
1

Learning Theory, SVMs 
and Using Unlabeled Data

Instructor: Jesse Davis

Slides from: Pedro Domingos, Ray Mooney, 

David Page, Jude Shavlik
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Announcements

 Homework 3 is due now

 Homework 4 is available

 Homework 2 is graded

 Andrey will be out of town

 Access to email at funny times

 Email both of us

 Lecture notes are available online



Outline

 Homework 2 review

 Computational learning theory

 Support vector machines

 Making use of unlabeled data
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Problem 1: Results

 For M = |V|, P = 1/|V|, Accuracy = 0.902

 Best M ~ 50 |V|, Accuracy = 0.906

 Most common omissions:

 No code description (5 points)

 No code comments (3 points)

 Not reporting best parameter sets (4 points)

 Reporting precision, recall, TPR, FPR, etc., 
but not accuracy (no penalty but annoyed 
me).



Problem 1: One More Serious 
Omission
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Not using sums of 
logarithms instead of 

products of 
probabilities



Problem 1: Most Common Mistakes

Mistake
Accuracy at 
M = |V|
P = 1/|V|

Penalty Comments

Ignoring word counts 
in test emails during 
classification.

0.906 5 points

Bad because you 
learned multinomial 
parameters but are 
used them in a 
“binomial” way

The above + using    
P = 1/|Vspam| or        
P = 1 /
(|Vspam|+|Vham|)  
when computing 
P(W|spam)

Usually 0.908 7 points

Implementing 
binomial Naïve Bayes

0.913 5 points
Not what the 
assignment asked



Problem 1: Good Observations

 True Negative Rate and False Positive Rate are 
more informative than accuracy in this 
application.

 Smoothing parameters have little effect in this 
particular case (don’t generalize it!)

 Cool ideas about additional features (next time)



Problem 2a: Solution

 Straightforward:

 Run FOIL

 Get 10 points

 Learned rules are sometimes counterintuitive or 
incomplete:

 Sister(A,B) :- Brother(B,A)
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Problem 2b: Solution

 12 named predicates + Equals
 5 variables (A,B,C,E, and X – the new variable)
 For each named predicate:

 5*5 - 1 = 24 positive literals resulting from substituting 
a combination of 2 (not necessarily distinct!)  of the 
above variables, except (X,X).

 24 negative literals
 For Equals:

 4*4 = 16 positive literals resulting from substituting a 
combination of 2 (not necessarily distinct!) existing 
variables. X is not allowed to participate.

 16 negative literals
 Thus:

 2*(12*24 + 16) = 608 literals.



Problem 2b: Common Mistakes

 Question was about which literals are generated, 
not which are valid choices.

 Can’t exclude literals already in the rule (e.g., 
Wife(C,A))

 Can’t exclude predicates already in the rule 
(e.g., Daughter)

 Can’t exclude “silly” literals (e.g., Brother(A,A), 
Equals(B,B))

 Predicates (e.g., Wife, Brother) are not literals 
(e.g. Wife(A, C), Brother(E, B))



Problem 3: Solution

 A) 2d  or 2d-1 rules will be created (one for each 
leaf or one for each positive leaf)

 B) Each rule will have depth of the tree =            
d preconditions

 C) Number of decisions = #rules * #preconditions 
= d*2d or d*2d-1

 D) Sequential covering will be more prone to 
overfitting, because it makes more independent 
decisions



Problem 3: Common Mistake

 The number of leaves in a tree of depth d is 2d, 
not 2d-1

 Just because a decision tree is less robust to noise 
(mistakes at higher nodes affect these nodes’ 
entire subtrees) doesn’t mean it overfits more.

