
1

Model Ensembles and
Genetic Algorithms

Instructor: Jesse Davis

Slides from: Martine De Cock, Pedro Domingos,

Russ Greiner, David Page, Jude Shavlik

2

Announcements

 Homework 3 is due next week

 Homework 2 will be returned next week and
we‟ll go over it at the start of class

 Lecture notes are available online

Outline

 Homework 3 Issues

 Model Ensembles

 Genetic Algorithms

3

Homework 3

 Remember to include code descriptions

 Ballpark accuracy is 97-99%

 Do extra credit if you haven‟t already done it

4

Outline

 Homework 3 Issues

 Model Ensembles

 Genetic Algorithms

5

Motivation

 One good learner produces one effective
classifier

 Could learning many classifiers help?

 Why not learn { h1, h2, h3 }, then
h*(x) = majority{ h1(x), h2(x), h3(x) }

 If classifiers make INDEPENDENT mistakes,
then h* is more accurate!

6

Ensemble

 Assume: Independent errors (30%) and
majority vote

 Probability that majority is wrong…

 Area under curve for 11 wrong is 0.026

 Order of magnitude improvement!
7

Prob 0.2

0.1

Number of classifiers in error

Overview

8

Data

Sample1

Sample2

Samplen

Learner1

Learner2

Learnern

H1

H2

Hn

H*Agg.

Challenges

 How to generate the base classifiers?

 Different learners?

 Bootstrap samples?

 Etc.

 How to integrate/combine them?

 Average

 Weighted Average

 Instance-specific decisions

 Etc.
9

Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
10

Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
11

…

…
…

Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
12

…

…
…

Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
13

…

…
…

Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
14

…

…
…

Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
15

…

Learner1

Learner2

Sampling Based Ensembles

 Learner is UNSTABLE if: minor variations in
training data results in major changes in
classifier output

 Unstable: Decision-tree, neural network, rule
learning algorithms

 Stable: Linear regression, nearest neighbor, linear
threshold algorithms, etc.

 Subsampling is best for unstable learners:

 Bagging

 Cross-Validated Committees

 Boosting
16

Bagging: Bootstrap Aggregating

Given: Data set S, integer T

 For i = 1, …, T

 Si = bootstrap replicate of S (i.e., sample
with replacement)

 hi = Apply learning algorithm to Si

 Classify test instance using unweighted vote

17

Bagging: Bootstrap Aggregating

 Draw |Sample| examples with replacement

 Each sample‟ contains 63.2% of original
examples (+ duplicates)

18

… …

Sample Sample‟

Voting

19

Data

Sample Sample2 Samplen

Learner Learner Learner

H1 H2 Hn

Ballot
BoxTest Example Predicted Label

Cross-validated Committees

 Partition training set into k disjoint subsets

 Create k training sets

 Hold out one subset in turn

 Learn model on each train set

 Classify test example with unweighted voting

20

H
o
ld

o
u
t

Boosting

 Idea: General method for combining weak
learners

 Need ability to guess better than chance

 Combine them to produce highly accurate
predictor

 Needs sufficient data [and number of models]

21

AdaBoost

 Given: Data S = {(x1, y1),...,(xn, yn)}, integer T

 xi = features

 yi = correct label

 w1(i)= 1/n

 for t = 1, ... ,T:

 Find classifier ht, with small error ϵt with
ϵt = Pi[ht(xi) ≠ yi] = ∑ht(xi) ≠ yi

wt(i)

 If ϵt >½ then break

 Update distribution wt(i)
22

AdaBoost

 Updating Dt

 ϵt = Pi in wt
[ht(xi) ≠ yi] = ∑ht(xi) ≠ yi

wt(i)

 ɑt= ϵt /1- ϵt

 wt+1(i) = wt(i)ɑt

 Normalize: wt+1(i) /∑ wt+1(j)

 Output: argmaxy = ∑t log(1/ ɑt) [ht(x) = y]

23

1- [ht(xi) ≠ yi]

Boosting Example

 Assume that we are going to make one axis
parallel cut through feature space

25

+ +
+-

-

-
-

-
-

+

+

+
-

Boosting Example

 Errors: 3

 Upweight the mistakes, downweight everything
else

26

+ +
+-

-

-
-

-
-

+

+

+
-

+ +
+-

-

-
-

-

-

+

+

+
-

Boosting Example

27

+ +
+-

-

-
-

-
-

+

+

+
-

+ +
+-

-

-
-

-

-

+

+

+
-

+ +
+-

-

-

-

-

-

+

+

+
-

Boosting Example

28

+ +
+-

-

-
-

-
-

+

+

+
-

+ +
+-

-

-
-

-

-

+

+

+
-

+ +
+-

-

-

-

-

-

+

+

+
-

Learning from Weighted Examples

Q: How can a learning algorithm use distribution

over examples?

