CSEP 546
Data Mining

Instructor: Jesse Davis

* Today’s Program

= Logistics and introduction

= Inductive learning overview

= Instance-based learning

= Collaborative filtering (Homework 1)

* Logistics

= Instructor: Jesse Davis
=« Email: jdavis@cs [Please include 546 in subject]
« Office: CSE 356
« Office hours: Mondays 5:30-6:20
= TA: Andrey Kolobov
= Email: akolobov@cs [Please include 546 in subject]
« Office: TBD
» Office hours: Mondays 5:30-6:20
= Web: www.cs.washington.edu/p546
= Mailing list: csep546@cs

* Assignments

= Four homeworks
= Individual

= Mix of questions and programming (to be
done in either java or c++)

= 10% penalty per each day late (max of 5
days late)

* Assignments

= Homework 1: Due April 12t (100 points)
= Collaborative filtering, IBL, d-trees and methodology

= Homework 2: Due April 26" (100 points)
= NB for spam filtering, rule learning, BNs

= Homework 3: Due May 10t (100 points)
= Perceptron for spam filtering, NNs, ensembles, GAs

= Homework 4: Due June 15t (135-150 points)

= Weka for empirical comparison, clustering, learning
theory, association rules

* Source Materials

= Tom Mitchell, Machine Learning, McGraw-Hlill,
1997.

= R. Duda, P. Hart & D. Stork, Pattern
Classification (2nd ed.), Wiley, 2001
(recommended)

= Papers
= Will be posted on the course Web page

* Course Style

= Primarily algorithmic & experimental

= Some theory, both mathematical & conceptual
(much on statistics)

= "Hands on" experience, interactive
lectures/discussions

= Broad survey of many data mining/machine
learning subfields

* Course Goals

= Understand what a data mining or machine
learning system should do

= Understand how current systems work
= Algorithmically
= Empirically
= Their shortcomings

= Try to think about how we could improve
algorithms

* Background Assumed

= Programming languages
= Java or C++
= Al Topics
= Search, first-order logic
= Math
= Calculus (i.e., partial derivatives) and simple
probability (e.g., prob(A | B)
= Assume no data mining or machine learning
background (some overlap with CSEP 573)

Jl What is Data Mining?

= Data mining is the process of identifying
valid, novel, useful and understandable

patterns in data

= Also known as KDD (Knowledge Discovery in
Databases)

= "We're drowning in information, but starving for
knowledge.” (John Naisbett)

10

* Related Disciplines

= Machine learning

= Databases

= Statistics

= Information retrieval

= Visualization

= High-performance computing
n Etc.

11

* Applications of Data Mining

= E-commerce

= Marketing and retail

= Finance

= [elecoms

= Drug design

= Process control

= Space and earth sensing
n Etc.

12

* The Data Mining Process

= Understanding domain, prior knowledge, and
goals

= Data integration and selection

= Data cleaning and pre-processing

= Modeling and searching for patterns
= Interpreting results

= Consolidating and deploying discovered
knowledge

= Loop

13

* Data Mining Tasks

= Classification

= Regression

= Probability estimation

= Clustering

= Association detection

= Summarization

= [rend and deviation detection
s EtcC.

14

Requirements for a Data Mining
System

= Data mining systems should be
=« Computationally sound
= Statistically sound
= Ergonomically sound

15

* Components of a Data Mining System

= Representation

= Evaluation Focus of this course
= Search

= Data management

= User interface

* Representation

= Decision trees

= Sets of rules / Logic programs

= Instances

= Graphical models (Bayes/Markov nets)
= Neural networks

= Support vector machines

= Model ensembles

s Etc.

* Evaluation

Accuracy

Precision and recall
Squared error

Likelihood
Posterior

probability

Cost / Ut
Margin
Entropy

ity

K-L divergence

Etc.