 In fact, it means the opposite – ID3’s decisions are 
less independent, so it’s less prone to overfitting



Problem 4: Solution 

 Let r = rabid, d = drool, a = attack

 Given: P(r)= 0.042, P(d|r) = 0.79, P(d|-r) = 0.06, 
P(a|r) = 0.97, P(a|-r) = 0.02, A and D are 
independent given Rabid

 A) P(r|d) = P(d|r)P(r) / P(d) = P(d|r)P(r) / 
(P(d|r)P(r) + P(d|-r)P(-r)) = 0.79*0.042 / 
(0.79*0.042 + 0.06*0.958) ~ 0.37

 B) P(r|a,d) = P(a,d|r)P(r) / P(a,d) = 
P(a|r)P(d|r)P(r) / (P(a|r)P(d|r)P(r) + P(a|-r)P(d|-
r)P(-r)) ~ 0.97



Problem 4: Common Mistakes

 Attack and Drool are not independent in general –
only given Rabid

 Thus, P(a,d) != P(a)P(d)

 Can’t do P(a) = P(a|r) + P(a|-r) – these will 
generally sum to > 1.



Problem 5a: Solution

 A) Is D independent of E?

 No, info flows through C.



Problem 5b: Solution

 B) Is A independent of B given C?

 No, the “explaining away” phenomenon.



Problem 5c: Solution

 C) Is E independent of B given C?

 Yes, C blocks the only information flow path.



Problem 5d: Solution

 D) Is A independent of B given D?

 No, D gives info about C, leading to “explaining 
away”.



Problem 5e: Solution

 E) Is E independent of D given B?

 No, info flows through C.



Outline

 Homework 2 review

 Computational learning theory

 Support vector machines

 Making use of unlabeled data
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Types of Results

 Learning in the limit: Is the learner guaranteed to 
converge to the correct hypothesis in the limit as the 
number of training examples increases indefinitely?

 Sample Complexity: How many training examples 
are needed for a learner to construct (with high 
probability) a highly accurate concept?

 Computational Complexity: How much 
computational resources (time and space) are needed 
for a learner to construct (with high probability) a 
highly accurate concept?
 High sample complexity implies high computational complexity, 

since learner at least needs to read the input data.

 Mistake Bound: Learning incrementally, how many 
training examples will the learner misclassify before 
constructing a highly accurate concept.
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Learning in the Limit

 Given a continuous stream of examples
 Learner predicts class for each example then 

is told the correct answer
 Does the learner eventually converge to a 

correct concept?
 No limit on the number of examples required or 

computational demands

 Must eventually learn the concept exactly
 Do not need to explicitly recognize this 

convergence point
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Learning in the Limit

 By simple enumeration, concepts from any 
known finite hypothesis space are learnable in 
the limit
 Know hypothesis space can represent the 

concept
 Eliminate hypothesis that are inconsistent 

with the data

 Typically requires an exponential (or doubly 
exponential) number of examples and time
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Learning in the Limit vs. PAC Model

 Learning in the limit model is too strong.

 Requires learning correct exact concept

 Learning in the limit model is too weak

 Allows unlimited data and computational resources.

 PAC Model

 Only requires learning a Probably Approximately 
Correct Concept: Learn a decent approximation 
most of the time.

 Requires polynomial sample complexity and 
computational complexity.
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PAC Learning

 The only reasonable expectation of a learner is 
that with high probability it learns a close 
approximation to the target concept.

 In the PAC model, we specify two small 
parameters, ε and δ, and require that with 
probability at least (1  δ) a system learn a 
concept with error at most ε.



Two Questions

 Overfitting happens because training error is 
bad estimate of generalization error

 Can we infer something about generalization 
error from training error?

 Overfitting happens when learned doesn’t see 
“enough” examples

 Can we estimate how many examples are 
enough?
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Problem Setting
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Given
Set of possible instances X

Set of possible hypothesis H  

Set of target concepts c  C

Training instances are generated by an unknown

Distribution D over X

Observe
some sequence of training data S = (xi,c(xi)), for

some c  C

Do
Learner outputs some h  H that approximates c

Evaluated on future instances drawn from D









Consistent Learners

 A learner L using a hypothesis H and training 
data D is said to be a consistent learner if it 
always outputs a hypothesis with zero error on 
D whenever H contains such a hypothesis.

