four things make a memory based learner: 
1.  A distance metric       

 Euclidian (and many more) 
2.  How many nearby neighbors to look at?    

 One 
3.  A weighting function (optional)     

 Unused 

4.  How to fit with the local points?     
 Just predict the same output as the nearest neighbor. 
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Multivariate 1-NN examples 

Regression Classification 
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Multivariate distance metrics 
Suppose the input vectors x1, x2, …xN are two dimensional: 
x1 = ( x1

1 , x1
2 ) , x2 = ( x2

1 , x2
2 ) , …xN = ( xN

1 , xN
2 ). 

One can draw the nearest-neighbor regions in input space. 

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2 

The relative scalings in the distance metric affect region shapes 

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2 
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Euclidean distance metric 

Other Metrics… 
n  Mahalanobis, Rank-based, Correlation-based,…  
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Or equivalently, 
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Notable distance metrics  
(and their level sets) 

L1 norm (absolute) 

L1 (max) norm 

Scaled Euclidian (L2) 

Mahalanobis          (here, 
Σ on the previous slide is not 
necessarily diagonal, but is 
symmetric 
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Consistency of 1-NN 

n  Consider an estimator fn trained on n examples 
¨  e.g., 1-NN, neural nets, regression,... 

n  Estimator is consistent if true error goes to zero as 
amount of data increases 
¨  e.g., for no noise data, consistent if: 

n  Regression is not consistent! 
¨  Representation bias 

n  1-NN is consistent (under some mild fineprint)  

What about variance??? 
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1-NN overfits? 
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k-Nearest Neighbor 

Four things make a memory based learner: 
1.  A distance metric       

 Euclidian (and many more) 
2.  How many nearby neighbors to look at?      

  k 
1.  A weighting function (optional)     

 Unused 

2.  How to fit with the local points?       
 Just predict the average output among the k nearest neighbors. 
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k-Nearest Neighbor (here k=9) 

K-nearest neighbor for function fitting smoothes away noise, but there are 
clear deficiencies. 
What can we do about all the discontinuities that k-NN gives us? 
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Weighted k-NNs 

n  Neighbors are not all the same 
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Kernel regression 

Four things make a memory based learner: 
1.  A distance metric       

 Euclidian (and many more) 
2.  How many nearby neighbors to look at?    

 All of them 
3.  A weighting function (optional)     

 πi = exp(-D(xi, query)2 / ρ2)     
Nearby points to the query are weighted strongly, far points 

weakly. The ρ parameter is the Kernel Width. Very 
important. 

4.  How to fit with the local points?     
 Predict the weighted average of the outputs:   
 predict = Σπiyi / Σπi 
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Weighting functions 

πi = exp(-D(xi, query)2 / ρ2)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Typically optimize ρ using 
gradient descent 

(Our examples use Gaussian) 
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Kernel regression predictions 

Increasing the kernel width ρ means further away points get an 
opportunity to influence you. 
As ρà∞, the prediction tends to the global average. 

ρ=10 
 

ρ=20 
 

ρ=80 
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Kernel regression on our test cases 

ρ=1/32 of x-axis width. ρ=1/32 of x-axis width. ρ=1/16 axis width. 

Choosing a good ρ is important. Not just for Kernel Regression, but for 
all the locally weighted learners we’re about to see. 
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Kernel regression can look bad 

ρ = Best. ρ = Best. ρ = Best. 

Time to try something more powerful… 
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Locally weighted regression 

Kernel regression: 
 Take a very very conservative function approximator 
called AVERAGING. Locally weight it. 

Locally weighted regression: 
 Take a conservative function approximator called 
LINEAR REGRESSION. Locally weight it. 
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Locally weighted regression 

n  Four things make a memory based learner: 
n  A distance metric       

 Any 
n  How many nearby neighbors to look at?     

  All of them 
n  A weighting function (optional)     

 Kernels 
¨  πi = exp(-D(xi, query)2 / ρ2)     

n  How to fit with the local points?   
 General weighted regression:     

ŵq =
w

argmin π q
k y k −wTx k( )

k=1

N

∑
2
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How LWR works 

Query 

Linear regression 
§  Same parameters for  
   all queries 

Locally weighted regression 
§  Solve weighted linear regression 
   for each query 

ŵ = XTX( )
−1
XTY

Π =

π1 0 0 0
0 π 2 0 0
0 0  0
0 0 0 π n

"

#

$
$
$
$
$

%

&

'
'
'
'
'

wq = ΠX( )TΠX( )
−1
ΠX( )TΠY
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Another view of LWR 

Image from  Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145. 
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LWR on our test cases 

ρ = 1/16 of x-axis width. ρ = 1/32 of x-axis width. ρ = 1/8 of x-axis width. 
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Locally weighted polynomial regression 

Kernel Regression 
Kernel width ρ at optimal 
level. 
 
ρ = 1/100 x-axis 

LW Linear Regression 
Kernel width ρ at optimal 
level. 
 
ρ = 1/40 x-axis 

LW Quadratic Regression 
Kernel width ρ at optimal 
level. 
 
ρ = 1/15 x-axis 

Local quadratic regression is easy: just add quadratic terms to the X 
matrix. As the regression degree increases, the kernel width can 
increase without introducing bias. 
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Curse of dimensionality for 
instance-based learning 

n  Must store and retreve all data! 
¨  Most real work done during testing 
¨  For every test sample, must search through all dataset – very slow! 
¨  There are (sometimes) fast methods for dealing with large datasets 

n  Instance-based learning often poor with noisy or irrelevant 
features 
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Curse of the irrelevant feature 
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What you need to know about 
instance-based learning 

n  k-NN 
¨  Simplest learning algorithm 
¨  With sufficient data, very hard to beat “strawman” approach 
¨  Picking k? 

n  Kernel regression 
¨  Set k to n (number of data points) and optimize weights by gradient 

descent 
¨  Smoother than k-NN 

n  Locally weighted regression 
¨  Generalizes kernel regression, not just local average 

n  Curse of dimensionality 
¨  Must remember (very large) dataset for prediction 
¨  Irrelevant features often killers for instance-based approaches 
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