Boosting

Machine Learning - CSEP546
Carlos Guestrin
University of Washington
February 3, 2014
©Carlos Guestrin 2005-2014

Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
\square e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
\square Low variance, don't usually overfit too badly
- Simple (a.k.a. weak) learners are bad
\square High bias, can't solve hard learning problems
- Can we make weak learners always good???
\square No!!!
\square But often yes...

The Simplest Weak Learner:
Thresholding, a.k.a. Decision Stumps

- Learn: $\mathrm{h}: \mathrm{X} \mapsto \mathrm{Y} \quad X=(G-P A$, grade,...
$\square \mathbf{X}$ - featuresY - target classes ty hind, not hind)

Voting (Ensemble Methods)

Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space $h_{i}: x \rightarrow y \in\{-1,+1\}$

- Output class: (Weighted) vote of each classifierClassifiers that are most "sure" will vote with more convictionClassifiers will be most "sure" about a particular part of the spaceOn average, do better than single classifier!

$$
\begin{aligned}
& H(x)=\operatorname{sig} \\
= & G P A>3 \cdot 9 ?
\end{aligned}
$$

e.9. $h_{f}(x)=G P A>3.9$?
the weight of classitio

- But how do you ???force classifiers to learn about different parts of the input space?weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
$h_{t}(x) \rightarrow\{-1,+1\}=y$
- On each iteration t :
$\rightarrow \square$ weight each training example by how incorrectly it was classified
\square Learn a hypothesis $-h_{t}$
\square A strength for this hypothesis $-\alpha_{t}$
- Final classifier: $H(x)=\operatorname{lisn}^{\prime}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)$
- Practically useful
- Theoretically interesting

Learning from weighted data

- Sometimes not all data points are equal
\square Some data points are more equal than others
- Consider a weighted dataset
$\square \mathrm{D}(\mathrm{j})$ - weight of j th training example ($\mathbf{x}^{j}, \mathrm{y}^{j}$)
\square Interpretations:
- j th training example counts as $\mathrm{D}(\mathrm{j})$ examples
- If I were to "resample" data, I would get more samples of "heavier" data points
- Now, in all calculations, whenever used, j th training example counts as D(j) "examples"
For example with approaches that use gradient

$$
\begin{aligned}
& \text { standard: } W \in w-\eta \sum_{j=1}^{N} \nabla_{N} F\left(x^{j}\right) \\
& \text { weighted data; } W \in W-\eta \sum_{j=1}^{N} D(j) \nabla_{w} F\left(x^{j}\right)
\end{aligned}
$$

Boosting Cartoon

D6ta

AdaBoost

- Initialize weights to uniform dist: $D_{1}(j)=1 / N$
- For $t=1$... T
learned from weighted dak
Train weak learner h_{t} on distribution D_{t} over the data
Choose weight $\alpha_{t} \in$ Magic, from next slide bayed on quality of h_{t}

Update weights:

$$
D_{t+1}(j)=\frac{D_{t}(j) \exp \left(-\alpha_{t} y^{j} h_{t}\left(x^{j}\right)\right)}{Z_{t}}
$$

\Rightarrow misti on ${ }^{j}$
\Rightarrow weight $D(j)$ increases exporentilly bake on α_{t}

- Output final classifier:

$$
Z_{t}=\sum_{j=1}^{N} D_{t}(j) \exp \left(-\alpha_{t} y^{j} h_{t}\left(x^{j}\right)\right)
$$

moke sure weights add up

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)
$$

h 1
similarly if not mistake weight down

Picking Weight of Weak Learner

- Weigh h_{t} higher if it did well on training data (weighted by D_{t}):

$$
\text { it } \varepsilon_{t}=\frac{\text { Magic: } \alpha_{t}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)}{\alpha t=-\infty}
$$

$\Rightarrow h_{t}$ is exactly wrong
\Rightarrow-ht is exactly right
it $\varepsilon_{t}=\frac{1}{2} \Rightarrow \alpha_{t}=0$
Gollassifier is as sud as random
no point indenting it
if $\varepsilon_{t}=0 \Rightarrow \alpha_{t}=+\infty$
\Rightarrow per bet (las station on weighted data $\Rightarrow \begin{gathered}\text { porcuct on all (uncuaightes) } \\ \text { data }\end{gathered}$

