
CSEP 546: Decision Trees and 
Experimental Methodology

Jesse Davis



Outline

• Decision Trees

– Representation

– Learning Algorithm

– Potential pitfalls

• Experimental Methodology



Decision Trees

• Popular hypothesis space

– Developed with learning in mind

– Deterministic

– Simple learning algorithm

– Handles noise well

– Produce comprehensible output



Decision Trees

• Effective hypothesis space

– Variable sized hypotheses

– Can represent any Boolean function

– Can represent both discrete and continuous features

– Equivalent to propositional DNF

• Classify learning algorithm as follows:

– Constructive search: Learn by adding nodes

– Eager

– Batch [though online algorithms exist]



Decision Tree Representation

Outlook

Humidity Wind

Sunny Rain
Overcast

High Normal WeakStrong

Play

Play

Don’t play PlayDon’t play

Good day for tennis?

Leaves = classification

Arcs = choice of value

for parent attribute

Decision tree is equivalent to logic in disjunctive normal form

Play  (Sunny  Normal)  Overcast  (Rain  Weak)



Numeric Attributes

Outlook

Humidity Wind

Sunny Rain
Overcast

>= 75% < 75%

< 10 MPH>= 10 MPH

Play

Play

Don’t play PlayDon’t play

Use thresholds 
to convert 
numeric 

attributes into 
discrete values



How Do Decision Trees 
Partition Feature Space?
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Decisions divide feature space into axis parallel rectangles 

and labels each one with one of the K classes



Decision Trees Provide 
Variable-Size Hypothesis Space 

• As the number of nodes (or tree depth) increases, 
the hypothesis space grows

– Depth 1 (decision “stumps”): Any Boolean function 
over one variable

– Depth 2: 

• Any Boolean function over two variables

• Some Boolean functions over three variables
e.g., (x1 ^ x2) v (!x1 ^ !x3)

– Etc.



Decision Trees Can Represent 
Any Boolean Function
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However, in the worst 

case, the tree will 

require exponential 

many nodes



Objective of DT Learning

Goal: Find the decision tree that minimizes
the error rate on the training data

• Solution 1: For each training example, create 
one root-to-leaf path

• Problem 1: Just memorizes the training data

• Solution 2: Find smallest tree that minimizes 
our error function

• Problem 2: This is NP-hard

• Solution 3: Use a greedy approximation



DT Learning as Search
• Nodes

• Operators

• Initial node

• Heuristic?

• Goal?

Decision Trees: 

1) Internal: Attribute-value test

2) Leaf:      Class label

Tree Refinement: Sprouting the tree

Smallest tree possible: a single leaf

Information Gain

Best tree possible   (???)



Decision Tree Algorithm

BuildTree(TraingData)
Split(TrainingData)

Split(D)
If (all points in D are of the same class)

Then Return
For each attribute A

Evaluate splits on attribute A
Use best split to partition D into D1, D2
Split (D1)
Split (D2)



What is the
Simplest Tree?

Day Outlook Temp Humid Wind Play?
d1 s h h w n
d2 s h h s n
d3 o h h w y
d4 r m h w y
d5 r c n w y
d6 r c n s n
d7 o c n s y
d8 s m h w n
d9 s c n w y
d10 r m n w y
d11 s m n s y
d12 o m h s y
d13 o h n w y
d14 r m h s n

How good?

[9+, 5-]
Majority class: 

correct on 9 examples

incorrect on 5 examples
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Successors Yes

Outlook Temp

Humid Wind

Which attribute should we use to split?





Choosing the Best Attribute: Example
Input
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Choosing the Best Attribute: Example

X1

12 8

¬X1X1

8 2

X2

12 0

-+

¬X2X2

0 8

X3

0 2

+-

¬X3X3

8 0

20 10

J = 10

This metric may not work well as it does not 

always detect cases where we are making 

progress towards the goal 



A Better Metric From Information Theory

No 

Better

Good

Bad

Intuition: Disorder is bad and 

homogeneity is good
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Entropy

0.00 0.50 1.00

1.0

0.5

% of example that are positive

50-50 class split
Maximum disorder

All positive
Pure distribution



Entropy (disorder) is bad
Homogeneity is good

• Let S be a set of examples

• Entropy(S) = -P log2(P) - N log2(N)

