Lecture 8

Learning Theory

Preview

e “No free lunch” theorems
e Bias and variance

e PAC learning

e VC dimension

e Support vector machines

“No Free Lunch” Theorems

Accg (L) = Generalization accuracy of learner L
= Accuracy of L on non-training examples
F = Set of all possible concepts, y = f(x)

Theorem: For any learner L, IJIT\ S g Acca(L) = %
(given any distribution D over x and training set size n)

Proof sketch: Given any training set S:
For every concept f where Accg(L) = 5 + 6,
there is a concept f’ where Accg(L) = 5 — 6.

Vx €8, f'(x) = f(x) =y. Vx5, f(x) = ~f(x).

Corollary: For any two learners L, La:
If 3 learning problem s.t. Accg(L1) > Acca(L2)
Then 3 learning problem s.t. Accg(L2) > Accg(Ly)

o=t

What Does This Mean in Practice?

e Don’t expect your favorite learner to always be best
e Try different approaches and compare

e But how could (say) a multilayer perceptron be less
accurate than a single-layer one?

Bias and Variance

Bias-variance decomposition is key tool for
understanding learning algorithms

Helps explain why simple learners can outperform
powerful ones

Helps explain why model ensembles outperform single
models

Helps understand & avoid overfitting

Standard decomposition for squared loss

Can be generalized to zero-one loss

Definitions

Given training set: {(x1,%1),..., (Xn,tn)}

Learner induces model: y = f(x)

e Loss measures quality of learner’s predictions

— Squared loss: L(t,y) = (t — y)?

— Absolute loss: L(t,y) = [t — y|

— Zero-one loss: L(t,y) =0 if y = ¢, 1 otherwise
— Etc.

e Loss = Bias + Variance + Noise
(This lecture: ignore noise; see paper)
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Decomposition for squared loss
t-y?® = (t-7+7-9)’
= -9 +@-v)*+20t-0NFT-v)
Elt-9?% = (-9°+ElF-yv)?
Exp. loss = Bias  + Variance

(Expectations are over training sets)

How to generalize this to other loss funcs?

El(t—y)°] = (t -9 + El[7 - )]

(a=b?% — L(a,b)
Elt-y)?® - E[L(ty)] (Exp. loss)
t-9° — Lty) (Bias)
ElF-v° — E[L@Hv) (Variance)

But what should 5 be?

Define Main Prediction:
Prediction with min average loss relative to all predictions

7, = argmin E(L(y, y')]
&

e Squared loss: § = Mean
e Absolute loss: § = Median

e Zero-one loss: § = Mode

Generalized definitions

Bias = Loss incurred by main prediction = L(¢,7)

Variance = Average loss incurred by prediction relative to
main prediction = E[L(7, y)]

These definitions have all the required properties.

For zero-one loss:

s 0 if main prediction is correct
Bias = .
1 otherwise

Variance = Prob(Prediction # Main pred) = P(y # 7)




Can we decompose zero-one loss into these?

Assume two-class problem.

Bias = 0 = Loss = Bias + Variance
Loss = P(y #t) Variance = P(y # 7)
Bias=0 & 7=t

Bias =1 = Loss = Bias — Variance
Loss=P(y#t)=1-P(y=1t)=1-Py #7)
because if y #t theny =t <y #7.

Increasing variance can reduce loss!

Can we generalize this further?

Loss = Bias + ¢ Variance

where ¢ = 1 if Bias = 0, otherwise see below
e Applies to:
— Squared loss: ¢ =1
— Two-class problems: ¢ = —1
— Multiclass problems: ¢ = —P(y = tly # 7)
— Variable costs: ¢ = —L(t,5)/L(7, t)

Metric loss functions

e What about loss functions where decomposition
does not apply?

e For any metric loss function:

Loss < Bias + