
CSEP 546 Data Mining/Machine Learning, Winter 2014:

Homework 3

Due: Monday, February 17th, beginning of class

1 Näıve Bayes[28 points]

The following table contains data from an employee database. The database includes the status, department,
age range and salary of each employee.

Status Department Age Salary
Senior Sales 31-35 46K-50K
Junior Sales 26-30 26K-30K
Junior Sales 31-35 31K-35K
Junior Systems 21-25 46K-50K
Senior Systems 36-40 66K-70K
Junior Systems 26-30 66K-70K
Senior Systems 41-45 66K-70K
Senior Marketing 36-40 46K-50K
Junior Marketing 31-35 41K-45K
Senior Secretary 46-50 36K-40K
Junior Secretary 26-30 26K-30K

This problem asks you to learn a Näıve Bayes classifier for predicting the employee status.

1. (4 points) What is the prior probability of status p(status)?

2. (10 points) What is the conditional probability (given status) for department, age and salary re-
spectively? Please write down your answers in three tables for the three conditional probabilities,
respectively.

3. (4 points) Use your näıve Bayes classifier, predict the status for two instances A={Marketing, 31-35,
46K-50K} and B={Sales, 31-35, 66K-70K}.

4. (6 points) Suppose we add another feature called “SalaryDuplicate”, which takes on the same value as
“Salary” for all training examples. What are the prediction results for the above two instances, if we
train a näıve Bayes classifier on the same dataset with this extra feature?

5. (6 points) Why do you observe the differences in Questions 1.3 and 1.4? What property of the näıve
Bayes classifier was affected?

1

2 Decision Trees [22 points]

1. (10 points) Consider the problem of predicting if a person has a college degree based on age and salary.
The table and graph below contain training data for 10 individuals.

Age Salary ($) College Degree
24 40,000 Yes
53 52,000 No
23 25,000 No
25 77,000 Yes
32 48,000 Yes
52 110,000 Yes
22 38,000 Yes
43 44,000 No
52 27,000 No
48 65,000 Yes

4. (5 points) One greedy algorithm for feature selection is called backward elimination.
A learning algorithm is applied using a full set of D features, and its error rate is
recorded. One by one for each feature, the algorithm is applied with (only) that
feature excluded. This gives D new runs of the algorithm, each with an error rate.
The feature whose exclusion produced the lowest error rate is permanently excluded,
and the process is iterated. Backward elimination terminates when there is no feature
whose exclusion leads to a lower error rate, or when the number of features reaches a
specified level.

Apply 3NN with backward elimination on this dataset with the minimum number of
features being one. Which feature would be eliminated, if any?

3 Decision Trees [15 points]

1. (7 points) Consider the problem of predicting if a person has a college degree based on
age and salary. The table and graph below contain training data for 10 individuals.

Age Salary ($) College Degree
24 40,000 Yes
53 52,000 No
23 25,000 No
25 77,000 Yes
32 48,000 Yes
52 110,000 Yes
22 38,000 Yes
43 44,000 No
52 27,000 No
48 65,000 Yes

20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

x 10 4

Age (years)

Ye
ar

ly
 in

co
m

e
($

)

Yearly Income vs. Age

Has College Degree
No College Degree

3

Build a decision tree for classifying whether a person has a college degree by greedily choosing threshold
splits that maximize information gain. What is the depth of your tree and the information gain at
each split?

2. (6 points) A multivariate decision tree is a generalization of univariate decision trees, where more than
one attribute can be used in the decision rule for each split. That is, splits need not be orthogonal to
a feature’s axis.

For the same data, learn a multivariate decision tree where each decision rule is a linear classifier that
makes decisions based on the sign of αxage + βxincome − 1.

What is the depth of your tree, as well as α, β and the information gain for each split?

3. (6 points) Multivariate decision trees have practical advantages and disadvantages. List two advantages
and two disadvantages multivariate decision trees have compared to univariate decision trees.

2

3 Programming Question [50 points]

3.1 Implement Adaboost on decision stumps.

Given the data D = {(xi, yi)}N−1i=0 , xi ∈ Rd, yi ∈ {−1, 1}, the Adaboost algorithm uses an ensemble of weak
classifiers to build a more expressive one. Recall that the algorithm itself is given by:

D ← {(xi, yi)}N−1i=0

D0[0 : N]← 1/N
for t = 0→ T − 1 do

ht ← arg maxh∈H |0.5− ε(h,Dt)|
αt ← 1

2 ln(1−ε(ht,Dt)
ε(ht,Dt)

)

Dt+1[0 : N] = 1
ZDt[0 : N] ∗ eαt(21(y[0:N]6=ht(x[0:N]))−1)

end for
return {αt, ht}.

In the above algorithm, Z is the normalizer of Dt+1, T is the maximum number of weak-classifiers in the
ensemble, and

ε(h,D) =

N−1∑
i=0

D[i]1(yi 6= h(xi)).

The final classifier is given by,

H(x) = sign

(
T∑
t=0

αtht(x)

)
.

For this assignment you’ll be implementing Adaboost to run on decision-stumps. A decision stump is a
binary classifier given by,

h(x, i, v) = 21(x[i] > v)− 1.

Decision stumps can be trained in O(κN) 1 time by maximizing mutual information. Note that the
family of weak classifiers in this case is finite; there are N − 1 classifiers for each feature, hence effectively
|H| = (N − 1)d.