– P is proportion of pos example

– N is proportion of neg examples

– 0 log 0 == 0

• Example: S has 9 pos and 5 neg
Entropy([9+, 5-]) = -(9/14) log2(9/14)  - (5/14)log2(5/14)

= 0.940



Information Gain

• Measure of expected reduction in entropy

• Resulting from splitting along an attribute

Gain(S,A) = Entropy(S) - (|Sv| / |S|) Entropy(Sv)

Where Entropy(S) = -P log2(P) - N log2(N)


v  Values(A)



Example: “Good day for tennis”

• Attributes of instances 
– Outlook = {rainy (r), overcast (o), sunny (s)}
– Temperature = {cool (c), medium (m), hot (h)}
– Humidity = {normal (n), high (h)}
– Wind = {weak (w), strong (s)}

• Class value
– Play Tennis? = ,don’t play (n), play (y)-

• Feature = attribute with one value
– E.g., outlook = sunny

• Sample instance
– outlook=sunny, temp=hot, humidity=high, 

wind=weak



Experience: “Good day for tennis”
Day Outlook Temp Humid Wind PlayTennis?
d1 s h h w n
d2 s h h s n
d3 o h h w y
d4 r m h w y
d5 r c n w y
d6 r c n s n
d7 o c n s y
d8 s m h w n
d9 s c n w y
d10 r m n w y
d11 s m n s y
d12 o m h s y
d13 o h n w y
d14 r m h s n



Day Wind Tennis?

d1 weak n

d2 s n

d3 weak yes

d4 weak yes

d5 weak yes

d6 s n

d7 s yes

d8 weak n

d9 weak yes

d10 weak yes

d11 s yes

d12 s yes

d13 weak yes

d14 s n

Gain of Splitting on Wind
Values(wind)=weak, strong

S = [9+, 5-]

Gain(S, wind) 

= Entropy(S) - (|Sv| / |S|) Entropy(Sv)

= Entropy(S) - 8/14 Entropy(Sweak)

- 6/14 Entropy(Ss)

= 0.940 - (8/14) 0.811  - (6/14) 1.00

= .048


v  {weak, s}

Sweak = [6+, 2-]

Ss = [3+, 3-] 



Evaluating Attributes
Yes

Outlook Temp

Humid Wind

Gain(S,Humid)

=0.151

Gain(S,Outlook)

=0.246

Gain(S,Temp)

=0.029

Gain(S,Wind)

=0.048



Resulting Tree

Outlook
Sunny Rain

Overcast

Good day for tennis?

Don’t Play
[2+, 3-] Play

[4+]

Don’t Play
[3+, 2-]



Recurse

Outlook
Sunny Rain

Overcast

Good day for tennis?

Day Temp  Humid  Wind  Tennis?

d1 h h      weak   n

d2 h h      s n

d8 m h      weak   n

d9 c n      weak   yes

d11 m n      s yes



One Step Later

Outlook

Humidity

Sunny Rain
Overcast

High Normal

Play
[2+]

Play
[4+]

Don’t play
[3-]

Good day for tennis?

Don’t Play
[2+, 3-]



Recurse Again

Outlook

Humidity

Sunny Rain
Overcast

High Normal

Good day for tennis?

Day Temp  Humid  Wind  Tennis?

d4 m h      weak   yes

d5 c n      weak   yes

d6 c n      s          n

d10 m n      weak   yes

d14 m h      s n



One Step Later: Final Tree

Outlook

Humidity

Sunny Rain
Overcast

High Normal

Play
[2+]

Play
[4+]

Don’t play
[3-]

Good day for tennis?