 By definition, a consistent learner must produce 
a hypothesis in the version space for H given D.

 Therefore, to bound the number of examples 
needed by a consistent learner, we just need to 
bound the number of examples needed to 
ensure that the version-space contains no 
hypotheses with unacceptably high error
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ε-Exhausted Version Space

 The version space, VSH,D, is said to be ε-
exhausted iff every hypothesis in it has true 
error less than or equal to ε

 In other words, there are enough training 
examples to guarantee than any consistent 
hypothesis has error at most ε

 One can never be sure that the version-space is 
ε-exhausted, but one can bound the probability 
that it is not
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How Many Examples Are Enough?

 Theorem 7.1 (Haussler, 1988): If the 
hypothesis space H is finite, and D is a 
sequence of m  1 independent random 
examples for some target concept c, then for 
any 0 ε  1, the probability that the version 
space VSH,D is not ε-exhausted is less than or 
equal to: |H|e–εm
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Proof

 Hbad={h1,…hk} is the subset of H w/true error > ε

 The VS is not ε-exhausted if any of these are 
consistent with all m examples

 A single hi Hbad is consistent with 

 one example with probability: P(consist(hi,ej))  1- ε

 all m independent random examples with probability: 
P(consist(hi,D))  (1- ε)m

 The probability that any hi Hbad is consistent 
with all m examples is:
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Proof

 Since the probability of a disjunction of events 
is at most the sum of the probabilities of the 
individual events:

 P(consist(Hbad,D))  |Hbad|(1- ε)m

 P(consist(Hbad,D))  |H|e-εm

 Since:   |Hbad|  |H|    and  (1–ε)m  e–εm, 0 ε
 1, m ≥ 0
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Q.E.D



Sample Complexity Analysis

 Let δ be an upper bound on the probability of 
not exhausting the version space

 |H|e-εm  δ

 e-εm  δ/|H| 

 -εm  ln(δ/|H|) 

 m ≥ -ln(δ/|H|)/ε

 m ≥ ln(|H|/δ)/ε

 m ≥ [ln(1/δ) + ln|H|]/ε
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PAC Learning Definition

 A concept is PAC learnable if:

 For any target c in C and any distribution D 
on X

 Given at least N = poly(|c|,1/e,1/d) examples 
drawn randomly, independently from X

 Do with probability 1 - d, return an h in C
whose accuracy is at least 1 - e

 In other words, Prob[error(h, c) > e] < d, In 
time polynomial in |data|
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Sample Complexity Results

 Any consistent learner, given at least [ln(1/δ) + 
ln|H|]/ε examples will produce a PAC result

 Just determine the size of a hypothesis space 
for learning specific classes of concepts.

 This gives a sufficient number of examples for 
PAC learning, but not a necessary number

 Several approximations like that used to bound 
the probability of a disjunction make this a 
gross over-estimate in practice
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Sample Complexity: Conjunctions

 Consider conjunctions over n boolean features

 3n since each feature can appear positively, appear 
negatively, or not appear 

 Therefore |H|= 3n, 

 Sufficient number of examples is: [ln(1/δ) + n ln3]/ε

 Concrete examples:

 δ=ε=0.05, n=10 gives 280 examples

 δ=0.01, ε=0.05, n=10 gives 312 examples

 δ=ε=0.01, n=10 gives 1,560 examples

 δ=ε=0.01, n=50 gives 5,954 examples
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Sample Complexity of Learning
Arbitrary Boolean Functions

 Any boolean function over n boolean features

 E.g., DNF or decision trees. 