Where ε_{t} is the weighted training error:

$$
\varepsilon_{t}=\sum_{j=1}^{\sum_{j}^{N}} D_{t}(j) \mathbb{1}\left[h_{t}\left(x^{j}\right) \neq y^{j}\right]
$$

Why choose α_{t} for hypothesis h_{t} this way?

$$
H(x)=s_{t} g^{n}\left(\sum_{t_{1}} d_{t}(x)\right)
$$

[Schapire, 1989]

- Simple theoretical analysis:

$$
Z_{t}=\sum_{j=1}^{N} D_{t}(j) \exp \left(-\alpha_{t} y^{j} h_{t}\left(x^{j}\right)\right.
$$Training error upper-bounded by product of normalizers

Strong, weak classifiers

How di mesurathe that $z_{t}<1$

- If each classifier is (at least slightly) better than random

$$
\varepsilon_{t}^{\varepsilon_{t}<0.5} \quad \exists \gamma_{t}>0 \text { such that } \varepsilon_{t}<0.5-\gamma_{t}
$$

- AdaBoost will achieve zero training error (exponentially fast):

$$
\frac{1}{N} \sum_{j=1}^{\sum_{j}^{N}} \mathbb{1}\left[H\left(x^{j}\right) \stackrel{\neq 1}{\neq 1} y^{j}\right] \leq \prod_{t=1}^{\prod_{n}} Z_{t} \leq \exp \left(\left(-2 \sum_{t=1}^{\sum_{T}}\left(1 / 2-\varepsilon_{t}\right)^{2}\right)\right)
$$

always making

\rightarrow with weighted dah, you may not always hin

- Is it hard to achieve better than random training error?

Boosting results - Digit recognition [Schapire, 1989]

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

AdaBoost and AdaBoost.MH on Train (left)and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]

©Carlos Guestrin 2005-2014

What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifierWeak classifier - slightly better than random on training dataResulting very strong classifier - can eventually provide zero training error
- AdaBoost algorithm
- Most popular application of Boosting:Boosted decision stumps!Very simple to implement, very effective classifier

$$
\text { Boosting prediction is } H(x)=\operatorname{Sign}\left(\sum_{t=1}^{9} \alpha_{t} h_{t}(x)\right)
$$

Learns a "liver classifier in T dimensional space "futures" $h_{t}(x)$ are "discovered" from weighted data

Decision Trees

Machine Learning - CSEP546
Carlos Guestrin
University of Washington
February 3, 2014

Linear separability

- A dataset is linearly separable iff there exists a separating hyperplane:
\square Exists w, such that:
- $w_{0}+\sum_{i} w_{i} x_{i}>0$; if $\mathbf{x}=\left\{x_{1}, \ldots, x_{k}\right\}$ is a positive example
- $w_{0}+\sum_{i} w_{i} x_{i}<0$; if $\mathbf{x}=\left\{x_{1}, \ldots, x_{k}\right\}$ is a negative example

Not linearly separable data

- Some datasets are not linearly separable!

$$
\lambda_{1}+x_{2}=\lambda_{1}=x_{2} V
$$

$$
\neg x_{1} \wedge x_{2}
$$

Addressing non-linearly separable data - Option 1, non-linear features

- Choose non-linear features, e.g.,
\square Typical linear features: $w_{0}+\sum_{i} w_{i} x_{i}$
\square Example of non-linear features:
- Degree 2 polynomials, $\mathrm{w}_{0}+\sum_{i} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}+\sum_{\mathrm{ij}} \mathrm{w}_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}$
- Classifier $h_{w}(\mathbf{x})$ still linear in parameters \mathbf{w}
\square As easy to learn
\square Data is linearly separable in higher dimensional spaces

Addressing non-linearly separable data - Option 2, non-linear classifier

- Choose a classifier $h_{w}(\mathbf{x})$ that is non-linear in parameters w, e.g.,
\square Decision trees, boosting, nearest neighbor, neural networks...
- More general than linear classifiers
- But, can often be harder to learn (non-convex/concave optimization required)
- But, but, often very useful

A small dataset: Miles Per Gallon

Suppose we want to predict MPG
$X \rightarrow Y: M P G$

From the UCI repository (thanks to Ross Quinlan)

A Decision Stump

Recursion Step

mpg values: bad good

Take the Original Dataset.