Wind

WeakStrong

Play
[3+]

Don’t play
[2-]



Issues

• Missing data

• Real-valued attributes

• Many-valued features

• Evaluation

• Overfitting



Missing Data 1
Day         Temp Humid  Wind Tennis?

d1 h h weak n

d2 h h s n

d8 m h weak n

d9 c ? weak yes

d11 m n s yes

Day         Temp Humid  Wind Tennis?

d1 h h weak n

d2 h h s n

d8 m h weak n

d9 c ? weak yes

d11 m n s yes

Assign most common 
value at this node

?=>h

Assign most common 
value for class

?=>n



Missing Data 2

• 75% h   and 25% n

• Use in gain calculations

• Further subdivide if other missing attributes

• Same approach to classify test ex with missing attr

– Classification is most probable classification

– Summing over leaves where it got divided

Day         Temp Humid    Wind Tennis?

d1 h h weak n

d2 h h s n

d8 m h weak n

d9 c ? weak yes

d11 m n s yes

[0.75+, 3-]

[1.25+, 0-]



Real-Valued Features

• Discretize?

• Threshold split using observed values?

Wind
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Real-Valued Features

F<10

F< 5 -

- +

T

T F

F

Note

Cannot discard 
numeric feature 
after use in one 
portion of d-tree
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Many-Valued Attributes

FAVORS FEATURES WITH HIGH BRANCHING FACTORS
(i.e,. many possible values)

Extreme Case:

At most one example per leaf and all I(.,.) scores for leafs 
equals zero, so gets perfect score!  But generalizes very 
poorly (i.e., memorizes data)

Student ID

1+

0-
0+

1-

0+

1-

1

99
999
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Fix: Method 1

Convert all features to binary

e.g., Color = {Red, Blue, Green}

From 1 N-valued feature to N binary features

Color = Red?                          {True, False}

Color = Blue?                         {True, False}

Color = Green?                       {True, False}

Used in Neural Nets and SVMs

D-tree readability probably less, but not necessarily



Fix 2: Gain Ratio

Gain Ratio(S,A) =    Gain(S,A)/SplitInfo(S,A)

SplitInfo =     (|Sv| / |S|) Log2(|Sv|/|S|)
v  Values(A)

SplitInfo  entropy of S wrt values of A

(Contrast with entropy of S wrt target value)

 attribs with many uniformly distrib values

e.g. if A splits S uniformly into n sets

SplitInformation = log2(n)…   = 1 for Boolean



Evaluation

• Question: How well will an algorithm perform 
on unseen data?

• Cannot score based on training data

– Estimate will be overly optimistic about 
algorithm’s performance



Evaluation: Cross Validation
• Partition examples into k disjoint sets

• Now create k training sets
– Each set is union of all equiv classes except one

– So each set has (k-1)/k of the original training data

 Train            

Te
st

Te
st

Te
st



Cross-Validation (2)

• Leave-one-out

– Use if < 100 examples (rough estimate)

– Hold out one example, train on remaining 
examples

• M of N fold

– Repeat M times

– Divide data into N folds, do N fold cross-validation
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Overfitting

Number of Nodes in Decision tree

Accuracy

0.9

0.8

0.7

0.6

On training data

On test data



Overfitting Definition

• DT is overfit when exists another DT’ and
– DT has smaller error on training examples, but
– DT has bigger error on test examples

• Causes of overfitting
– Noisy data, or
– Training set is too small 

• Solutions
– Reduced error pruning
– Early stopping
– Rule post pruning



Reduced Error Pruning

• Split data into train and validation set

• Repeat until pruning is harmful

– Remove each subtree and replace it with majority 
class and evaluate on validation set

– Remove subtree that leads to largest gain in 
accuracy

Te
st

Tu
n

e

Tu
n

e

Tu
n

e



Reduced Error Pruning Example

Outlook

Humidity Wind

Sunny Rain
Overcast

High Normal WeakStrong

Play

Play

Don’t play PlayDon’t play

Validation set accuracy = 0.75 



Reduced Error Pruning Example

Outlook

Wind

Sunny Rain
Overcast

WeakStrong
Play

Don’t play

PlayDon’t play

Validation set accuracy = 0.80 



Reduced Error Pruning Example

Outlook

Humidity Wind

Sunny Rain
Overcast

High Normal WeakStrong

Play

Play

Don’t play PlayDon’t play



Reduced Error Pruning Example

Outlook

Humidity

Sunny Rain
Overcast

High Normal

Play

Play

Don’t play

Play

Validation set accuracy = 0.70 



Reduced Error Pruning Example

Outlook

Wind

Sunny Rain
Overcast

WeakStrong
Play

Don’t play

PlayDon’t play

Use this as final tree
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Early Stopping