* Search

= Combinatorial optimization
= E.g.: Greedy search

= Convex optimization
= E.g.: Gradient descent

= Constrained search
= E.g.: Linear programming

* Topics for this Quarter (Slide 1 of 2)

= Inductive learning

= Instance based learning
= Decision trees

= Empirical evaluation

= Rule induction

= Bayesian learning

= Neural networks

20

* Topics for this Quarter (Slide 2 of 2)

= Genetic algorithms
= Model ensembles
= Learning theory

= Association rules

= Clustering

= Advanced topics, applications of data mining
and machine learning

21

Inductive Learning

22

* A Few Quotes

= A breakthrough in machine learning would be worth
ten Microsofts” (Bill Gates, Chairman, Microsoft)

= 'Machine learning is the next Internet”
(Tony Tether, Director, DARPA)

= Machine learning is the hot new thing”
(John Hennessy, President, Stanford)

= Web rankings today are mostly a matter of machine
learning” (Prabhakar Raghavan, Dir. Research, Yahoo)

= "Machine learning is going to result in a real revolution”
(Greg Papadopoulos, CTO, Sun)

+

Traditional Programming

Data

Output
Program

Machine Learning

Data

Program
Output

* What is Learning

—>

Performance

—_—
Experience

e.g.: amount of training data, time, etc.

25

* Defining a Learning Problem

= A program learns from experience E with
respect to task T and performance measure P,

if its performance at task T, as measured by P,
improves with experience E

= Example:

= Task: Play checkers
= Performance: % of games won
= Experience: Play games against itself

26

* Types of Learning

= Supervised (inductive) learning
= Training data includes desired outputs
= Unsupervised learning
= Training data does not include desired outputs
= Semi-supervised learning
= Training data includes a few desired outputs
= Reinforcement learning
= Rewards from sequence of actions

* Inductive Learning

Inductive learning or Prediction:
= Given: Examples of a function (X, F(X))
« Predict: Function F(X) for new examples X

Discrete F(X). Classification
Continuous F(X). Regression
F(X) = Probability (X): Probability estimation

28

* Example Applications

= Disease diagnosis

= X: Properties of patient
(e.g., symptoms, lab test results)

» f(X): Predict disease
= Automated steering
= X: Bitmap picture of road in front of car
« f(X): Degrees to turn the steering wheel
= Credit risk assessment

= X: Customer credit history and proposed purchase
« f(x): Approve purchase or not

29

* Widely-used Approaches

= Decision trees

= Rule induction

= Bayesian learning

= Neural networks

= Genetic algorithms

= Instance-based learning
= Etc.

30

* Supervised Learning Task Overview

Real World

l Feature construction and selection
(usually done by humans)

Feature Space

l Classification rule construction
(done by learning algorithm)

Concepts/

Classes/ Apply model to unseen
Decisions data
© Jude Shavlik 2006,

David Page 2007 31

* Task Definition

= Given:
= Set of positive examples of a concept/class/category
= Set of negative examples (possibly)

= Produce:
= A description that covers
All/many positive examples
The None/few negative examples

Key " Goal: Properly categorizes most future examples!

Point!
Note: one can easily extend this definition to
© ude shaviik 2006, NaNdle more than two classes

David Page 2007

32

* Learning from Labeled Examples

= Most successful form of inductive learning
= Given a set of data of the form: <x, f(x)>
= X is a set of features
= f(X) is the label for x
= f is an unknown function
= Learn: " which approximates f

33

* Example

Positive Examples Negative Examples
o A (@ \
(e) Lo Al /o

—Y

How do we classify this symbol? A g
«Concept w

eSolid Red Circle in a (Regular?) Polygon
e\What about?
eFigures on left side of page

eFigures drawn before 5pm 3/29/89 <etc>

© Jude Shavlik 2006,
David Page 2007
Lecture #1, Slide 34

* Assumptions

= We are assuming examples are IID:
independently identically distributed

= We are ignoring temporal dependencies
(covered in time-series learning)

= We assume the learner has no say in which
examples it gets (covered in active learning)

© Jude Shavlik 2006,
David Page 2007

35

* Design Choices for Inductive Learners

= Need a language to represent each example
(i.e., the training data)

'« Need a language to represent the learned
“concept” or “hypothesis”