 There are 22^n of these, 

 Sufficient number of examples is:
[ln(1/δ) + 2n ln 2]/ε

 Concrete examples:

 δ=ε=0.05, n=10 gives 14,256 examples

 δ=ε=0.05, n=20 gives 14,536,410 examples

 δ=ε=0.05, n=50 gives 1.561x1016 examples
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Agnostic Learning

 So far, we assumed that c  H

 Agnostic learning: don’t assume that c  H

 What can we say here

 Assume one hypothesis h, with m independently 
chosen examples, use Hoeffding bound

 P(errorD(h) > P(errorD(h) + ε)  e-2mε2

 Then for all hypothesis:

 P[(h  H)(errorD(h) > P(errorD(h) + ε)]  |H|e-2mε2
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Agnostic Learning

 Sample complexity:

 m ≥ [1/2ε2][ln(1/δ) + ln|H|] 

 m depends logarithmically on H and 1/δ

 m grows on the square of 1/ε as opposed to 
linearly as before
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Handling Infinite Hypothesis Spaces

 The previous analysis was restricted to finite 
hypothesis spaces

 Some infinite hypothesis spaces (such as those 
including real-valued thresholds or parameters) 
are more expressive than others.
 Rule allowing one threshold on a continuous feature 

(length<3cm)  

 Rule allowing two thresholds (1cm<length<3cm)

 Need some measure of the expressiveness of 
infinite hypothesis spaces.
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Handling Infinite Hypothesis Spaces

 The Vapnik-Chervonenkis (VC) dimension, 
denoted VC(H), measures expressivity of 
infinite hypothesis spaces

 Analagous to ln|H|, there are bounds for 
sample complexity using VC(H).

 VC-dim  given a hypothesis space H, the 
VC-dim is the size of the largest set of 
examples that can be completely fit by H, 
no matter how the examples are labeled
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VC-Dimension Impact

 If the number of examples << VC-dim, then 
memorizing training is trivial and generalization 
likely to be poor

 If the number of examples >> VC-dim, then 
the algorithm must generalize to do well on the 
training set and will likely do well in the future
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Definition: Shattering

 A hypothesis space is said to shatter a set of 
instances iff for every partition of the instances 
into positive and negative, there is a hypothesis 
that produces that partition

 Example: Consider 2 instances with a single 
real-valued feature being shattered by intervals
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+      –
_ x,y
x       y
y       x
x,y
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Definition: Shattering

 But 3 instances cannot be shattered by a single 
interval
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x y z

• Since there are 2m partitions of m instances, in order 
for H to shatter instances: |H|  ≥ 2m.

+ - +



Shattering: Example

H is set of lines in 2D

Can cover 1 ex no matter how labeled
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Shattering: Example
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1

2

Can cover 2 ex’s no matter how labeled



Shattering: Example
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1

2

Can cover 2 ex’s no matter how labeled
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Shattering: Example
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2

Can cover 2 ex’s no matter how labeled
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Shattering: Example
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1

2

Can cover 2 ex’s no matter how labeled
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Shattering: Example
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1

2

Can cover 3 ex’s no matter how labeled

3

1,2 are 
same class

1,2,3 are 
same class

1,3 are 
same class
2,3 are 
same class



Shattering: Example
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1

2

Cannot cover 4 ex’s: XOR!
Label: 2,3 as +
Label: 1,4 as -

3
Notice |H| = ∞ 
but VC-dim = 3

For N-dimensions 
and N-1 dim 
hyperplanes,
VC-dim = N + 1
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More on Shattering

What about collinear points?

If  some set of d examples that H

can fully fit  labellings of these d

examples then VC(H) ≥ d
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VC Dimensions

The Vapnik-Chervonenkis dimension, VC(H). of 
hypothesis space H defined over instance space 
X is the size of the largest finite subset of X
shattered by H. If arbitrarily large finite subsets 
of X can be shattered then VC(H) = 
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Examples

 An unbiased hypothesis space shatters the 
entire instance space

 The larger the subset of X that can be 
shattered, the more expressive the hypothesis 
space is, i.e. the less biased

 If at least one subset of X of size d exists that 
can be shattered then VC(H) ≥ d. If no subset 
of size d can be shattered, then VC(H) < d

 Finite hypothesis space: VC-Dim ≤ log2|H|
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Mistake-Bound Model

 Teacher shows input I

 ML algorithm guesses output O

 Teacher shows correct answer

 Can we upper bound the number 
of errors the learner will make?
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Mistake Bound Model

Example Learn a conjunct from N

predicates and their negations

1. Initial h = p1  ¬p1  …  pn  ¬pn

2. For each + ex, remove the remaining 

terms that do not match
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Mistake Bound Model

Worst case # of mistakes? 