Number of Nodes in Decision tree

Accuracy

0.9

0.8

0.7

0.6

On training data

On test data

On validation data

Remember this tree and 
use it as the final classifier



Post Rule Pruning

• Split data into train and validation set

• Prune each rule independently
– Remove each pre-condition and evaluate accuracy

– Pick pre-condition that leads to largest 
improvement in accuracy

• Note: ways to do this using training data and 
statistical tests



Conversion to Rule

Outlook

Humidity Wind

Sunny Rain
Overcast

High Normal WeakStrong

Play

Play

Don’t play PlayDon’t play

Outlook = Sunny  Humidity = High  Don’t play

Outlook = Sunny  Humidity = Normal  Play

Outlook = Overcast  Play

…



Example

Outlook = Sunny  Humidity = High  Don’t play

Outlook = Sunny  Don’t play

Humidity = High  Don’t play

Validation set accuracy = 0.68 

Validation set accuracy = 0.65 

Validation set accuracy = 0.75 

Keep this rule



15 Minute Break



Outline

• Decision Trees

• Experimental Methodology

– Methodology overview

– How to present results

– Hypothesis testing
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Experimental Methodology:
A Pictorial Overview

generate 

solutions

select 

best

LEARNER

training examples

train’ set tune set

testing examples

classifier

expected accuracy on 

future examples

collection of classified examples

Statistical 

techniques 

such as 10-

fold cross 

validation 

and t-tests 

are used to 

get 

meaningful 

results



© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-Madison) Lecture #7, Slide 58

Using Tuning Sets

• Often, an ML system has to choose when to stop learning, select among 
alternative answers, etc.

• One wants the model that produces the highest accuracy on future
examples (“overfitting avoidance”)

• It is a “cheat” to look at the test set while still learning

• Better method
– Set aside part of the training set

– Measure performance on this “tuning” data to estimate future 
performance for a given set of parameters

– Use best parameter settings, train with all training data (except test
set) to estimate future performance on new examples
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Proper Experimental Methodology Can Have a 
Huge Impact!

A 2002 paper in Nature (a major, major journal) needed 
to be corrected due to “training on the testing set”

Original report : 95% accuracy (5% error rate)

Corrected report (which still is buggy): 
73% accuracy (27% error rate)

Error rate increased over 400%!!!
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Parameter Setting

Notice that each train/test fold may get 
different parameter settings!

– That’s fine (and proper) 

I.e. , a “parameterless”* algorithm internally 
sets parameters for each data set it gets
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Using Multiple Tuning Sets

• Using a single tuning set can be unreliable predictor, 
plus some data “wasted”
Hence, often the following is done:
1) For each possible set of parameters,

a)  Divide training data into train’ and tune sets, using
N-fold cross validation

b)  Score this set of parameter value, average tune set 
accuracy

2) Use best set of parameter settings and 
all (train’ + tune) examples

3) Apply resulting model to test set 
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Tuning a Parameter
- Sample Usage

Step1: Try various values for k (e.g., neighborhood size/distance function in k-NN  

Use 10  train/tune splits for each k

Step2: Pick best value for k (eg. k = 2), 
Then train using all training data

Step3: Measure accuracy on test set

K=0

tune train

Tune set accuracy 

(ave. over 10 runs)=92%

1

10

2

K=2 Tune set accuracy 

(ave. over 10 runs)=97%

1

10

2

…

Tune set accuracy 

(ave. over 10 runs)=80%

1

10

2K=100
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What to Do for the 
FIELDED System?

• Do not use any test sets

• Instead only use tuning sets to determine 
good parameters

– Test sets used to estimate future performance

– You can report this estimate to your “customer,” 
then use all the data to retrain a “product” to give 
them
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What’s Wrong with This?

1. Do a cross-validation study to set parameters

2. Do another cross-validation study, using the best 
parameters, to estimate future accuracy

• How will this relate to the “true” future accuracy?