= Need an algorithm to construct a hypothesis
consistent with the training data

= Need a method to label new examples
© Jude Shavlik 2006,
David Page 2007 36

Constructing a Dataset

= Step 1: Choose a feature space

= Common approach: Fixed length feature vector

= Choose N features
= Each feature has V, possible values

= Each example is represented by a vector of N feature
values (i.e., is a point in the feature space)

e.g.: <red, 50, round>
color weight shape

= Feature types
=« Boolean
= Nominal
=« Ordered
« Hierarchical

= Step 2: Collect examples (i.e., “"I/O” pairs)

© Jude Shavlik 2006,
David Page 2007

37

* Types of Features

= Nominal: No relationship between values
« For example: color = {red, green, blue}
= Linear/Ordered: Feature values are ordered
= Continuous: Weight = {1,...,400}
= Discrete: Size = {small, medium, large}

= Hierarchical: Partial ordering according to an
ISA relationship closed

/\

square triangle circle ellipse

© Jude Shavlik 2006,
David Page 2007

38

Terminology

Feature Space: J

Properties that describe the problem
_— 7

Q
o

Q
~

1.0

0.0

00 10 20 3.0 40 5.0

* Another View of Feature Space

= Plot examples as points in an A~dimensional space

>

Sizet
Big [*""tre e, ? ?

Weight
A “concept” is then a (possibly disjoint)
volume in this space.

© Jude Shavlik 2006,
David Page 2007 40

Terminology

Example or instance:

<0.5,2.8,+>
o \/ +
o + + +
o + o+ -
gV + -
o I
i

+

+ o+ -

Q
o

00 1.0 20 3.0 4.0

* Terminology

Hypothesis:
Function for labeling examples

Q
o

Q
~

1.0

0.0

* Terminology

|

Hypothesis Space:
Set of legal hypotheses

o

™ +

o +

N +

o _

— + -
o

o

* Terminology Overview

= Training example: Data point of the form <x, f(x)>
= Target function (concept): the true f

= Hypothesis (or model): A proposed function h,
believed to be similar to f

= Concept: A Boolean function

= EXam
exam

= EXxam
exam

D

D
D
D

es where f(x) = 1 are called positive
es or positive instances

es where f(x) = 0 are called negative
es or negative instances

44

* Terminology Overview

= Classifier: A discrete-valued function f {1,...,K}
» Each of 1,...,K are called classes or labels

= Hypothesis space: The space of all hypotheses
that can be output by the learner

= Version space: The set of all hypotheses (in the
hypothesis space) that haven't been ruled by the
training data

45

* Example

= Consider IMDB as a problem.
= Work in groups for 5 minutes
= Think about

« What tasks could you perform?

= E.qg., predict genre, predict how much the movie
will gross, etc.

= What features are relevant

46

x1
x2
x3
x4

A Learning Problem

Unknown

Function

—= y =1(xl, x2, x3, x4)

Example z7 29 23 x4

1

N O Ot =W N

O = O = OO O

0

1
0
0
1
1
1

1

O O = O = O

0

—_— O O = == O

O OO - O O

Hypothesis Spaces

e Complete Ignorance. There are 2'® = 65536 possible boolean functions over four
input features. We can’t figure out which one is correct until we’ve seen every possible
input-output pair. After 7 examples, we still have 2° possibilities.

1 T2 T3 T4 |Y
6 0 0 0|7
6 0 0 1|7
6 60 1 0|0
6 0 1 1|1
6 1 06 0|0
6 1 06 1|0
6 1 1 0|0
6 1 1 1]|7?
1 ¢ 0 07
1 ¢ 6 1|1
1 0 1 0|7
1 0 1 1|7
1 1 ¢ 0|0
1 1 0 1|7
1 1 1 0|7
1 1 1 1|7

* Inductive Bias

= Need to make assumptions

= Experience alone doesn't allow us to make
conclusions about unseen data instances

= Two types of bias:

= Restriction: Limit the hypothesis space
(e.g., look at rules)

= Preference: Impose ordering on hypothesis
space (e.g., more general, consistent with
data)

Hypothesis Spaces (2)

e Simple Rules. There are only 16 simple conjunctive rules.