1 + N

1. First + ex will remove N terms from hinitial

2. Each subsequent error on a + will remove 
at least one more term (never make a 
mistake on - ex’s)
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Outline

 Homework 2 review

 Computational learning theory

 Support vector machines

 Making use of unlabeled data
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What is a Support Vector Machine

 A subset of the examples (the support vectors)

 A vector of weights for them

 A similarity function K(xi,xj) (the kernel)

 Predict:  oq = sign( Σj ɑjoj K(xj, xq)

 oq = {-1,+1}
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SVMs and Perceptrons

 So SVMs are a form of instance based learning

 However, SVMs are usually presented as a 
generalization of a perceptron

 What the relationship between instance-based 
learning the perceptron?
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Notation

 <x,w> = Σwixi

 <x,w> = <w,x>

 r<x,w> = <rw,w> [r is a real]

 <x+y,w> = <x,w> + <y,w>
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Perceptron Revisited
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X1

X2

Xn

Σ

w1

w2

wn

…

w0

1

v= w0 + Σwixi
o = 1 if v > 0

-1 otherwise{

o(x ) = 1 if <w x> + w0 > 0
-1 otherwise{

Vector Notation



Perceptron Training Rule

 Assume that oj = {-1,+1}

 Weight update rule: wi = wi + η(tj-oj)xj,i

 η =1/2

 If oj = +1 then wi = wi + xj,i

 If oj = -1 then wi = wi - xj,i

 Rewrite as: wi = wi + ojxj,i

 wi= Σj ɑjojxj,i
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Dual Form of Perceptron

 wi= Σj ɑjojxj,i

 Label = <w,xq> + w0

 Label = Σj ɑjoj<xj,xq> + w0

 Called the dual form because the example 
appears only within a dot product
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Perceptron: Linear Separator

 Binary classification can be viewed as the task 
of separating classes in feature space:
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<w,x> + w0 = 0

<w,x> + w0 < 0

<w,x> + w0 > 0

f(x) = sign(<w,x> + w0)



Linear Separators

 Which of the linear separators is optimal? 
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Idea: Classification Margin

 Support vectors: Examples closest to the 
hyperplane

 Margin ρ is the distance between support vectors
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r

ρ



Maximum Margin Classification

 Intuitive this feels safest

 Implication: Only support vectors matter 
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Computing Margin Width

 <w,xr> + w0 = 1

 <w,xb> + w0 = -1

 xr = xb + l * w

73
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Computing Margin Width

 <w,xr> + w0 = 1

 <w,xb> + w0 = -1

 xr = xb + l * w

 |xr - xb| = M
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Computing Margin Width

 <w,xr> + w0 = 1

 <w,xb> + w0 = -1

 xr = xb + l * w

 |xr - xb| = M

 w <xb + l*w> + w0 = 1
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Computing Margin Width

 <w,xr> + w0 = 1

 <w,xb> + w0 = -1

 xr = xb + l * w

 |xr - xb| = M

 w <xb + l*w> + w0 = 1

 <w,xb> + w0 + <w,l*w> = 1

 -1 + l<w,w> = 1
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Computing Margin Width

 <w,xr> + w0 = 1

 <w,xb> + w0 = -1

 xr = xb + l * w

 |xr - xb| = M

 w <xb + l*w> + w0 = 1

 <w,xb> + w0 + <w,l*w> = 1

 -1 + l<w,w> = 1

 l = 2 / <w,w> 
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Linear SVM Mathematically

 Goal: Maximize the margin

 Objective: minimize <w,w>

 Quadratic optimization problem:
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Find w and b such that

Φ(w) = w w is minimized 

and for all (xi, yi), i=1..n :yi (<w,xi>+ w0) ≥ 1



Solving the Optimization Problem

 Need to optimize a quadratic function subject 
to linear constraints.

