

"No Free Lunch" Theorems

 $Acc_G(L) =$ Generalization accuracy of learner L = Accuracy of L on non-training examples $\mathcal{F} = \text{Set of all possible concepts}, y = f(\mathbf{x})$

Theorem: For any learner L, $\frac{1}{|\mathcal{F}|} \sum_{\mathcal{F}} Acc_G(L) = \frac{1}{2}$ (given any distribution \mathcal{D} over **x** and training set size n)

Proof sketch: Given any training set S: For every concept f where $Acc_G(L) = \frac{1}{2} + \delta$, there is a concept f' where $Acc_G(L) = \frac{1}{2} - \delta$. $\forall \mathbf{x} \in S, f'(\mathbf{x}) = f(\mathbf{x}) = y$. $\forall \mathbf{x} \notin S, f'(\mathbf{x}) = \neg f(\mathbf{x})$.

Corollary: For any two learners L_1, L_2 : If \exists learning problem s.t. $Acc_G(L_1) > Acc_G(L_2)$ **Then** \exists learning problem s.t. $Acc_G(L_2) > Acc_G(L_1)$

What Does This Mean in Practice?

- Don't expect your favorite learner to always be best
- Try different approaches and compare
- But how could (say) a multilayer perceptron be less accurate than a single-layer one?

Bias and Variance

- Bias-variance decomposition is key tool for understanding learning algorithms
- Helps explain why simple learners can outperform powerful ones
- Helps explain why model ensembles outperform single models
- Helps understand & avoid overfitting
- Standard decomposition for squared loss
- Can be generalized to zero-one loss

Definitions

- Given training set: $\{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_n, t_n)\}$
- Learner induces model: $y = f(\mathbf{x})$
- Loss measures quality of learner's predictions
 - Squared loss: $L(t, y) = (t y)^2$
 - Absolute loss: L(t, y) = |t y|
 - Zero-one loss: L(t, y) = 0 if y = t, 1 otherwise
 - Etc.
- Loss = Bias + Variance + Noise (This lecture: ignore noise; see paper)

Decomposition for squared loss $(t - y)^2 = (t - \overline{y} + \overline{y} - y)^2$ $= (t - \overline{y})^2 + (\overline{y} - y)^2 + 2(t - \overline{y})(\overline{y} - y)$ $E[(t - y)^2] = (t - \overline{y})^2 + E[(\overline{y} - y)^2]$ Exp. loss = Bias + Variance (Expectations are over training sets)

How to generalize this to other loss funce?

$$E[(t-y)^{2}] = (t-\bar{y})^{2} + E[(\bar{y}-y)^{2}]$$

$(a-b)^2$	\rightarrow	L(a,b)	
$E[(t-y)^2]$	\rightarrow	E[L(t,y)]	(Exp. loss)
$(t-\overline{y})^2$	\rightarrow	$L(t,\overline{y})$	(Bias)
$E[(\overline{y}-y)^2]$	\rightarrow	$E[L(\overline{y},y)]$	(Variance)

- Overfitting happens because training error is bad estimate of generalization error
- $\rightarrow\,$ Can we infer something about generalization error from training error?
- Overfitting happens when the learner doesn't see "enough" examples
- $\rightarrow\,$ Can we estimate how many examples are enough?

Problem Setting

Given:

- Set of instances X
- Set of hypotheses H
- Set of possible target concepts ${\cal C}$
- Training instances generated by a fixed, unknown probability distribution $\mathcal D$ over X

Learner observes sequence D of training examples $\langle x, c(x) \rangle$, for some target concept $c \in C$

- Instances x are drawn from distribution $\mathcal D$
- Teacher provides target value c(x) for each

- Learner must output a hypothesis h estimating c
- h is evaluated by its performance on subsequent instances drawn according to \mathcal{D}

Note: probabilistic instances, noise-free classifications

Training error of hypothesis h with respect to target concept \boldsymbol{c}

• How often $h(x) \neq c(x)$ over training instances

True error of hypothesis h with respect to c

• How often $h(x) \neq c(x)$ over future random instances

Our concern:

- Can we bound the true error of h given the training error of h?
- First consider when training error of h is zero

 $\begin{array}{l} \operatorname{Prob}(1 \text{ hyp. } w/\operatorname{error} > \epsilon \text{ consistent } w/1 \text{ ex.}) < 1-\epsilon \leq e^{-\epsilon} \\ \operatorname{Prob}(1 \text{ hyp. } w/\operatorname{error} > \epsilon \text{ consistent with } m \text{ exs.}) < e^{-\epsilon m} \\ \operatorname{Prob}(1 \text{ of } |H| \text{ hyps. consistent with } m \text{ exs.}) < |H|e^{-\epsilon m} \end{array}$

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $error(h) \geq \epsilon$

If we want this probability to be at most δ

$$|H|e^{-\epsilon m} \leq \delta$$

then

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

How About *PlayTennis*?

1 attribute with 3 values (outlook) 9 attributes with 2 values (temp, humidity, wind, etc.) Language: Conjunction of features or null concept

 $|H| = 4 \times 3^9 + 1 = 78733$

$$m \ge \frac{1}{\epsilon} (\ln 78733 + \ln(1/\delta))$$

If we want to ensure that with probability 95%, VS contains only hypotheses with $error_{\mathcal{D}}(h) \leq 10\%$, then it is sufficient to have m examples, where

$$m \ge \frac{1}{0.1} (\ln 78733 + \ln(1/.05)) = 143$$

(# examples in domain: $3 \times 2^9 = 1536$)

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H iff for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don't assume $c \in H$

- What can we say in this case?
 - Hoeffding bounds:

 $Pr[error_{\mathcal{D}}(h) > error_{D}(h) + \epsilon] \le e^{-2m\epsilon^{2}}$

– For hypothesis space H:

 $Pr[error_{\mathcal{D}}(h_{best}) > error_{D}(h_{best}) + \epsilon] \le |H|e^{-2m\epsilon^2}$

• What is the sample complexity in this case?

$$m \ge \frac{1}{2\epsilon^2} (\ln|H| + \ln(1/\delta))$$

VC Dimension

- What about hypotheses with numeric parameters?
- $\bullet\,$ Solution: Use VC dimension instead of $\ln |H|$

Shattering a Set of Instances Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets. Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Sample Complexity from VC Dimension

How many randomly drawn examples suffice to guarantee error of at most ϵ with probability at least $(1 - \delta)$?

 $m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$

Support Vector Machines

- Many different hyperplanes can separate positive and negative examples
- Choose hyperplane with maximum margin
- $\bullet~\mathbf{Margin:}$ Min. distance between plane and example
- Bound on VC dimension decreases with margin
- Support vectors: Examples that determine the plane
- $E[error_{\mathcal{D}}(h)] \leq \frac{E[\#support \ vectors]}{\#training \ vectors 1}$
- Noisy data: use slack variables
- Avoids overfitting even in very high-dimensional spaces (e.g., text)
- Non-linear: augment data with derived features

Learning Theory: Summary

- "No free lunch" theorems
- Bias and variance
- PAC learning
- VC dimension
- Support vector machines