Rule Counterexample Example z1 =2 z3 24

=y 1 1 0O 0 1 0
1 =Y
T =Y
T3 =Y
Ta =Y
Ty N 9=y

1
0
0
1
1
z1 1

N O Ut WoN
O = D = G &)
O O©C = © = O
—_— O O = = O

3 =Y

O O O = = O Ol

1 T4 =Y

) 3 =Y

45) T4 =Y

T3 g =Y

1 T9 N 3=y

1 2 T4 =Y

T T3 e =Y

A
A

Z9 T3 N T4 =Yy
A

> > > > > > > > > >
W W W W W kR WWw W WwWw =N W

1 T9 3 N 4=y

No simple rule explains the data. The same is true for simple clauses.

Hypothesis Space (3)

e m-of-n rules. There are 32 possible rules (includes simple conjunctions and clauses).

variables

Counterexample

1-of 2-of 3-of 4-of

X, =Y
X3 =Y
x4:>y

{z1}
{z2}
{z3}
{z4}
{z1, 22}
{z1, 23}
{z1, 24}
{zs9, 3}
{z2, z4}
{z3, z}
{z1, 9, 23}
{531-532- iE4}

{:cl: T3, £C4}

{372; T3, x4}

{"I:l; Z2, T3, $4}

_ = =N = RN DN OO R W = NW

W W = W W W Ww Ww

*
*
¥*

ot Ot

W W W W W

Example z1 zo z3 x4 |y
1 0O 0 1 0]0
2 0O 1 0 0]0
3 O 0 1 1|1
4 1 0 0 1|1
5 0O 1 1 0]0
6 1 1 0 0]0
7 0O 1 0 1|0

Two Views of Learning

e Learning is the removal of our remaining uncertainty. Suppose we knew that
the unknown function was an m-of-n boolean function, then we could use the training

examples to infer which function it is.

e Learning requires guessing a good, small hypothesis class. We can start with

a very small class and enlarge it until it contains an hypothesis that fits the data.

We could be wrong!

e Our prior knowledge might be wrong
e Our guess of the hypothesis class could be wrong
The smaller the hypothesis class, the more likely we are wrong.
Example: 4 A Oneof{z1, 23} = vy is also consistent with the training data.
Example: x4 A —z9 = y is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new x

values.

Key Issues in Machine Learning

e What are good hypothesis spaces?

Which spaces have been useful in practical applications and why?

e What algorithms can work with these spaces?

Are there general design principles for machine learning algorithms?

e How can we optimize accuracy on future data points?

This is sometimes called the “problem of overfitting”.

e How can we have confidence in the results?

How much training data is required to find accurate hypotheses? (the statistical question)

e Are some learning problems computationally intractable?

(the computational question)

e How can we formulate application problems as machine learning prob-

lems? (the engineering question)

A Framework for Hypothesis Spaces

e Size. Does the hypothesis space have a fixed size or variable size?
Fixed-size spaces are easier to understand, but variable-size spaces are generally more

useful. Variable-size spaces introduce the problem of overfitting.

¢ Randomness. Is each hypothesis deterministic or stochastic?
This affects how we evaluate hypotheses. With a deterministic hypothesis, a training
example is either consistent (correctly predicted) or inconsistent (incorrectly predicted).

With a stochastic hypothesis, a training example is more likely or less likely.

e Parameterization. Is each hypothesis described by a set of symbolic (discrete) choices
or is it described by a set of continuous parameters? If both are required, we say the
hypothesis space has a mixed parameterization.

Discrete parameters must be found by combinatorial search methods; continuous parame-

ters can be found by numerical search methods.

Two Strategies for Machine Learning

e Develop Languages for Expressing Prior Knowledge: Rule grammars and

stochastic models.

e Develop Flexible Hypothesis Spaces: Nested collections of hypotheses.

Decision trees, rules, neural networks, cases.