Examples in which cylinders

$$
=5
$$

Examples in which cylinders

$$
=6
$$

Examples in which cylinders $=8$

Recursion Step

Build tree from These examples.. These examples.. These examples.

Build tree from These examples..

Records in which cylinders $=8$

Second level of tree

mpg values: bad good
 the maker was based in Asia

Classification of a new example

- Classifying a test example - traverse tree and report leaf label

Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!
\square egg., $\phi=A \wedge B \vee \neg A \wedge C((A$ and $B)$ or $(\operatorname{not} A$ and $C))$

represents same
in with
large true.

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil \& Rivest '76]
- Resort to a greedy heuristic:
\square Start from empty decision tree
\square Split on next best attribute (feature)
\square Recurse

$$
\text { t } \text { Subset of data on each leaf }
$$

Subsets of data

Choosing a good attribute

X_{1}	X_{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F
F	T	F
F	F	F

totally un sum.
After cpl 1 t, X_{1} makes me man sher than X_{2}

Measuring uncertainty

- Good split if we are more certain about classification after split
\square Deterministic good (all true or all false)
\square Uniform distribution bad

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{P}(\mathrm{Y}=\mathrm{A})=1 / 2 & \mathrm{P}(\mathrm{Y}=\mathrm{B})=1 / 4 & \mathrm{P}(\mathrm{Y}=\mathrm{C})=1 / 8 & \mathrm{P}(\mathrm{Y}=\mathrm{D})=1 / 8 \\
\hline
\end{array}
$$

$\mathrm{P}(\mathrm{Y}=\mathrm{A})=1 / 4$	$\mathrm{P}(\mathrm{Y}=\mathrm{B})=1 / 4$	$\mathrm{P}(\mathrm{Y}=\mathrm{C})=1 / 4$	$\mathrm{P}(\mathrm{Y}=\mathrm{D})=1 / 4$

Entropy

Entropy $H(k)$ of a random yariable Y

$$
H(Y)=-\sum_{i=1}^{k^{r}} P\left(Y=y_{i}\right) \log _{2} P\left(Y=y_{i}\right)
$$

More uncertainty, more entropy!
Information Theory interpretation: $H(Y)$ is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Andrew Moore's Entropy in a nutshell

Andrew Moore's Entropy in a nutshell

Information gain

- Advantage of attribute - decrease in uncertainty
\square Entropy of Y before you split $H(Y)=-\sum_{y} p(y) \log p(y)$
\square Entropy after split

$$
=-\frac{5}{6} \log \frac{5}{6}-\frac{1}{6} \log \frac{1}{6}=165
$$

- Weight by probability of following each branch, ie.,

X_{1}	X_{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F

$$
\begin{aligned}
& t \wedge^{f} \\
& \pm: 9+1 \\
& -: 0-1.1
\end{aligned}
$$

$$
\begin{aligned}
& \mid X)=-\sum_{j=1}^{v} P\left(X=x_{j}\right) \sum_{i=1}^{k} P\left(Y=y_{i} \mid X=x_{j}\right) \log _{2} P\left(Y=y_{i} \mid X=x_{j}\right) \\
& H\left(Y \mid X_{1}\right)=\frac{4}{6}\left(-\frac{4}{4} \log \frac{4}{4}-\frac{0}{4} \log \frac{0}{4}\right)+\frac{2}{6}\left(-\frac{1}{2} \log \frac{1}{2}-\frac{1}{2} \log \frac{1}{2}\right)=\frac{1}{3}
\end{aligned}
$$

- Information gain is difference $I G(X)=H(Y)-H(Y \mid X)$

$$
I G\left(x_{1}\right)=H(y)-H\left(y \mid x_{1}\right)=0.65-\frac{1}{3} \approx 0.32
$$

Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
\square Use, for example, information gain to select attribute
\square Split on arg max $I G\left(X_{i}\right)=\arg \max _{i} H(Y)-H\left(Y \mid X_{i}\right)$
- Recurse for each split
when do I stop?

2. Entropy in leaf is 0 , perfect dassifitition
3. nothing to split on

A Decision Stump

Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

The problem with Base Case 3

The information gains:
$\mid G(A)=0$
The resulting bad decision tree:

y values:	0	1
root		
2	2	
Predict 0		

If we omit Base Case 3:

The resulting decision tree:
low info gain not a Good Stopping (riteria

Basic Decision Tree Building Summarized

BuildTree(DataSet, Output)

- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_{X} distinct values (ie. X has arity n_{X}).
\square Create and return a non-leaf node with n_{X} children.
\square The i 'th child should be built by calling
BuildTree(DS ${ }_{i}$, Output)
Where $D S_{i}$ built consists of all those records in DataSet for which $X=i$ th distinct value of X.
go on for ever...