 Quadratic optimization problems are a well-
known class of mathematical programming 
problems for which several (non-trivial) 
algorithms exist

 Not a part of this class
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Soft Margin Classification  

 If the training set is not linearly separable?

 Slack variables ξi allows misclassification of 
difficult/noisy examples

ξi

ξi



Soft Margin Classification 
Mathematically

 Modified formulation incorporates slack 
variables:

 Parameter C can be viewed as a way to control 
overfitting:  it “trades off” the relative 
importance of maximizing the margin and 
fitting the training data.

Find w and b such that

Φ(w) =w w + CΣξi is minimized 

and for all (xi ,yi), i=1..n : yi (<w,xi>+ w0) ≥ 1 – ξi, , ξi ≥ 0



Non-Linear SVMs

 Datasets that are linearly separable with some 
noise work out great:

 But what are we going to do if the dataset is 
just too hard? 
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0

0 x
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Non-Linear SVMs

 How about… mapping data to a higher-
dimensional space:
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0 x

x2



Non-linear SVMs:  Feature spaces

 General idea: Original feature space can always 
be mapped to some higher-dimensional feature 
space where the training set is separable:

84

Φ:  x → φ(x)



The “Kernel Trick”

 The linear classifier relies on inner product 
between vectors K(xi,xj)=xixj

 If map every datapoint into high-dimensional 
space via some transformation Φ:  x → φ(x), 

the inner product: K(xi,xj)= φ(xi) φ(xj)

 A kernel function is a function that is equivalent 
to an inner product in some feature space.

 Kernel function implicitly maps data to a high-
dimensional space (without the need to 
compute each φ(x) explicitly).







SVM Key Ideas

 Dual problem: Weights on examples (vs. 
features)

 Maximize the margin

 Kernel trick

88



Outline

 Homework 2 review

 Computational learning theory

 Support vector machines

 Making use of unlabeled data
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Using Unlabeled Data

Q: Where does labeled data come from??

 Some tasks, people are willing to label

 Netflix, amazon, etc.

 Spam

 Medical diagnoses 

 Often, we have to get people to label data

 Web ranking

 Document classification

90

Problem: Labeling data is expensive!



Using Unlabeled Data

 Learning methods need labeled data

 Lots of <x, f(x)> pairs

 Hard to get… (who wants to label data?)

 But unlabeled data is usually plentiful…Could 
we use this instead??????

 Semi-supervised learning

 Active learning
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Cotraining

 Have little labeled data + lots of unlabeled

 Each instance has two parts:

x = [x1, x2]

x1, x2 conditionally independent given f(x)

 Each half can be used to classify instance

f1, f2  such that   f1(x1) ~ f2(x2) ~ f(x)

 Both f1, f2 are learnable

f1  H1,    f2  H2,     learning algorithms 
A1, A2
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Without Co-training
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f1(x1) ~ f2(x2) ~ f(x)

A1 learns f1 from x1

A2 learns f2 from x2

A Few Labeled Instances

<[x1, x2], f()>

Combine with ensemble?[x1, x2]

Unlabeled Instances

f2

f1 f’



Cotrainng

94

f1(x1) ~ f2(x2) ~ f(x)

A1 learns f1 from x1

A2 learns f2 from x2

[x1, x2]

Lots of Labeled Instances

<[x1, x2], f1(x1)>

f2

Hypothesis

A2

Unlabeled Instances
A

1

f1

A Few Labeled Instances

<[x1, x2], f()>
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Observations 

 Can apply A1 to generate as much training data 
as one wants

 If x1 is conditionally independent of x2 / f(x),

 then the error in the labels produced by A1

 will look like random noise to A2 !!!

 Thus no limit to quality of the hypothesis A2

can make



Co-training
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f1(x1) ~ f2(x2) ~ f(x)

A1 learns f1 from x1

A2 learns f2 from x2

A Few Labeled Instances

[x1, x2]

Lots of Labeled Instances

<[x1, x2], f1(x1)>

Hypothesis

A2

Unlabeled Instances
A

1

f1 f2f2f1

Lots of

<[x1, x2], f()>



It Really Works!