You are provided with implementations for training decision stumps on both sparse and dense data. A
summary of the usage of these routines is given below.

1The κ here refers to the sparsity of the data.

3

#!/usr/bin/python2

from scipy import *

import scipy.sparse as sp

import dstump as ds

(f, y) = ds.two_clusters(100)

pr = ones(len(y))/len(y)

#This quantity is invariant for each Adaboost step, and helps us take

#advantage of sparsity.

pplus = sum(pr * (y > 0))

#The decision stump training routine accepts either a dense 1-d

#array or a sparse 1-d CSC matrix. The resulting decision variable

#might be different for dense and sparse data, but the errors are

#the same. See implementation for details.

(dv, err) = ds.stump_fit(f, y, pr, pplus)

#Inplace transpose of a CSR matrix gives a CSC matrix.

fs = sp.csr_matrix(f).T

(dvs, errs) = ds.stump_fit(fs, y, pr, pplus)

3.2 Try breaking your implementation.

You’ll now test your implementation on synthetically generated datasets 2. For each of the functions, {two_lines,
four_clusters} defined in adaboost-test.py:

1. (5 × 2 points) Generate the training dataset, with N := 500 data points using the function. Run Adaboost
on this dataset for about T := 50 steps 3. Plot the training error εt = 1

N

∑N−1
i=0 (yi 6= Ht(xi)), for every step of

Adaboost. Also plot the magnitude of the coefficient αt, for each step, in a separate graph.

2. (4 × 2 points) Generate the validation dataset, with Nv := 500 data points using the same function. You’ll
now use this dataset to pick the size of the ensemble. We’ll denote by Ht, the classifier obtained at the end of
the t’th step of Adaboost.

Ht(x) = sign

(
t∑

j=0

αjhj(x)

)
.

Using the model parameters learnt from (1), plot the prediction error εt for every classifier Ht, t = {0 . . .m}.

εt =
1

Nv

Nv−1∑
i=0

(yi 6= Ht(xi)).

3. (1 × 2 points) Generate the test dataset, with Nt := 500 data points using the same function. For the value of
t∗ that gives the minimum validation error in (2), compute the prediction error on the test data. Is this better
than random ? (Extra credit: 5 points) If not, can you explain why ?

Please answer the above set of questions, separately for each test function.

3.3 Let’s classify newsgroups.

We’ll now use Adaboost to classify emails between two newsgroups. For training the classifier we’ll be making use of
the 20-Newsgroups dataset, which consists of an archive of about 1000 posts from 20 newsgroups each.

To convert text into numerical data, we’ll be using a bag-of-words tokenizer. A bag-of-words tokenizer keeps
count of the occurence of particular words or sequence of words, irrespective of their position in a document. Naive
as this may be, the features hence extracted can be surprisingly effective at classifiying documents. Since some words
occur frequently irrespective of the subject - words like “the” - we’ll also weight the frequencies by how infrequent
they are in the text corpus. This scheme is known popularly as “tf-idf”.

2You can use matplotlib.pyplot.plot to plot the features in 2-D.
3A “step” here would be one run of the Adaboost loop.

4

http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

We’ll be making use of scikits-learn for tokenizing the text. You’re provided with a text parser (tok.py), which
strips out comments and message-headers from emails. You’re also provided with some starter code (scikits-starter.py)
to help get you familiarized with sklearn.feature_extraction.text.

You are now tasked with parsing the emails from a given pair of newsgroups, and then using Adaboost to learn
a binary classifier from them. For each of the following pairs of newsgroups, {[“alt.atheism”, “comp.windows.x”],
[“alt.atheism”, “soc.religion.christian”]},
• Parse the text of emails from each newsgroup in the pair to create the corpus. Split the text corpus in

proportions (0.6, 0.2, 0.2) for training, validation and testing respectively.

• Use the tf-idf tokenizer in scikits-learn, with the parameters given in the starter code, to fit a bag-of-words
model on the training corpus.

• Run Adaboost for about T := 30 steps. This may take a considerable amount time (∼ 10m).

• Answer the following questions, which are in the spirit of the previous section.

1. (7 × 2 points) Plot the training error for each step of Adaboost. Also plot the magnitude of the coefficient αt,
for every step, in a separate graph.

2. (4 × 2 points) Find the optimal ensemble size using the validation dataset. Report the test error for the
resulting classifier. Show a plot of the validation error vs the number of weak-learners used.

3. (2 × 2 points) Report the feature names for the classifier obtained in (2).

4. (2 × 2 points) For each newsgroup in the 20-newsgroups dataset, which one amongst the given pair, is your
classifier from (2) likely to classify emails from the newsgroup, into (use majority-vote) 4? For example, if
your classifier was trained on [“alt.atheism”, “comp.windows.x”], and you found that 90% of the emails from
“soc.religion.christian” were classified as belonging to “alt.atheism”, then you’d report “alt.atheism (0.9)”
against “soc.religion.christian” in a table.

As before, answer the above set of questions, separately for each pair.

4Any Yes Minister fans out there?

5

http://scikit-learn.org/stable/

	Naïve Bayes[28 points]
	Decision Trees [22 points]
	Programming Question [50 points]
	Implement Adaboost on decision stumps.
	Try breaking your implementation.
	Let's classify newsgroups.