In either case:

e Develop Algorithms for Finding an Hypothesis that Fits the Data

A Framework for Learning Algorithms

e Search Procedure.
Direction Computation: solve for the hypothesis directly.
Local Search: start with an initial hypothesis, make small improvements until a local
optimum.
Constructive Search: start with an empty hypothesis, gradually add structure to it

until local optimum.

e Timing.
Eager: Analyze the training data and construct an explicit hypothesis.
Lazy: Store the training data and wait until a test data point is presented, then construct

an ad hoc hypothesis to classify that one data point.

e Online vs. Batch. (for eager algorithms)
Online: Analyze each training example as it is presented.

Batch: Collect training examples, analyze them, output an hypothesis.

1.0 2.0 3.0

0.0

. [Label: +

| Label: - |

0.0

1.0 2.0 3.0

4.0

5.0

6.0

1.0 2.0 3.0

0.0

|

_ ? + Label
+ . based on
\\?/- neighbors
+ o+ -
00 10 20 30 40 50 6.0

1.0 2.0 3.0

0.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

* Online

2.0 3.0

1.0

0.0

0.0 1.0

2.0

3.0

4.0

5.0

6.0

* Online

1.0 2.0 3.0

0.0

/

+
Label: +/ |

| Label: - |

0.0 1.0

2.0

3.0

4.0

5.0

6.0

* Online

3.0

+
Label: + |

| Label: - |

00 1.0 20 3.0 4.0

Take a 15 minute break

65

Instance Based Learning

66

* Simple Idea: Memorization

= Employed by first learning systems

= Memorize training data and look for exact
match when presented with a new example

= If a new example does not match what we
have seen before, it makes no decision

s Need computer to generalize from experience

67

* Nearest-Neighbor Algorithms

= Learning ® memorize training examples

= Classification: Find most similar example and
output its category

= Regression: Find most similar example and

output its value
Venn
\' + + -
“Voronoi + 4 +
Diagrams” =—> > _
(pg 233) - "

+

© Jude Shavlik 2006,
David Page 2007

68

* Example

Training Set

1. a=0, b=0, c=1 +
2. a=0, b=0, c=0 -

3. a=1, b=1,c=1 -

Test Example

= a=0,b=1,c=0 ?
“Hamming Distance”
oEx1=2

oEx2=1- So output -
oEx 3 =2

69

(see UCI archive for more)

* Sample Experimental Results

Testbed Testset Correctness
1-NN D-Trees Neural Nets

Wisconsin 98% 95% 96%
Cancer }

Heart Disease| 78% 76% ?
Tumor 37% 38% ?
Appendicitis 83% 85% 86%

t

Simple algorithm works quite well!

© Jude Shavlik 2006,
David Page 2007

Lecture #1, Slide 70

* K-NN Algorithm

= Learning ® memorize training examples

= For example unseen test example e, collect K
nearest examples to e

= Combine the classes to label e’s
= Question: How do we pick A?
= Highly problem dependent

= Use tuning set to select its value

A o ®
Tuning Set o
Error Rate ® ®

71

* Distance Functions:

= Hamming: Measures overlap/differences
between examples

s Value difference metric: Attribute values are
close if they make similar predictions

§(val;,val;) = h#:("llasses |P(ch|val;) — P(cp|val;)|™
fﬁ SR
a:O,

|l
o

/4

/4

|

O O 0O O

1
0
1
0

ﬁﬁ(l'?ﬂ

0
1
1

[l
I—L‘U)l\)

=

d
d
d

A

4

* Distance functions

= Fuclidean /’
/

= Manhattan /

= L" norm
L™(x1,%x2) = \/Z#dlm [%1,i — x2,4|"

= Note: Often want to normalize these values

In general, distance function is problem specific

Variations on a Theme

(From Aha, Kibler and Albert in ML Journal)
s IB1 — keep all examples

s [B2 — keep next instance if incorrectly classified

by using previous instances
= Uses less storage (good)

= Order dependent (bad)

= Sensitive to noisy data (bad)

© Jude Shavlik 2006,
David Page 2007 CS 760 — Machine Learning (UW-
Madison) Lecture #1, Slide 74

* Variations on a Theme (cont.)

s IB3 - extend IB2 to more intelligently decide which
examples to keep (see article)

» Better handling of noisy data

= Another Idea - cluster groups, keep example from
each (median/centroid)
= Less storage, faster lookup

© Jude Shavlik 2006,
David Page 2007 CS 760 — Machine Learning (UW-
Madison) Lecture #1, Slide 75

* Distance Weighted A-NN

= Consider the following example for 3-NN

.