 Learning to classify web pages as course pages

 x1 = bag of words on a page

 x2 = bag of words from all anchors pointing to a page

 Naïve Bayes classifiers

 12 labeled pages

 1039 unlabeled

97
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Thought Experiment

 suppose you’re the leader of an Earth
convoy sent to colonize planet Mars

people who ate the round
Martian fruits found them tasty!

people who ate the spiked
Martian fruits died!



Poison vs. Yummy Fruits

 problem: there’s a range of spiky-to-round fruit 
shapes on Mars:

you need to learn the “threshold” of 
roundness  where the fruits go from 

poisonous to safe.

and… you need to determine this risking 
as few colonists’ lives as possible!



Testing Fruit Safety…

this is just a binary search, so…

under the PAC model, assume 
we need O(1/e) i.i.d. instances 
to train a classifier with error e.

using the binary search 
approach, we only needed 

O(log2 1/e) instances!



Relationship to Active Learning

 key idea: the learner can choose training data

 on Mars: whether a fruit was poisonous/safe

 in general: the true label of some instance

 goal: reduce the training costs

 on Mars: the number of “lives at risk”

 in general: the number of “queries”



Active Learning Scenarios

most common in NLP applications



Pool-Based Active Learning Cycle

induce a model
inspect
unlabeled
data

select “queries”

label new
instances,

repeat



Learning Curves

text classification:
baseball vs. hockey

active learning

passive learning

b
e

tt
e

r



Who Uses Active Learning?

Sentiment analysis for blogs; 

Noisy relabeling

– Prem Melville
Biomedical NLP & IR; Computer-
aided diagnosis
– Balaji Krishnapuram
MS Outlook voicemail plug-in 
[Kapoor et al., IJCAI'07]; “A variety 
of prototypes that are in use 
throughout the company.” – Eric 
Horvitz

“While I can confirm that we're 
using active learning in earnest on 
many problem areas… I really can't 
provide any more details than that. 
Sorry to be so opaque!" 



How to Select Queries?

 let’s try generalizing our binary search method 
using a probabilistic classifier:

0.5
0.0

1.0
0.50.5



Uncertainty Sampling

 Query examples learner is most uncertain about

 Closest to 0.5 prob

 Closest to decision surface
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Query-By-Committee (QBC)

 train a committee C = {q1, q2, ..., qC} of 
classifiers on the labeled data in L

 query instances in U for which the committee is 

in most disagreement

 key idea: reduce the model version space

 expedites search for a model during training

[Seung et al., COLT’92]



QBC Example



QBC Example



QBC Example



QBC Example



QBC: Design Decisions

 How to build a committee:

 “sample” models from P(q|L) [Dagan & Engelson, 

ICML’95; McCallum & Nigam, ICML’98]

 standard ensembles (e.g., bagging, boosting) [Abe & 

Mamitsuka, ICML’98]

 How to measure disagreement:

 “XOR” committee classifications

 view vote distribution as probabilities, 
use uncertainty measures (e.g., entropy)



Alternative Query Types

 so far, we assumed queries are instances

 e.g., for document classification the learner 
queries documents

 can the learner do better by asking different 
types of questions?

 multiple-instance active learning

 feature active learning



Feature Active Learning

 in NLP tasks, we can often intuitively label 
features
 the feature word “puck” indicates the class hockey

 the feature word “strike” indicates the class 
baseball

 tandem learning exploits this by asking both 
instance-label and feature-relevance queries
[Raghavan et al., JMLR’06]

 e.g., “is puck an important discriminative feature?”
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Next Class

 Clustering
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Summary

 Learning theory:

 Several ways to analyze a problem’s complexity

 Bounds on generalization error

 SVMs:

 Maximum the margin

 Kernel trick

 Unlabeled data:

 Semi-supervised learning

 Active learning
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Questions?
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