
1

Model Ensembles and
Genetic Algorithms

Instructor: Jesse Davis

Slides from: Martine De Cock, Pedro Domingos, 

Russ Greiner, David Page, Jude Shavlik



2

Announcements

 Homework 3 is due next week

 Homework 2 will be returned next week and 
we‟ll go over it at the start of class

 Lecture notes are available online



Outline

 Homework 3 Issues

 Model Ensembles

 Genetic Algorithms

3



Homework 3

 Remember to include code descriptions

 Ballpark accuracy is 97-99%

 Do extra credit if you haven‟t already done it

4



Outline

 Homework 3 Issues

 Model Ensembles

 Genetic Algorithms

5



Motivation

 One good learner produces one effective 
classifier

 Could learning many classifiers help?

 Why not learn { h1, h2, h3 }, then
h*(x) = majority{ h1(x), h2(x), h3(x) }

 If classifiers make INDEPENDENT mistakes, 
then h* is more accurate!

6



Ensemble

 Assume: Independent errors (30%) and 
majority vote

 Probability that majority is wrong…

 Area under curve for 11 wrong is 0.026

 Order of magnitude improvement!
7

Prob 0.2

0.1

Number of classifiers in error



Overview

8

Data

Sample1

Sample2

Samplen

Learner1

Learner2

Learnern

H1

H2

Hn

H*Agg.



Challenges

 How to generate the base classifiers?

 Different learners?

 Bootstrap samples?

 Etc.

 How to integrate/combine them?

 Average

 Weighted Average

 Instance-specific decisions

 Etc.
9



Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
10



Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
11

…

…
…



Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
12

…

…
…



Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
13

…

…
…



Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
14

…

…
…



Ensemble Approaches

 Sample data set

 Bagging

 Boosting

 Manipulate features

 Input feature

 Target features

 Add randomness

 Data

 Algorithm

 Stacking
15

…

Learner1

Learner2



Sampling Based Ensembles

 Learner is UNSTABLE if: minor variations in 
training data results in major changes in 
classifier output

 Unstable: Decision-tree, neural network, rule 
learning algorithms

 Stable: Linear regression, nearest neighbor, linear 
threshold algorithms, etc.

 Subsampling is best for unstable learners:

 Bagging

 Cross-Validated Committees

 Boosting
16



Bagging: Bootstrap Aggregating

Given: Data set S, integer T

 For i = 1, …, T 

 Si = bootstrap replicate of S (i.e., sample 
with replacement)

 hi = Apply learning algorithm to Si

 Classify test instance using unweighted vote

17



Bagging: Bootstrap Aggregating

 Draw |Sample| examples with replacement

 Each sample‟ contains 63.2% of original 
examples (+ duplicates)

18

… …

Sample Sample‟



Voting

19

Data

Sample Sample2 Samplen

Learner Learner Learner

H1 H2 Hn

Ballot
BoxTest Example Predicted Label



Cross-validated Committees

 Partition training set into k disjoint subsets

 Create k training sets

 Hold out one subset in turn

 Learn model on each train set

 Classify test example with unweighted voting

20

H
o
ld

o
u
t



Boosting

 Idea: General method for combining weak 
learners

 Need ability to guess better than chance

 Combine them to produce highly accurate 
predictor

 Needs sufficient data [and number of models]

21



AdaBoost

 Given: Data S = {(x1, y1),...,(xn, yn)}, integer T

 xi = features

 yi = correct label

 w1(i)= 1/n

 for t = 1, ... ,T:

 Find classifier ht, with small error ϵt with 
ϵt = Pi[ht(xi) ≠ yi] = ∑ht(xi) ≠ yi

wt(i)

 If ϵt  >½ then break

 Update distribution wt(i)
22



AdaBoost

 Updating Dt

 ϵt = Pi in wt
[ht(xi) ≠ yi] = ∑ht(xi) ≠ yi

wt(i)

 ɑt= ϵt /1- ϵt

 wt+1(i) = wt(i)ɑt

 Normalize: wt+1(i) /∑ wt+1(j)

 Output: argmaxy = ∑t log(1/ ɑt) [ht(x) = y] 

23

1- [ht(xi) ≠ yi] 





Boosting Example

 Assume that we are going to make one axis 
parallel cut through feature space

25

+ +
+-

-

-
-

-
-

+

+

+
-



Boosting Example

 Errors: 3

 Upweight the mistakes, downweight everything 
else

26

+ +
+-

-

-
-

-
-

+

+

+
-

+ +
+-

-

-
-

-

-

+

+

+
-



Boosting Example

27

+ +
+-

-

-
-

-
-

+

+

+
-

+ +
+-

-

-
-

-

-

+

+

+
-

+ +
+-

-

-

-

-

-

+

+

+
-



Boosting Example

28

+ +
+-

-

-
-

-
-

+

+

+
-

+ +
+-

-

-
-

-

-

+

+

+
-

+ +
+-

-

-

-

-

-

+

+

+
-



Learning from Weighted Examples

Q: How can a learning algorithm use distribution

over examples?