MPG Test set error

Num Errors Set Size Percent

Training Set 1
Test Set 74
40
352

horsepower = low 04	$\begin{aligned} & \text { horsepower }=\text { medium } \\ & 21 \\ & \text { pchance }=0.894 \end{aligned}$	$\text { \|horsepower }=\text { high }$	$\begin{aligned} & \text { acceleration }=\text { low } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { acceleration }=\text { medium } \\ & 01 \end{aligned}$	$\begin{aligned} & \text { acceleration }=\text { high } \\ & 11 \end{aligned}$
Predict good		Predict bad	Predict bad	Predict good	pchance $=0.717$
$\begin{aligned} & \text { acceleration = low } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { acceleration }=\text { medium } \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { acceleration }=\text { high } \\ & 00 \end{aligned}$	$\begin{aligned} & \text { modelyear }=70 \text { to } 74 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { modelyear }=75 \text { to } 78 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { modelyear }=79 \text { to } 83 \\ & 00 \end{aligned}$
Predict bad	(unexpandable)	Predict bad	Predict good	Predict bad	Predict bad
Predict bad					

MPG Test set error

| Num Errors Set SizePercent

 Wrong |
| ---: | :--- |

Training Set	1	40	2.50
Test Set	74	352	21.02

horsepower = low horsepower = medium horsepower = high acceleration = low acceleration = medium acceleration = high

Decision trees \& Learning Bias

Suppose no "label noise"
6 two dat point Jame x ditforedy

zero train error
\longrightarrow over fit!!

Decision trees will overfit

- Standard decision trees have no learning bias
\square Training set error is always zero!
- (If there is no label noise)
\square Lots of variance
\square Will definitely overfit!!!
\square Must bias towards simpler trees
- Many strategies for picking simpler trees:
\square Fixed depth
\square Fixed number of leaves
\square Or something smarter...

A chi-square test

- Suppose that MPG was completely uncorrelated with maker.
- What is the chance wed have seen data of at least this apparent level of association anyway?
if props of (hence correlation
high, dost keeps pit

A chi-square test

```
mpg values: bad good
```


- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?
By using a particular kind of chi-square test, the answek is 7.2\%
(Such simple hypothesis tests are very easy to compute, unfortunately, not enough time to cover in the lecture, but see readings...)

Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
\square Beginning at the bottom of the tree, delete splits in which $p_{\text {chance }}>$ MaxPchance
\square Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

Pruning example

- With MaxPchance = 0.1, you will see the following MPG decision tree:

MaxPchance

- Technical note MaxPchance is a regularization parameter that helps us bias towards simpler models

Real-Valued inputs

- What should we do if some of the inputs are real-valued?

mpg	cylinders	displacemen	horsepower	veight	acceleration modelyear maker		
			-				
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	.	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!
Idea One: Branch on each possible real value

"One branch for each numeric value" idea:

Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

- Binary tree, split on attribute X_{i}One branch: $\mathrm{X}_{\mathrm{i}}<\mathrm{t}$
Other branch: $X_{1} \geq t$

$$
\begin{gathered}
x_{i} \\
\langle t /\rangle_{1} \geqslant t
\end{gathered}
$$

$$
\begin{aligned}
& \text { Could split on } x_{i} \text { multiph tines } \\
& x_{1} \\
& <0 />0 \\
& t \stackrel{x_{2}}{\wedge f} \\
& { }_{x_{1}} \\
& 76 \leq 12100
\end{aligned}
$$

Choosing threshold split

- Binary tree, split on attribute X_{i}
\square One branch: $\mathrm{X}_{\mathrm{i}}<\mathrm{t}$
\square Other branch: $X_{i} \geq \mathrm{t}$
) info gain like a discrete binary variable
- Search through possible values of t
\square Seems hard!!!
- But only finite number of t 's are important
\square Sort data according to X into $\left\{x_{1}, \ldots, x_{m}\right\}$
\square Consider split points of the form $x_{i}+\left(x_{i+1}-x_{i}\right) / 2$