 Reweighting: Can modify many learning
algorithms to deal with weighted instances:

 DT + Rule learners:

 Entropy, information-gain equations count
occurrences in data

 Modify to use each instance‟s weight

 Naïve Bayes: Use weight when building CPT

 kNN: Multiple vote from an instance by its weight

29

Learning from Weighted Examples

Q: How can a learning algorithm use distribution

over examples?

 Resampling: Given initial data set and
distribution, produce new sample s‟

 Typically, of same size

 Sample proportion to weights

 Reweighting is better as resampling is just an
approximation

30

Resampling Algorithm

 Goal: Build S‟

 Given: weights (w1, ..., wn) for each example
and Σ wi = 1

 For i = 1 to n do:

 Draw r from uniform (0,1)

 Pick xk such that Σk-1wi < r < Σnwi

 Return S‟

31

Training Error for AdaBoost

 If ɣt ≥ ɣ > 0 then
training_error(h*) ≤ exp(−2ɣ2)

 AdaBoost is adaptive:

 Does not need to know ɣ or T a priori

 Exploit ɣt >> ɣ

32

Theorem: If ɣt = ½ - ϵt then
training_error(h*) ≤ exp(−2 Σɣt

2)

How Will # of Rounds Effect
Generalization?

Expect

 Training error to drop or reach 0

 Test error to increase when h* becomes too
complex: “Occam‟s razor” (i.e., overfitting)

 Hard to know when to stop training

33

0 20 40 60 80 100

20%

10%

0%

of rounds

E
rr

o
r

ra
te

Test

Train

Empirical Results

 Often, test error does not increase, even after
1000 rounds!

 Test error continues to drop, even after training
error is 0!

 Occam‟s razor: “simpler is better” appears to
not apply!

34

0 20 40 60 80 100

20%

10%

0%

of rounds

E
rr

o
r

ra
te

Test

Train

Explanation: Margins

 Key idea:

 Training error only measures whether classifications
are right or wrong

 Should also consider confidence of classifications

 h* is weighted majority vote of weak classifiers

 Measure confidence by margin: Strength of vote

 (weighted vote +) − (weighted vote -)

35
-1 10

High
conf. -

High
conf. +

Low
conf.

AdaBoost Advantages

 Fast, simple and easy to program

 No parameters to tune (except T, sometimes)

 Flexible: works with any learning algorithm

 No prior knowledge needed about weak learner

 Provably effective, given weak classifier

 Versatile: can use with data that is textual,
numeric, discrete, etc.

 Has been extended to learning problems well
beyond binary classification

36

Notes on AdaBoost

 AdaBoost‟s performance depends on both the
data and the weak learner

 AdaBoost can fail if:

 weak classifiers too complex ->overfitting

 weak classifiers too weak (error goes to 0 too
quickly) -> underfitting

 Empirically, AdaBoost seems especially
susceptible to uniform noise

37

Boosting Conclusions

 Boosting is a practical tool for classification and
other learning problems

 Grounded in rich theory

 Performs well experimentally

 Often (not always!) resistant to overfitting

 Many applications and extensions

 Many ways to think about why boosting works

 None is entirely satisfactory

 Considerable room for further theoretical and
experimental work

38

Manipulate Input Features

 Different learners see different subsets of
features (of each training instances)

 Empirically: Mixed results

 Technique works best when input features
highly redundant

39

Manipulating Target

 Sparse outputs Y = { y1, … yK }

 Could learn 1 classifier, into Y (|Y| values)

 Or could learn K binary classifiers:

 y1 vs Y – y1

 y2 vs Y – y2

 then vote

 Encoding by partition output labels into 2
subsets, create log k models

 y1-y4 is pos, y5-y8 is neg

 y1,y3,y5,y7 is pos, y2,y4,y6,y8 is neg
40

New Idea: Error-Correcting Codes

 Create more than log K models

 “Error-Correcting Codes” (some redundancy)

 Given: Integer L

 For i = 1 to L

 Partition labels into two disjoint sets

 Build classifier to distinguish between these
sets of examples

41

New Idea: Error-Correcting Codes

 L bit code word for each output label yk, ith bit

 1 if yk is in new „pos‟ class for hi

 0 if yk is in new „neg‟ class for hi

 Label unseen test example

 Apply each hi to example

 Create bit vector, ith bit is

 1 if hi predicts positive

 0 if hi predicts negative

 Using hamming distance to find closest class

42

Add Randomness to Learner

 Neural networks:

 Different initial values

 Not really independent

 Decision trees:

 Consider top 20 attributes choose one at random?