 Reweighting: Can modify many learning 
algorithms to deal with weighted instances:

 DT + Rule learners:

 Entropy, information-gain equations count 
occurrences in data 

 Modify to use each instance‟s weight

 Naïve Bayes: Use weight when building CPT

 kNN: Multiple vote from an instance by its weight

29



Learning from Weighted Examples

Q: How can a learning algorithm use distribution

over examples?

 Resampling: Given initial data set and 
distribution, produce new sample s‟

 Typically, of same size

 Sample proportion to weights

 Reweighting is better as resampling is just an 
approximation

30



Resampling Algorithm

 Goal: Build S‟ 

 Given: weights (w1, ..., wn) for each example 
and Σ wi = 1

 For i = 1 to n do:

 Draw r from uniform (0,1)

 Pick xk such that Σk-1wi < r < Σnwi

 Return S‟

31



Training Error for AdaBoost

 If ɣt ≥ ɣ > 0 then
training_error(h*) ≤ exp(−2ɣ2)

 AdaBoost is adaptive:

 Does not need to know ɣ or T a priori

 Exploit ɣt >> ɣ

32

Theorem:  If ɣt = ½ - ϵt then
training_error(h*) ≤ exp(−2 Σɣt

2)



How Will # of Rounds Effect 
Generalization?

Expect

 Training error to drop or reach 0

 Test error to increase when h* becomes too 
complex: “Occam‟s razor” (i.e., overfitting)

 Hard to know when to stop training

33

0  20  40  60  80  100

20%

10%

0%

# of rounds

E
rr

o
r 

ra
te

Test

Train



Empirical Results

 Often, test error does not increase, even after 
1000 rounds!

 Test error continues to drop, even after training 
error is 0!

 Occam‟s razor: “simpler is better” appears to 
not apply!

34

0  20  40  60  80  100

20%

10%

0%

# of rounds

E
rr

o
r 

ra
te

Test

Train



Explanation: Margins

 Key idea:

 Training error only measures whether classifications 
are right or wrong

 Should also consider confidence of classifications

 h* is weighted majority vote of weak classifiers

 Measure confidence by margin: Strength of vote

 (weighted vote +) − (weighted vote -)

35
-1 10

High
conf. -

High
conf. +

Low
conf. 



AdaBoost Advantages

 Fast, simple and easy to program

 No parameters to tune (except T, sometimes)

 Flexible: works with any learning algorithm

 No prior knowledge needed about weak learner

 Provably effective, given weak classifier

 Versatile: can use with data that is textual, 
numeric, discrete, etc.

 Has been extended to learning problems well 
beyond binary classification

36



Notes on AdaBoost

 AdaBoost‟s performance depends on both the 
data and the weak learner

 AdaBoost can fail if:

 weak classifiers too complex ->overfitting

 weak classifiers too weak (error goes to 0 too 
quickly) -> underfitting

 Empirically, AdaBoost seems especially 
susceptible to uniform noise

37



Boosting Conclusions

 Boosting is a practical tool for classification and 
other learning problems

 Grounded in rich theory

 Performs well experimentally

 Often (not always!) resistant to overfitting

 Many applications and extensions

 Many ways to think about why boosting works

 None is entirely satisfactory

 Considerable room for further theoretical and 
experimental work

38



Manipulate Input Features

 Different learners see different subsets of 
features (of each training instances)

 Empirically: Mixed results

 Technique works best when input features 
highly redundant

39



Manipulating Target

 Sparse outputs Y = { y1, … yK }

 Could learn 1 classifier, into Y (|Y| values)

 Or could learn K binary classifiers:

 y1 vs Y – y1

 y2 vs Y – y2

 then vote

 Encoding by partition output labels into 2 
subsets, create log k models

 y1-y4 is pos, y5-y8 is neg

 y1,y3,y5,y7 is pos, y2,y4,y6,y8 is neg
40



New Idea: Error-Correcting Codes

 Create more than log K models

 “Error-Correcting Codes” (some redundancy)

 Given: Integer L

 For i = 1 to L

 Partition labels into two disjoint sets

 Build classifier to distinguish between these 
sets of examples

41



New Idea: Error-Correcting Codes

 L bit code word for each output label yk, ith bit

 1 if yk is in new „pos‟ class for hi

 0 if yk is in new „neg‟ class for hi

 Label unseen test example

 Apply each hi to example

 Create bit vector, ith bit is 

 1 if hi predicts positive

 0 if hi predicts negative

 Using hamming distance to find closest class

42



Add Randomness to Learner

 Neural networks: 

 Different initial values

 Not really independent

 Decision trees:

 Consider top 20 attributes choose one at random?