Sure data
Partition

A better idea: thresholded splits

- Suppose X is real valued
- Define $I G(Y \mid X: t)$ as $H(Y)-H(Y \mid X: t)$
- Define $H(Y \mid X: t)=$ 因

$$
H(Y \mid X<t) P(X<t)+H(Y \mid X>=t) P(X>=t)
$$

- IG(Y|X:t) is the information gain for predicting Y if all you know is whether X is greater than or less than t
- Then define $I G^{*}(Y \mid X)=\max _{t} I G(Y \mid X: t)$
- For each real-valued attribute, use $I G^{*}(Y \mid X)$ for assessing its suitability as a split
- Note, may split on an attribute multiple times, with different thresholds

Example with MPG

Example tree using reals

What you need to know about decision trees

- Decision trees are one of the most popular data mining tools
\square Easy to understand
\square Easy to implement
\square Easy to use
\square Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
\square Zero bias classifier! Lots of variance
\square Must use tricks to find "simple trees", e.g.,
- Fixed depth/Early stopping
- Pruning
- Hypothesis testing

Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
$\square \underline{\text { http://www.cs.cmu.edu/~awm/tutorials }}$

Instance-based Learning
 Nearest Neighbors/NonParametric Methods

Machine Learning - CSEP546
Carlos Guestrin
University of Washington
February 3, 2014

Why not just use Linear Regression?

Using data to predict new data

Nearest neighbor

Univariate 1-Nearest Neighbor

Given datapoints $\left(x^{1}, y^{1}\right)\left(x^{2}, y^{2}\right) . .\left(x^{N}, y^{N}\right)$, where we assume $y^{i}=f\left(x^{1}\right)$ for some unknown function f.
Given query point x^{q}, your job is to predict $\quad \hat{y} \approx f\left(x^{q}\right)$
Nearest Neighbor:

1. Find the closest x_{i} in our set of datapoints

$$
j(n n)=\underset{j}{\operatorname{argmin}}\left|x^{j}-x^{q}\right|
$$

2. Predict $\hat{y}=y^{i(m)}$ Here's a dataset with one input, one output and four datapoints.

1-Nearest Neighbor is an example of.... Instance-based learning

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

Four things make a memory based learner:

- A distance metric
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to fit with the local points?

1-Nearest Neighbor

Four things make a memory based learner:

1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

One
3. A weighting function (optional)

Unused
4. How to fit with the local points?

Just predict the same output as the nearest neighbor.

$$
\begin{aligned}
& i=\operatorname{argmin}_{j} \mid x^{j}-x^{t \mid} \| \\
& \text { prodict } G \equiv y^{i}
\end{aligned}
$$

Multivariate distance metrics

Suppose the input vectors $x^{1}, x^{2}, \ldots x^{N}$ are two dimensional:

$$
\mathbf{x}^{1}=\left(x^{1}{ }_{1}, x^{1}{ }_{2}\right), \mathbf{x}^{2}=\left(x^{2}{ }_{1}, x^{2}{ }_{2}\right), \ldots \mathbf{x}^{N}=\left(x^{N}{ }_{1}, x^{N}{ }_{2}\right) .
$$

One can draw the nearest-neighbor regions in input space.

The relative scalings in the distance metric affect region shapes

Euclidean distance metric

Or equivalently,

$$
D\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\sqrt{\sum_{i} \sigma_{i}^{2}\left(x_{i}-x_{i}^{\prime}\right)^{2}}
$$

where

$$
\begin{aligned}
& D\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\sqrt{\left(\mathrm{x}-\mathrm{x}^{\prime}\right)^{T} \sum\left(\mathrm{x}-\mathrm{x}^{\prime}\right)} \\
& \Sigma=,\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0^{2} & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \sigma_{N}^{2}
\end{array}\right] \\
& \text { ank-based, Correlation-based, .. }
\end{aligned}
$$

Notable distance metrics (and their level sets)

Consistency of 1-NN

- Consider an estimator f_{n} trained on n examples
\square e.g., 1-NN, neural nets, regression,...
- Estimator is consistent if true error goes to zero as amount of data increases
\square e.g., for no noise data, consistent if:
$\lim _{n \rightarrow \infty} M S E\left(f_{n}\right)=0$
- Regression is not consistent!
\square Representation bias
■ 1-NN is consistent (under some mild fineprint)

What about variance???