• Likely to be an overestimate

What about
1. Do a proper train/tune/test experiment

2. Improve your algorithm;  goto 1

(Machine Learning’s “dirty little” secret!)
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Why Not Learn After 
Each Test Example?

• In “production mode,” this would make sense 
(assuming one received the correct label)

• In “experiments,” we wish to estimate

Probability we’ll label the next example correctly

need several samples to accurately estimate



Outline

• Decision Trees

• Experimental Methodology

– Methodology overview

– How to present results

– Hypothesis testing
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Scatter Plots
- Compare Two Algo’s on Many Datasets

A
lg

o
 A

’s
 E

rr
o

r 
R

a
te

Algo B’s Error Rate

Each dot is the error 

rate of the two algo’s on 

ONE dataset



Evaluation Metrics

Predicted

True

Predicted 

False

Actually 

True

TP FN

Actually

False

FP TN

Called a confusion matrix or contingency table

The number of times true is
“confused” with false by the algorithm
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ROC Curves

• ROC: Receiver Operating Characteristics

• Started during radar research during WWII

• Judging algorithms on accuracy alone may not be 
good enough when getting a positive wrong costs
more than getting a negative wrong (or vice versa)

– Eg, medical tests for serious diseases

– Eg, a movie-recommender (ala’ NetFlix) system



Evaluation Metrics

Predicted

True

Predicted 

False

Actually 

True

TP FN

Actually

False

FP TN

FPTN

FP

+
False positive rate (fpr) = 

True positive rate (tpr)   = 
FNTP

TP

+
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ROC Curves Graphically
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1.0False positives rate
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Prob (alg outputs + | - is correct)

Ideal Spot

Alg 1

Alg 2

Different algorithms can work better in 

different parts of ROC space.  This 

depends on cost of false + vs false -
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Creating an ROC Curve
- the Standard Approach

• You need an ML algorithm that outputs 
NUMERIC results such as prob(example is +)

• You can use ensembles (later) to get this from 
a model that only provides Boolean outputs

– Eg, have 100 models vote & count votes
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Algorithm for Creating ROC Curves

Step 1: Sort predictions on test set

Step 2: Locate a threshold between
examples with opposite categories

Step 3: Compute TPR & FPR for each
threshold of Step 2

Step 4: Connect the dots
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Plotting ROC Curves 
- Example

Ex 9 .99 +

Ex 7 .98 +

Ex 1 .72 -

Ex 2 .70 +

Ex 6 .65 +

Ex 10 .51 -

Ex 3 .39 -

Ex 5 .24 +

Ex 4 .11 -

Ex 8 .01 -

ML Algo Output (Sorted) Correct

Category

1.0

1.0P
(a

lg
 o

u
tp

u
ts

 +
 |
 +

 i
s
 c

o
rr

e
c
t)

P(alg outputs + | - is correct)

TPR=(2/5), FPR=(0/5)

TPR=(2/5), FPR=(1/5)

TPR=(4/5), FPR=(1/5)

TPR=(4/5), FPR=(3/5)

TPR=(5/5), FPR=(3/5)

TPR=(5/5), FPR=(5/5)
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ROC’s and Many Models
(not in the ensemble sense)

• It is not necessary that we learn one model 
and then threshold its output to produce an 
ROC curve

• You could learn different models for different 
regions of ROC space

• For example, see Goadrich, Oliphant, & 
Shavlik ILP ’04 and MLJ ‘06
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Area Under ROC Curve

A common metric for experiments is to 
numerically integrate the ROC Curve

1.0

1.0False positives

T
ru

e
 p

o
s
it
iv

e
s

AUC = Wilcoxon-Mann-Whitney Statistic
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ROC’s & Skewed Data

• One strength of ROC curves is that they are a good 
way to deal with skewed data 
(|+| >> |-|) since the axes are fractions (rates) 
independent of the # of examples

• You must be careful though!

• Low FPR * (many negative ex) 
= sizable number of FP

• Possibly more than # of TP



Evaluation Metrics:
Precision and Recall

Predicted

True

Predicted 

False

Actually 

True

TP FN

Actually

False

FP TN

FPTP

TP

+
Precision = 

Recall = 
FNTP

TP

+
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ROC vs. Recall-Precision

You can get very different visual results 

on the same data

The reason for this is that there may be lots of – ex’s

(eg, might need to include 100 neg’s to get 1 more pos)

vs.