 Produce 200 classifiers 

 To classify new instance: Vote

 FOIL

 Choose any test w/foil gain within 80% of top

 Good empirical performance
43



Random Forrests

44

A variant of BAGGING

Algorithm

Repeat k times

1. Draw with replacement N examples, put in train 
set

2. Build d-tree, but in each recursive call

A. Choose (w/o replacement) i features

B. Choose best of these i as the root of this 
(sub)tree

3. Do NOT prune



More on Random Forrests

 Increasing i
 Increases correlation among individual trees (BAD)
 Also increases accuracy of individual trees (GOOD)

 Can use tuning set to choose 
good setting for i

 Overall, random forests
 Are very fast (e.g., 50K examples, 10 features, 

10 trees/min on 1 GHz CPU in 2004)
 Deal with large # of features
 Reduce overfitting substantially
 Work very well in practice

45



Stacking

 Given: Learners L1,…,Ln

 Idea: Learn when each learner is good

 Let ht (-i) = Lt(S – xi) be classifier learned using 
Lt, on all but instance xi 

 Let y‟i(t) = ht(xi)

 New train set: { [ [y‟i(1), y‟i(2),…, y‟i(n)], yi] }i

46



Stacking

47

Learner1

Learner2

Learnern

H1

H2

Hn

…

…

Meta
Learner

H*



Ensemble Recommendations

 Use Bagging with low bias and high variance 
classifiers

 Decision trees

 Always try AdaBoost

 Typically produces excellent results

 Works especially well with very simple 
learners such as decision stumps

48



Why Do Ensembles Work?

 Bias/Variance explanation

 Statistical explanation

 Representational explanation

 Computational explanation

49



Bias/Variance Explanation

 Error has three components:

 Inherent error: Inability to distinguish 
between two objects with different labels

 Bias: Inability to represent the true target 
concept

 Variance: Fluctuations due to variations in 
data sample

 Ensembles can address both bias and variance!

50



Statistical Explanation

 How can the learning algorithm select among 
set of equally good hypothesis?

 Bayes optimal classifier: Weighted majority vote 
of all hypotheses

 Weighted by their posterior probability

 Provably the best possible classifier

 Ensemble learning approximates Bayes optimal

51



Representational Explanation

 Optimal target function may not be ANY 
individual classifier, but may be (approximated 
by) ensemble averaging 

 E.g.: Decision trees boundaries are axis-
parallel hyperplanes

 Averaging a large number of such 
“staircases”, can approximate diagonal 
decision boundary with arbitrarily good 
accuracy

52



Computational Explanation

 Most learning algorithms search through 
hypotheses space find one “good” model

 Most interesting hypothesis spaces are:

 Huge/infinite

 Heuristic search is essential

 Learner might get stuck in a local minimum

 One strategy for avoiding local minima:

 Repeat the search many times with random restarts 
-> bagging!

53



Effects of Bagging

 If bootstrap replicate approx‟n is correct, then 
bagging would reduce variance without 
changing bias

 In practice, bagging can reduce both bias and 
variance

 For high-bias classifiers, it can reduce bias

 For high-variance classifiers, it can reduce 
variance

54



Effects of Boosting

 In the early iterations, boosting primarily 
reduces bias

 In later iterations, boosting primarily reduces 
variance (apparently)

55



Ensembles Summary

 Motivation: Committee of experts is typically 
more effective than a single supergenius

 Key issues:

 Generating base models

 Integrating responses from base models

 Popular ensemble techniques

 manipulate training data: bagging and boosting

 manipulate output values: error-correcting output 
coding

 Why does ensemble learning work?
56



Outline

 Homework 3 Issues

 Model Ensembles

 Genetic Algorithms

57





Evolutionary algorithms

Search algorithms based on the evolutionary 
principle of natural selection and survival of the 
fittest

“Although the belief that an organ so perfect as 
the eye could have been formed by natural 
selection is enough to stagger anyone; yet in the 
case of any organ, if we know a long series of 
gradations in complexity, each good for its 
possessor, then, under changing conditions of life, 
there is no logical impossibility in the acquirement 
of any conceivable degree of perfection through 
natural selection.” Charles R. 