1-NN overfits?

k-Nearest Neighbor

Four things make a memory based learner:

1. A distance metric Euclidian (and many more)
2. How many nearby neighbors to look at?
k
3. A weighting function (optional)

Unused
2. How to fit with the local points?

Just predict the average output among the k nearest neighbors.

$$
\begin{aligned}
& N N\left(x^{*}\right) \text { t } k \text { dearest neighbors }
\end{aligned}
$$

k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but there are clear deficiencies.
What can we do about all the discontinuities that k-NN gives us?

Weighted keNs

- Neighbors are not all the same

$$
\hat{y}=\frac{\pi_{1} y^{1}+\pi_{2} y^{2}+\pi_{3} y^{3}}{\pi_{1}+\pi_{2}+\pi_{3}}
$$

π_{i} is some wight, egg.,

$$
\pi_{i}=\frac{1}{\left\|v^{k}-v^{i}\right\|}
$$

Kernel regression

Four things make a memory based learner:

1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

All of them
3. A weighting function (optional)
$\pi^{i}=\exp \left(-D\left(x^{i}, q u e r y\right)^{2} / \rho^{2}\right)$
Nearby points to the query are weighted strongly, far points weakly. The $\boldsymbol{\rho}$ parameter is the Kernel Width. Very important.
4. How to fit with the local points?

Predict the weighted average of the outputs: predict $=\Sigma \boldsymbol{m}^{i} y^{i} / \Sigma \boldsymbol{m}^{i}$
Classification
weighted móyouits

Weighting functions

$$
\pi^{i}=\exp \left(-D\left(x^{i}, q u e r y\right)^{2} / \rho^{2}\right)
$$

	$\exp (\|-d\|)$	Uniform

Typically optimize ρ using gradient descent os X-validation
(Our examples use Gaussian)

Kernel regression predictions

Increasing the kernel width ρ means further away points get an opportunity to influence you.
As $\rho \rightarrow \infty$, the prediction tends to the global average.

Kernel regression on our test cases

Choosing a good $\boldsymbol{\rho}$ is important. Not just for Kernel Regression, but for all the locally weighted learners we're about to see.

Kernel regression can look bad

Time to try something more powerful...

Locally weighted regression

Kernel regression:
Take a very very conservative function approximator called AVERAGING. Locally weight it.
Locally weighted regression:
Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

Locally weighted regression

- Four things make a memory based learner:
- A distance metric

Any

- How many nearby neighbors to look at?

All of them

- A weighting function (optional)

Kernels

- How to fit with the local points?

General weighted regression:

$$
\begin{aligned}
& \hat{w}^{q}=\underset{w}{\operatorname{argmin}} \sum_{k=1}^{N} \pi_{q}^{k}\left(\mathrm{y}^{k}-w^{T} \mathrm{x}^{k}\right)^{2} \sigma^{\text {recursion function }} \\
& w
\end{aligned}
$$

How LWR works

Another view of LWR

LWR on our test cases

Locally weighted polynomial regression

Kernel Regression Kernel width ρ at optimal level.
$\rho=1 / 100 x$-axis

LW Linear Regression Kernel width ρ at optimal level.
$\rho=1 / 40 x$-axis

LW Quadratic Regression Kernel width ρ at optimal level.
$\rho=1 / 15 x$-axis

Local quadratic regression is easy: just add quadratic terms to the X matrix. As the regression degree increases, the kernel width can increase without introducing bias.

Curse of dimensionality for instance-based learning

- Must store and retreve all data!
\square Most real work done during testing
\square For every test sample, must search through all dataset - very slow!
\square There are (sometimes) fast methods for dealing with large datasets
- Instance-based learning often poor with noisy or irrelevant features

Curse of the irrelevant feature
add un ire levant noisy torture

What you need to know about $/$ Acsinu shuss

 instance-based learning veranidagen- k-NN
\square Simplest learning algorithm
\square With sufficient data, very hard to beat "strawman" approach
\square Picking k?
- Kernel regression
\square Set k to n (number of data points) and optimize weights by gradien descent
\square Smoother than k-NN
- Locally weighted regression
\square Generalizes kernel regression, not just local average
- Curse of dimensionality
\square Must remember (very large) dataset for prediction
\square Irrelevant features often killers for instance-based approaches

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
$\square \underline{\text { http://www.cs.cmu.edu/~awm/tutorials }}$