+ -
= The unseen example is much closer to the
positive example, but labeled as a negative

= Idea: Weight nearer examples more heavily

76

* Distance Weighted A-NN

s Classification function is:
Zf:l wzf(xz)

f(z,) =
Where

o mm— 1

YT (g, 1)

= Notice that now we should use all training
examples instead of just k

77

* Advantages of K-NN

= Training is very fast

= Learn complex target function easily

= No loss of information from training data
= Easy to implement

= Good baseline for empirical evaluation

= Possible to do incremental learning

= Plausible model for human memory

78

* Disadvantages of K-NN

= Slow at query time

= Memory intensive

= Easily fooled by irrelevant attributes

= Picking the distance function can be tricky

= No insight into the domain as there is no
explicit model

= Doesn’t exploit, notice structure in examples

79

* Reducing the Computation Cost

= Use clever data structures
= E.qg., k-D trees (for low dimensional spaces)
= Efficient similarity computation

= Use a cheap, approximate metric to weed out
examples

= Use expensive metric on remaining examples
= Use a subset of the features

80

* Reducing the Computation Cost

= Form prototypes

= Use a subset of the training examples
= Remove those that don't effect the frontier
= Edited k-NN

81

Edited k-Nearest Neighbor

EDITED_k-NN(S)
S: Set of instances
For each instance x in S
If x is correctly classified by S — {x}
Remove x from S
Return S

EDITED_k-NN(S)
S: Set of instances
T=70
For each instance x in S
If x is not correctly classified by 1T’
Add xto T
Return T’

* Curse of Dimensionality

= Imagine instances are described by 20 attributes,
but only two are relevant to the concept

= Curse of dimensionality

= With lots of features, can end up with
spurious correlations

= Nearest neighbors are easily mislead with
high-dim X

= Easy problems in low-dim are hard in high-dim

= Low-dim intuition doesn’t apply in high-dim

83

* Example: Points on Hypergrid

= In 1-D space: 2 NN are equidistant
o—o o

= In 2-D space: 4 NN are equidistant

84

* Feature Selection

Filtering-Based Wrapper-Based
Feature Selection Feature Selection
all features
all FS algorithm
features calls ML

algorithm

subset of features

many times,
uses it to help
model select features
mode ML algorithm
© Jude Shavlik 2006,

David Page 2007 CS 760 — Machine Learning (UW-
Madison) Lecture #1, Slide 85

* Feature Selection as Search Problem

s State = set of features

» Start state = empty (forward selection)
or full (backward selection)

= Goal test = highest scoring state

= Operators
= add/subtract features

= Scoring function

= accuracy on training (or tuning) set of
ML algorithm using this state’s feature set

© Jude Shavlik 2006,
David Page 2007 CS 760 — Machine Learning (UW-

Madison) Lecture #1, Slide 86

* Forward Feature Selection

Greedy search (aka “Hill Climbing”)

87

FORWARD_SELECTION(F'S)
F'S: Set of features used to describe examples

Let SS =0
Let BestFval =0
Repeat

Let BestF = None
For each feature F' in F'S and not in §S
Let SS" =SSU{F}
If Eval(SS’) > BestEval
Then Let BestF = F
Let BestFEval = Eval(SS’)
If BestF # None
Then Let SS = SS U {BestF}
Until BestF = None or SS = F'S
Return SS

* Backward Feature Selection

Greedy search (aka “Hill Climbing”)

subtract F}/] subtract F;