P ( + | - ) Recall
P

re
c
is

io
n

P
 (

 +
 |
 +

 )
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Two Highly Skewed Domains

?

=

Is an abnormality on a 

mammogram benign or 

malignant?

Do these two 

identities refer to 

the same person?
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Diagnosing Breast Cancer
[Real Data: Davis et al. IJCAI 2005]

ROC Space
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Diagnosing Breast Cancer
[Real Data: Davis et al. IJCAI 2005]
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Predicting Aliases
[Synthetic data:  Davis et al. ICIA 2005]
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Predicting Aliases
[Synthetic data:  Davis et al. ICIA 2005]
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Four Questions about 
PR space and ROC space

• Q1: If a curve dominates in one space   
will it dominate in the other?

• Q2: What is the “best” PR curve?

• Q3: How do you interpolate in PR 
space?

• Q4: Does optimizing AUC in one space  
optimize it in the other space? 
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Definition: Dominance
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A1: Dominance Theorem
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For a fixed number of positive and negative examples, one 

curve dominates another curve in ROC space if and only if 

the first curve dominates the second curve in PR space
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Q2: What is the “best” PR curve? 

• The “best” curve in ROC space for a set of 
points is the convex hull *Provost et al ’98+

– It is achievable

– It maximizes AUC  

Q: Does an analog to convex hull 
exist in PR space?

A2: Yes! We call it the Achievable PR Curve
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Convex Hull
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Convex Hull
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A2: Achievable Curve
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A2: Achievable Curve
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Constructing the Achievable Curve

Given: Set of PR points, fixed number positive   
and negative examples

• Translate PR points to ROC points
• Construct convex hull in ROC space
• Convert the curve into PR space
Corollary: 

By dominance theorem, the curve in PR space  
dominates all other legal PR curves you could 
construct with the given points
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Q3: Interpolation

• Interpolation in ROC 
space is easy

• Linear connection 
between pointsT

P
R

FPR

A

B
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Linear Interpolation Not 
Achievable in PR Space

• Precision interpolation is counterintuitive 
[Goadrich, et al., ILP 2004]

TP FP TP Rate FP Rate Recall Prec

500 500 0.50 0.06 0.50 0.50

1000 9000 1.00 1.00 1.00 0.10

Example Counts PR CurvesROC Curves

750 4750 0.75 0.53 0.75 0.14
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Q: For each extra TP 

covered, how many FPs 

do you cover?

Example Interpolation

TP FP REC PREC

A 5 5 0.25 0.5

B 10 30 0.5 0.25

A dataset with 20 positive and 2000 negative examples

TPB-TPA

FPB-FPAA:
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Example Interpolation

TP FP REC PREC

A 5 5 0.25 0.5

B 10 30 0.5 0.25

A dataset with 20 positive and 2000 negative examples
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Example Interpolation

TP FP REC PREC

A 5 5 0.25 0.5

. 6 10 0.3 0.375

B 10 30 0.5 0.25

A dataset with 20 positive and 2000 negative examples
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Example Interpolation

TP FP REC PREC

A 5 5 0.25 0.5

. 6 10 0.3 0.375

. 7 15 0.35 0.318

. 8 20 0.4 0.286

. 9 25 0.45 0.265

B 10 30 0.5 0.25

A dataset with 20 positive and 2000 negative examples
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Optimizing AUC

• Interest in learning algorithms that optimize
Area Under the Curve (AUC)
[Ferri et al. 2002, Cortes and Mohri 2003, Joachims 2005, 

Prati and Flach 2005, Yan et al. 2003, Herschtal and Raskutti 2004]

• Q: Does an algorithm that optimizes 
AUC-ROC also optimize AUC-PR?

• A: No.  Can easily construct counterexample



Outline

• Decision Trees

• Experimental Methodology

– Methodology overview

– How to present results

– Hypothesis testing
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Alg 1 vs. Alg 2

• Alg 1 has accuracy 80%, Alg 2 82%

• Is this difference significant?

