
CSEP 546 Data Mining/Machine Learning, Winter 2014:

Homework 2

Due: Monday, February 3, beginning of class

1 Logistic regression [35 Points]

(Source: Hastie/Tibshirani/Friedman, Exercise 4.5) Suppose you are given two data points
at r− α, r+α, which belong to the classes {−1, 1} respectively (r, α are arbitrary vectors).
Assume that the probability of a data point x belonging to class y is given by,

P (cl(x) = y|w, w0) =
1

1 + e−y(wT x+w0)
.

Assuming, if you must, that r, α ∈ R2, answer the following questions,

1. (5 Points) Write down the log-likelihood of the given data under this model. We will
call this `(w, w0) hereonwards.

2. (10 Points) What value of w0 maximizes `(w, w0) for a given w ? We’ll denote this
maximum as w∗0(w). 1

3. (10 Points) Consider the function `′(w) = `(w, w∗0(w)) (`′ is obtained by substituting
w∗0(w) from (2) in `(w, w0)). What value of w maximizes `′ ? Is it finite ? Why or
why not ? (Hint: When is the dot product maximized ?).

4. (10 Points) Suppose you’re given a bound on w, ‖w‖2 ≤ t. Find w which maxi-
mizes `′(w) under this inequality bound. What does this tell you about the decision
boundary ? (Hint: When is the dot product maximized ?).

5. (Extra credit: 3 Points) Is the maximum of `′(w) equal to the maximum of `(w, w0)
? What we’re getting at, is whether maximizing a function f(x, y) is the same as
maximizing f with respect to y first and then with respect x ?

2 Kernels, separability [15 Points]

Consider a dataset with 3 points in 1d: (x1 = 0, y1 = −1), (x2 =
√

2, y2 = 1), and
(x3 = 2

√
2, y2 = −1). This dataset is not linearly separable. Consider mapping each point

to 3d using the feature vector φ(x) = [1,
√

2x, x2]T . (This is equivalent to using a second
order polynomial kernel.)

1 d
dx

{log(x), ex, xn} = {1/x, ex, nxn−1}.
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1. (5 points) Are the data points linearly separable in the feature space ?

2. (10 points) Does your conclusion depend on the particular values of x1, x2, x3 ? Ex-
plain ?

3 Programming Question

In this problem, we seek to perform a digit recognition task, where we are given an image of
a handwritten digit and wish to predict what number it represents. This is a special case of
an important area of language processing known as Optical Character Recognition (OCR).
We will be simplifying our goal to that of a binary classification between two relatively
hard-to-distinguish numbers (specifically, predicting a ’3’ versus a ’5’). To do this, you will
implement a kernelized Perceptron and linear support vector machine (SVM).

3.1 Dataset

The digit images have been taken from a Kaggle competition, http://www.kaggle.com/c/
digit-recognizer/data. This data was originally from the MNIST database of handwrit-
ten digits, but was converted into a easier-to-use file format.

The data have also undergone some preprocessing. They have been filtered to just those
datapoints whose labels are 3 or 5, which have then been relabeled to 1 and -1 respectively.
Then, 1000-point samples have been created, named validation.csv and test.csv on the class
website. Each row in these files represents an image. The first column is the label of the
image, and the remaining columns give the grayscale values for each pixel.

3.2 Perceptron [50 Points]

1. (10 points) Write the prediction rule of kernelized Perceptron on the t-th iteration of
its training procedure in terms of a kernel function k(u, v) = φ(u) · φ(v), where u and
v are data points and φ is a projection to a feature space. That is, give an expression
for sign

(
w(t) · φ(x)

)
in terms of k and previously misclassified data points, where w(t)

is the weight vector estimated on the t-th iteration, and x is a data point whose label
we want to predict. You will use this expression to implement Perceptron. Ignore the
intercept, as it will appear naturally when we apply kernel functions. You may cite
the lecture slides.

2. Implement Perceptron. Initially start all the weights at 0. Use one pass over the data.
Write it so that it takes a kernel function as a parameter.

3. (10 Points) Consider the kernel k1p(u, v) = u · v + 1. (k1p is what the standard dot
product would give us, if we had added a constant term 1.) Run Perceptron on the
validation set with this kernel, and plot the average loss L̄ as a function of the number
of steps T , where

L̄(T ) =
1

T

T∑
j=1

I(ŷ(t) 6= y(t))
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Here ŷt is the label that Perceptron predicts for datapoint t as it runs, and I is an
indicator function, which is 1 if its condition is true and 0 otherwise. Only show the
average loss every 100 steps, e.g. [100, 200, 300, ...].

4. (10 Points) For a positive integer d, the polynomial kernel kdp(u, v) = (u · v + 1)d

maps x into a feature space of all polynomials of degree up to d. For the set d =
[1, 3, 5, 7, 10, 15, 20], run Perceptron for a single pass over the validation set with kdp ,

and plot the average loss over the validation set L̄(1000) as a function of d.

5. (10 Points) For σ > 0, the Gaussian kernel kσG(u, v) = exp
(
−‖u−v‖

2

2σ2

)
is a map to

all polynomials of x, where σ is a tuning constant that roughly corresponds to the
”window size” of the distribution. The Gaussian kernel, also known as the radial basis
function (RBF) kernel, is one of the most popular kernel functions because it performs
well on a variety of data, making it an ideal choice as a default kernel.

Tuning on the validation set has produced a value of σ = 1000. For the best d in
the previous step, run Perceptron with both kdp and k1000G for a single pass over the
testing set. (Use a fresh run of the algorithm; do not reuse the set of mistakes from
the validation set.) For each of these two kernels, plot the average loss L̄(T ) as a
function of the number of steps on the same graph. As above, show the average loss
for every 100 steps.

3.3 SVM [Extra Credits: 15 Points]

In this problem we consider only linear SVMs—that is, we do not use kernels. Although
kernels would perform better, their implementation is quite complicated. Linear SVMs, on
the other hand, can be trained by stochastic gradient descent, though this method is not
the best known.

1. (5 points) Write the stochastic gradient descent update rules for both intercept and
non-intercept weights in linear SVMs.

2. Implement linear SVMs. Initially start all the weights at 0. Use one pass over the
data.

3. (5 points) Run SVM on the testing set with η = 10−5 and C = 1. (Use a fresh run of
the algorithm; do not use weights learned from the validation set.) Plot the average
loss for every 100 steps.

4. (5 points) Since C should matter, describe how the expected behavior of linear SVMs
changes as C increases and decreases. What is the relationship to Perceptron?
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