
CSEP 546 Data Mining/Machine Learning, Winter 2014:

Homework 4

Due: Monday, March 3rd, beginning of class

1 Recommender systems for fun and profit [40 points]

For this problem, you will explore Matrix completion to predict movie ratings.

1.1 Matrix factorization

Given a set of “ratings” by the user u for movie v, D = {(u, v,Xuv)}, the task at hand is to find a rank-k
approximation of X,

X̂ =

k−1∑
i=0

L:,iRi,: = LR, , L ∈ Rnu×k, R ∈ Rk×nm .

This is to be done in such a way as to minimized the following cost,1

g(L,R) =
1

2

∑
(u,v)∈D

(
(Xuv − X̂uv)2 + λ(‖Lu,:‖2 + ‖Rv,:‖2)

)
,

=
1

2

∑
(u,v)∈D

(
(Xuv − 〈Lu,:, R:,v〉)2 + λ(‖Lu,:‖2 + ‖Rv,:‖2)

)
.

The values of λ, k are to be picked, as always, via cross validation.
One of the ways of obtaining a Matrix Factorization (MF), is by running Stochastic gradient descent

(SGD) over the dataset. You’re provided with a Python implementation of SGD for the MF problem. The
basic algorithm initializes L and R with small random values, before taking small steps “stochastically” over
all the data points.

D ← {(u, v,Xuv)}
L← ε× random(nu, k)
R← ε× random(k, nm),
for (u, v,Xuv) ∈ D do

r ← Xuv − 〈Lu,:, R:,v〉
Lu,: ← Lu,: − η(−r ×R:,v + λLu,:)
R:,v ← R:,v − η(−r × Lu,: + λR:,v)

end for

1.2 Movie Lens

You will now use the provided solver to make predictions using the Movielens 1M database. The dataset
contains the following files: movies.dat ratings.dat README users.dat. The description of these files
is given in the README file. The basic usage is summarized in matrixcomp_starter.py.

1The symbology 〈x, y〉 is just fancier notation for the dot product xT y.
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1. (10 points) Using the value of λ = 1× 10−2 2, train the given implementation of Matrix Factorization
on 60% of the dataset for the values of k ∈ {10, 20, 50, 100}. For each value of k, use half of the
remaining data points, to compute the validation MSE,

1

|Dv|
∑

(u,v)∈Dv

(Xuv − 〈Lu,:, R:,v〉)2.

Plot the validation MSE for each k in a graph.

2. (5 points) Report the value of k∗, which minimizes the validation MSE error.

3. (5 points) Using the remaining dataset, compute (and report) the test MSE, for the value of k∗ that
you found in (2).

4. (10 points) In a list, report the top-10 movie predictions for user “id=100” (in Python, this would
correspond to the array index 99). Compare these with the top-10 ratings of the user. Do these
predictions make sense ? The movie names are listed in the file movies.dat.

Repeat the same for user “id=99”.

5. (10 points) Modify the function matrix_factorize, to use different learning rates (the parameter
ssize passed onto stochastic_gd). Try the following learning rates: {constant, 1/t, 1/t0.75}, and
comment on the convergence rates (and the training MSE) that you obtain. How do these compare
with the default 1/

√
t ? Can you come up with a better learning rate ? You can use the value of k∗

from (2), and the given λ, for all your experiments.

Show a plot of the training MSE for each step of the outer loop.

2 Programming Question (Clustering with K-means) [50 points]

In class we discussed the K-means clustering algorithm. Your programming assignment this week is to
implement the K-means algorithm on digit data.

2.1 The Data

There are two files with the data from handwritten digits dataset MNIST. The first

mnist2500_X.txt

contains the 2500 observations of 784 pixels (28× 28 image) concerning handwritten digits. The second file

mnist2500_labels.txt

contains the true digit label (integer from 0 to 9). You can read both data files in with

X = numpy.loadtxt("mnist2500_X.txt")

Y = numpy.loadtxt("mnist2500_labels.txt")

Please note that there are no IDs for the digits. Please assume that the first line is ID 0, the second line
is ID 1, and so on. The labels correspond to the digit file, so the first line of mnist2500_labels.txt is the
label for the digit in the first line of mnist2500_X.txt.

2... which has been given to you by an all-knowing oracle.
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2.2 The algorithm

Your algorithm should be implemented as follows:

1. Select k starting centers that are points from your data set. You should be able to select these centers
randomly or have them given as a parameter.