• Depends on how many test cases these 
estimates are based on

• The test we do depends on how we arrived at 
these estimates



• Distribution over the number of successes in  a fixed 

number n of independent trials (with same probability 

of success p in each)
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The Binomial Distribution
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Leave-One-Out: Sign Test

• Suppose we ran leave-one-out cross-validation 
on a data set of 100 cases

• Divide the cases into (1) Alg 1 won, (2) Alg 2 
won, (3) Ties (both wrong or both right); 
Throw out the ties

• Suppose 10 ties and 50 wins for Alg 1

• Ask: Under (null) binomial(90,0.5), what is 
prob of 50+ or 40- successes?
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What about 10-fold?

• Difficult to get significance from sign test of 10 
cases

• We’re throwing out the numbers (accuracy 
estimates) for each fold, and just asking which 
is larger

• Use the numbers… t-test… designed to test for 
a difference of means
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Paired Student t-tests

• Given

– 10 training/test sets

– 2 ML algorithms

– Results of the 2 ML algo’s on the 10 test-sets

• Determine

– Which algorithm is better on this problem?

– Is the difference statistically significant?
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Paired Student t–Tests (cont.)

Example

Accuracies on Testsets

Algorithm 1: 80% 50 75 … 99

Algorithm 2: 79 49 74 … 98

δ : +1 +1 +1 … +1

– Algorithm 1’s mean is better, but the two std. Deviations 
will clearly overlap

– But algorithm1 is always better than algorithm 2

i
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Consider random variable

δ = Algo A’s Algo B’s

test-set i minus test-set i

error error

The Random Variable in the t -Test

Notice we’re “factoring out” test-set difficulty by looking at 

relative performance

In general, one tries to explain variance

in results across experiments

Here we’re saying that

Variance = f( Problem difficulty ) + g( Algorithm strength )



i
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More on the Paired t-Test

Our NULL HYPOTHESIS is that the two ML 
algorithms have equivalent average accuracies

– That is, differences (in the scores) are due to the 
“random fluctuations” about the mean of zero

We compute the probability that the observed δ
arose from the null hypothesis

– If this probability is low we reject the null hypo and say 
that the two algo’s appear different

– ‘Low’ is usually taken as prob ≤ 0.05
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The Null Hypothesis Graphically

δ

Assume zero mean and use 

the sample’s variance

(sample = experiment)

P(δ)

1.

½ (1 – M ) probability mass 

in each tail (ie, M inside)

Typically M = 0.95

Does our measured δ lie in 

the regions indicated by 

arrows?  If so, reject null 

hypothesis, since it is 

unlikely we’d get such a δ

by chance
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Some Jargon: P–values

P-Value = Probability of getting one’s 
results or greater, given the NULL 
HYPOTHESIS

(We usually want P ≤ 0.05 to
be confident that a difference 
is statistically significant)

measured P

NULL HYPO DISTRIBUTION
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“Accepting” the Null Hypothesis

Note: even if the p–value is high, we
cannot assume the null 
hypothesis is true

Eg, if we flip a coin twice and get one head, 
can we statistically infer the coin is fair?

Vs. if we flip a coin 100 times and observe 10 heads,
we can statistically infer coin is unfair because that
is very unlikely to happen with a fair coin

How would we show a coin is fair?



Performing the t-Test

• Easiest way: Excel:

– ttest(array1, array2, 2, 1)

– Returns p-value



Assumptions of the t-Test

• Test statistical is normally distributed

– Reasonable if we are looking at classifier accuracy

– Not reasonable if we are looking at AUC

• Use Wilcoxon signed-rank test

• Independent sample of test-examples

– Violate this with 10-fold cross-validation



Next Class

• Homework 1 is due!

• Bayesian learning

– Bayes rule

– MAP hypothesis

• Bayesian networks

– Representation

– Learning

– Inference

115



Summary

• Decision trees are a very effective classifier

– Comprehensible to humans

– Constructive, deterministic, eage

– Make axis-parallel cuts through feature space

• Having the right experimental methodology is 
crucial 

– Don’t train on the test data!!

– Many different ways to present results



end