Darwin
1809-1882

http://upload.wikimedia.org/wikipedia/commons/8/8b/Hw-darwin.jpg


Evolutionary computation (EC)

 Genetic algorithms (GA)

 Most popular technique

 Pioneered by Holland and students in 1960/70s

 Evolution strategies (ES)

 Aimed at solving real-valued optimization problems

 Developed by Rechenberg and Schwefel in 1960/70s

 Genetic programming (GP)

 Solutions are computer programs

 Developed by Koza in 1990s

60



Genetic Algorithms (GAs)

 Search algorithms (optimization algorithms)

 Based on the natural principle of survival of 
the fittest

 Work on a set of solutions (population)

 Best individuals of the population survive 
(selection) and produce offspring 
(crossover)

 Variations occur through random changes 
(mutation) yielding a constant source of 
diversity

61



Checklist for applying a GA

1. define a coding scheme for individuals as 
bitstrings

2. define a fitness function

3. run the GA (involves setting parameters)

Example: find the global maximum of the function
f(x) = x2

over {0,..., 31}
1. represent each number as a bitstring of length 5
2. use f as the fitness function
e.g. number: 13 string: 01101 fitness: 169
e.g. number: 24 string: 11000 fitness: 576





The Canonical GA

1. Randomly generate an initial population of size 
m

2. Do until termination condition is met:
// build a new generation
1) select m individuals for reproduction

// some might be chosen more than once
2) create offspring by crossing individuals
3) occassionaly mutate some individuals

3. Return best solution found



Roulette Wheel Selection

65

 Probabilistic nature helps 
to escape from local 
optima

 Fit inviduals are more 
likely to survive and 
become parents

 Even least fit individual in 
current population has 
some probability of 
becoming a parent



Selection: example

e.g. for the new generation (random experiment):
− no. 1 and no. 4 are selected
− no. 2 is selected twice
− no. 3 dies 





The Canonical GA

1. Randomly generate an initial population of size 
m

2. Do until termination condition is met:
// build a new generation
1) select m individuals for reproduction

// some might be chosen more than once
2) create offspring by crossing individuals
3) occassionaly mutate some individuals

3. Return best solution found



Crossover

 merges information from parents into offspring

 offspring may be worse or the same as parents

 hope is that some are better by combining 
elements of parents with good traits



Crossover: Example
s
e

le
c
ti

o
n





The Canonical GA

1. Randomly generate an initial population of size 
m

2. Do until termination condition is met:
// build a new generation
1) select m individuals for reproduction

// some might be chosen more than once
2) create offspring by crossing individuals
3) occassionaly mutate some individuals

3. Return best solution found



Mutation

 random deformation of genetic information

 responsible for preserving and introducing 
diversity

 inversion of a single bit
01101 00101

bitwise inversion of the whole bitstring
01101 10010

replace bitstring by randomly chosen one
01101 11001

 keep probability low to avoid chaotic behaviour



The Canonical GA

1. Randomly generate an initial population of size 
m

2. Do until termination condition is met:
// build a new generation
1) select m individuals for reproduction

// some might be chosen more than once
2) create offspring by crossing individuals
3) occassionaly mutate some individuals

3. Return best solution found

?



Termination conditions

 reaching some (known/hoped for) fitness

 reaching maximum allowed number of 
generations

 reaching minimum level of diversity

 reaching a specified number of generations
without fitness improvement



More on Encoding

 Genotype is mostly a bitstring (binary encoding)

 Natural for Boolean decision variables

 Often used to encode non-binary information

 Anything can be represented in binary

 ... (to some arbitrary precision)

 Other encodings for numeric results

 Integer, floating point

76



Sparseness problem

 consider the simple optimization problem of 
finding the largest integer in [0, 1, . . . , 8]

 encoded as standard binary, the fitness 
function is



Discontinuity problem

 consider the simple optimization problem of 
finding the largest integer in [0, 1, . . . , 15]

 standard binary encoding has some problems:

 Hamming distance between chromosomes 
encoding adjacent integers is not constant

 chromosomes that differ in only one or two bits 
may encode for totally different solutions (e.g. 
0000 -> 0, 1000 -> 9)

 chromosomes that differ in all bits may encode 
very similar solutions (e.g. 1000 -> 9, 0111 -> 8)



Solution: Gray Codes

Decimal Gray Binary

0 000 000

1 001 001

2 011 010

3 010 011

4 110 100

5 111 101

6 101 110

7 100 111

79

 Invented by Gray in 
1940s

 Adjacent integers are 
encoded by 
chromosomes that 
differ in one gene



Solution: Gray code

 reflected binary code

http://upload.wikimedia.org/wikipedia/commons/c/c1/Binary-reflected_Gray_code_construction.svg


Traveling salesman problem (TSP)

Starting in Seattle, find the shortest route to visit all 
other cities exactly once and then return to Seattle.

81



Solution with genetic algorithm

1. coding scheme: string of integer numbers

2. fitness function: based on the route length

3. - selection (as usual)

- crossover (e.g. partially mapped or PMX)

- mutation (e.g. swap two cities)

82



Next Class

 Learning theory

 Support vector machines

 Active learning

83



Summary

 Ensembles:

 Old paradigm: Learn one model

 New paradigm: Learn many models!

 Good empirical results

 Genetic algorithms:

 Based on biological principles, which is 
appealing

 Significant hand-crafting to get good results

84



Questions?

85