{F5,...,FnJ {F,, F4...,F\}

89

BACKWARD_ELIMINATION(F'S)
F'S: Set of features used to describe examples
Let S§ =FS
Let BestFEval = Eval(S5S)
Repeat
Let WorstF = None.
For each feature F' in S§S
Let SS§' =85 — {F}
If Eval(SS’) > BestEval
Then Let WorstF = F
Let BestFEval = Eval(SS’)
If WorstF # None
Then Let S =SS — {WorstF'}
Until WorstF = None or SS = ()
Return S'S

Forward vs. Backward Feature
Selection

Forward Backward

= Faster in early steps = Fast for choosing all
because fewer features but a small subset of
to test the features

s Fast for choosing a s Preserves features
small subset of the whose usefulness
features requires other features

= Misses features whose - %gg}%%:tarea
usefulness requires features = length, width

other features
(feature synergy)

© Jude Shavlik 2006,
David Page 2007 CS 760 — Machine Learning (UW-
Madison) Lecture #1, Slide 91

Local Learning

= Collect k< nearest neighbors
= Give them to some supervised ML algo
= Apply learned model to test example

© Jude Shavlik 2006,
David Page 2007 CS 760 — Machine Learning (UW-
Madison) Lecture #1, Slide 92

* Locally Weighted Regression

= Form an explicit approximation for each query
point seen

= Fit learn linear, quadratic, etc., function to the k
nearest neighbors

= Provides a piecewise approximation to f

93

Several choices of error to minimize:
e Squared error over k nearest neighbors

Ei(zg)= Y (f(@) = f(@)’

x€ KNN(xq)

e Distance-weighted squared error over all neighbors

Ea(zq) =) (f(x) — f(2)*K(d(zg, x))

x€eD

Homework 1:
Programming Component

Implement collaborative filtering algorithm

Apply to (subset of) Netflix Prize data

= 1821 movies, 28,978 users, 3.25 million ratings
(* - >|<>I<>I<>I<>I<)

Try to improve predictions

Optional: Add your ratings & get
recommendations

Paper: Breese, Heckerman & Cadie, “Empirical Analysis of
Predictive Algorithms for Collaborative Filtering” (UAI-98)

* Collaborative Filtering

= Problem: Predict whether someone will like a
Web page, movie, book, CD, etc.

= Previous approaches: Look at content

= Collaborative filtering
= Look at what similar users liked

= Intuition is that similar users will have similar
likes and dislikes

96

Collaborative Filtering

Represent each user by vector of ratings

Two types:
— Yes/No
— Explicit ratings (e.g., 0 — * * % % %)

Predict rating:

W, =

]

A

Ry, =

R + « Z WZJ ik — J)
X,;EN;
Similarity (Pearson coefficient):
zk(Rik;T{i) (Rik - Ej_)
[2¢ (R~ R)? 2, (RJ - Rj)z 105

Fine Points

Primitive version:

Rir = Z Wi Rjk
X;eN;
a= (3 [Wil)™
N, can be whole database, or only £ nearest neighbors

R, = Rating of user 7 on item k

R; = Average of all of user j’s ratings

Summation in Pearson coefficient is over all items
rated by both users

In principle, any prediction method can be used
for collaborative filtering

Alice 2 - 4 4
Bob 1 5 4 -
Chris 4 3 - -
Diana 3 - 2 4

Compare Alice and Bob

U1 OO NN

99

* Example

R1 R2 R3 R4 R5 R6

Alice 2 - 3 p) - 1
Bob 1 5 4 - - 2
Chris 4 3 - - i} 5
Diana 3 - 2 4 - 5
Alice = 2
Bob =3

W = [0+ (1)(1) + (-1)(-1)] /... = 2/ 1205
Aliceg, = 2 + 1/w * [w *(5-3)] = 4

100

* Summary

= Brief introduction to data mining
= Overview of inductive learning
= Problem definition
= Key terminology
= Instance-based learning: k-NN
= Homework 1: Collaborative filtering

101

* Next Class

= Decision Trees
=« Read Mitchell chapter 3
= Empirical methodology

= Provost, Fawcett and Kohavi, "The Case
Against Accuracy Estimation”

» Davis and Goadrich, "The Relationship
Between Precision-Recall and ROC Curves”

= Homework 1 overview

102

103