2. Assign each data point to the cluster associated with the nearest of the k center points.

3. Re-calculate the centers as the mean vector of each cluster from (2).

4. Repeat steps (2) and (3) until convergence or iteration limit.

Define convergence as no change in label assignment from one step to another or you have iterated 40 times
(whichever comes first). Please count your iterations appropriately: after 40 iterations, you should have
re-calculated the centers 40 times.

2.3 Within group sum of squares

The goal of clustering can be thought of as minimizing the variation within groups and consequently max-
imizing the variation between groups. A good model has low sum of squares within each group. We define
sum of squares in the traditional way. Let Ck be the kth cluster and let µk be the empirical mean of the
observations xi in cluster Ck. Then the within group sum of squares for cluster Ck is defined as:

SS(k) =
∑
i∈Ck

|xi − µCk
|2

Please note that the term |xi − µCk
| is the euclidean distance between xi and µCk

, and therefore should be

calculated as |xi−µCk
| =

√∑d
j=1 (xij − µCkj

)2, where d is the number of dimensions. Please note that that

term is squared in SS(k). If there are K clusters total then the “sum of within group sum of squares” is
just the sum of all K of these individual SS(k) terms. .

2.4 Mistake Rate

Given that we know the actual assignment labels for each data point we can attempt to analyze how well
the clustering recovered this. For cluster Ck let its assignment be whatever the majority vote is for that
cluster. If there is a tie, just choose the digit that is smaller numerically as the majority vote. For example
if for one cluster we had 270 observations labeled one, 50 labeled three, 9 labeled five, and 0 labeled seven
then that cluster will be assigned value one and had 50 + 9 + 0 = 59 mistakes. For each cluster, its mistake
rate (between 0 and 1) is the number of mistakes divided by the number of samples in the cluster.

If we add up the total number of “mistakes” for each cluster and divide by the total number of observations
(2500) we will get our total mistake rate, between 0 and 1.

2.5 Questions

When you have implemented the algorithm please report the following:

1. [15pts] The values of sum of within group sum of squares and mistake rates for k = 5, k = 10, k = 15,
and k = 20. Please start your centers with the first k points in the dataset. So, if k = 5, your initial
centroids will be samples with ID from 0 to 4, which correspond to the first five lines in the file.

2. [5pts] The number of iterations that k-means ran for k = 20, starting the centers as in the previous
item. Make sure you count the iterations correctly. If you start with iteration i = 0 and at i = 3 the
the cluster assignments don’t change, the number of iterations was 4, as you had to do steps 2 and 3
to figure this out.

3. [5pts] The mistake rate of each cluster for k = 20.
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4. [10pts] When k = 20, find out the cluster with the smallest mistake rate and the cluster with the
largest mistake rates. For each of these 2 clusters, randomly select 3 samples from each cluster and
show them as 3 binary images of handwritten digits.

For each sample (row) in X, its 784 features are the pixel values of a 28× 28 image. For example, the
first 28 features correspond to the 28 pixels in the first column of the image, for ith row in X, it can
be plotted as a binary image by using the following code:

figure(1)

matplotlib.pyplot.imshow(reshape(X[i,:],(28,28)),cmap = cm.binary)

show()

5. [5pts] Can you explain the result from the images? For instance, why does k-means work well on the
images from the cluster with the smallest mistake rate ?

6. [5pts] A plot of the sum of within group sum of squares versus k for k = 1, 2, 3, · · · , 20. Please start
your centers randomly (choose k points from the dataset at random).

7. [5pts] A plot of total mistake rate versus k for k = 1, 2, 3, · · · , 20. Please start your centers randomly
(choose k points from the dataset at random).

For the last two items, you should run the experiment for each k about 5 times, and report the average
within class sum of squares and average mistake rate for each k on your plots, just in order to make sure
you don’t submit a plot where k-means got really unlucky centers in the beginning. Only submit one plot
for each question though. Also remember to submit your code.

2.6 Some useful functions

There are two python functions you may find useful in building your k-means algorithm. The first one
returns a random permutation of integers from 1 to n:

numpy.random.permutation(n)

The second returns a matrix D storing the pairwise distances between points from X and Y , i.e., Di,j is the
(euclidean) distance between the row vectors Xi and Yj :

D = scipy.spatial.distance.cdist(X, Y, ’euclidean’)
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