 Produce 200 classifiers

 To classify new instance: Vote

 FOIL

 Choose any test w/foil gain within 80% of top

 Good empirical performance
43

Random Forrests

44

A variant of BAGGING

Algorithm

Repeat k times

1. Draw with replacement N examples, put in train
set

2. Build d-tree, but in each recursive call

A. Choose (w/o replacement) i features

B. Choose best of these i as the root of this
(sub)tree

3. Do NOT prune

More on Random Forrests

 Increasing i
 Increases correlation among individual trees (BAD)
 Also increases accuracy of individual trees (GOOD)

 Can use tuning set to choose
good setting for i

 Overall, random forests
 Are very fast (e.g., 50K examples, 10 features,

10 trees/min on 1 GHz CPU in 2004)
 Deal with large # of features
 Reduce overfitting substantially
 Work very well in practice

45

Stacking

 Given: Learners L1,…,Ln

 Idea: Learn when each learner is good

 Let ht (-i) = Lt(S – xi) be classifier learned using
Lt, on all but instance xi

 Let y‟i(t) = ht(xi)

 New train set: { [[y‟i(1), y‟i(2),…, y‟i(n)], yi] }i

46

Stacking

47

Learner1

Learner2

Learnern

H1

H2

Hn

…

…

Meta
Learner

H*

Ensemble Recommendations

 Use Bagging with low bias and high variance
classifiers

 Decision trees

 Always try AdaBoost

 Typically produces excellent results

 Works especially well with very simple
learners such as decision stumps

48

Why Do Ensembles Work?

 Bias/Variance explanation

 Statistical explanation

 Representational explanation

 Computational explanation

49

Bias/Variance Explanation

 Error has three components:

 Inherent error: Inability to distinguish
between two objects with different labels

 Bias: Inability to represent the true target
concept

 Variance: Fluctuations due to variations in
data sample

 Ensembles can address both bias and variance!

50

Statistical Explanation

 How can the learning algorithm select among
set of equally good hypothesis?

 Bayes optimal classifier: Weighted majority vote
of all hypotheses

 Weighted by their posterior probability

 Provably the best possible classifier

 Ensemble learning approximates Bayes optimal

51

Representational Explanation

 Optimal target function may not be ANY
individual classifier, but may be (approximated
by) ensemble averaging

 E.g.: Decision trees boundaries are axis-
parallel hyperplanes

 Averaging a large number of such
“staircases”, can approximate diagonal
decision boundary with arbitrarily good
accuracy

52

Computational Explanation

 Most learning algorithms search through
hypotheses space find one “good” model

 Most interesting hypothesis spaces are:

 Huge/infinite

 Heuristic search is essential

 Learner might get stuck in a local minimum

 One strategy for avoiding local minima:

 Repeat the search many times with random restarts
-> bagging!

53

Effects of Bagging

 If bootstrap replicate approx‟n is correct, then
bagging would reduce variance without
changing bias

 In practice, bagging can reduce both bias and
variance

 For high-bias classifiers, it can reduce bias

 For high-variance classifiers, it can reduce
variance

54

Effects of Boosting

 In the early iterations, boosting primarily
reduces bias

 In later iterations, boosting primarily reduces
variance (apparently)

55

Ensembles Summary

 Motivation: Committee of experts is typically
more effective than a single supergenius

 Key issues:

 Generating base models

 Integrating responses from base models

 Popular ensemble techniques

 manipulate training data: bagging and boosting

 manipulate output values: error-correcting output
coding

 Why does ensemble learning work?
56

Outline

 Homework 3 Issues

 Model Ensembles

 Genetic Algorithms

57

Evolutionary algorithms

Search algorithms based on the evolutionary
principle of natural selection and survival of the
fittest

“Although the belief that an organ so perfect as
the eye could have been formed by natural
selection is enough to stagger anyone; yet in the
case of any organ, if we know a long series of
gradations in complexity, each good for its
possessor, then, under changing conditions of life,
there is no logical impossibility in the acquirement
of any conceivable degree of perfection through
natural selection.” Charles R.

Darwin
1809-1882

http://upload.wikimedia.org/wikipedia/commons/8/8b/Hw-darwin.jpg

Evolutionary computation (EC)

 Genetic algorithms (GA)

 Most popular technique

 Pioneered by Holland and students in 1960/70s

 Evolution strategies (ES)

 Aimed at solving real-valued optimization problems

 Developed by Rechenberg and Schwefel in 1960/70s

 Genetic programming (GP)

 Solutions are computer programs

 Developed by Koza in 1990s

60

Genetic Algorithms (GAs)

 Search algorithms (optimization algorithms)

 Based on the natural principle of survival of
the fittest

 Work on a set of solutions (population)

 Best individuals of the population survive
(selection) and produce offspring
(crossover)

 Variations occur through random changes
(mutation) yielding a constant source of
diversity

61

Checklist for applying a GA

1. define a coding scheme for individuals as
bitstrings

2. define a fitness function

3. run the GA (involves setting parameters)

Example: find the global maximum of the function
f(x) = x2

over {0,..., 31}
1. represent each number as a bitstring of length 5
2. use f as the fitness function
e.g. number: 13 string: 01101 fitness: 169
e.g. number: 24 string: 11000 fitness: 576

The Canonical GA

1. Randomly generate an initial population of size
m

2. Do until termination condition is met:
// build a new generation
1) select m individuals for reproduction

// some might be chosen more than once
2) create offspring by crossing individuals
3) occassionaly mutate some individuals

3. Return best solution found

Roulette Wheel Selection

65

 Probabilistic nature helps
to escape from local
optima

 Fit inviduals are more
likely to survive and
become parents

 Even least fit individual in
current population has
some probability of
becoming a parent

Selection: example

e.g. for the new generation (random experiment):
− no. 1 and no. 4 are selected
− no. 2 is selected twice
− no. 3 dies

The Canonical GA

1. Randomly generate an initial population of size
m

2. Do until termination condition is met:
// build a new generation
1) select m individuals for reproduction

// some might be chosen more than once
2) create offspring by crossing individuals
3) occassionaly mutate some individuals

3. Return best solution found

Crossover

 merges information from parents into offspring

 offspring may be worse or the same as parents

 hope is that some are better by combining
elements of parents with good traits

Crossover: Example
s
e

le
c
ti

o
n

The Canonical GA

1. Randomly generate an initial population of size
m

2. Do until termination condition is met:
// build a new generation
1) select m individuals for reproduction

// some might be chosen more than once
2) create offspring by crossing individuals
3) occassionaly mutate some individuals

3. Return best solution found

Mutation

 random deformation of genetic information

 responsible for preserving and introducing
diversity

 inversion of a single bit
01101 00101

bitwise inversion of the whole bitstring
01101 10010

replace bitstring by randomly chosen one
01101 11001

 keep probability low to avoid chaotic behaviour

The Canonical GA

1. Randomly generate an initial population of size
m

2. Do until termination condition is met:
// build a new generation
1) select m individuals for reproduction

// some might be chosen more than once
2) create offspring by crossing individuals
3) occassionaly mutate some individuals

3. Return best solution found

?

Termination conditions

 reaching some (known/hoped for) fitness

 reaching maximum allowed number of
generations

 reaching minimum level of diversity

 reaching a specified number of generations
without fitness improvement

More on Encoding

 Genotype is mostly a bitstring (binary encoding)

 Natural for Boolean decision variables

 Often used to encode non-binary information

 Anything can be represented in binary

 ... (to some arbitrary precision)

 Other encodings for numeric results

 Integer, floating point

76

Sparseness problem

 consider the simple optimization problem of
finding the largest integer in [0, 1, . . . , 8]

 encoded as standard binary, the fitness
function is

Discontinuity problem

 consider the simple optimization problem of
finding the largest integer in [0, 1, . . . , 15]

 standard binary encoding has some problems:

 Hamming distance between chromosomes
encoding adjacent integers is not constant

 chromosomes that differ in only one or two bits
may encode for totally different solutions (e.g.
0000 -> 0, 1000 -> 9)

 chromosomes that differ in all bits may encode
very similar solutions (e.g. 1000 -> 9, 0111 -> 8)

Solution: Gray Codes

Decimal Gray Binary

0 000 000

1 001 001

2 011 010

3 010 011

4 110 100

5 111 101

6 101 110

7 100 111

79

 Invented by Gray in
1940s

 Adjacent integers are
encoded by
chromosomes that
differ in one gene

Solution: Gray code

 reflected binary code

http://upload.wikimedia.org/wikipedia/commons/c/c1/Binary-reflected_Gray_code_construction.svg

Traveling salesman problem (TSP)

Starting in Seattle, find the shortest route to visit all
other cities exactly once and then return to Seattle.

81

Solution with genetic algorithm

1. coding scheme: string of integer numbers

2. fitness function: based on the route length

3. - selection (as usual)

- crossover (e.g. partially mapped or PMX)

- mutation (e.g. swap two cities)

82

Next Class

 Learning theory

 Support vector machines

 Active learning

83

Summary

 Ensembles:

 Old paradigm: Learn one model

 New paradigm: Learn many models!

 Good empirical results

 Genetic algorithms:

 Based on biological principles, which is
appealing

 Significant hand-crafting to get good results

84

Questions?

85

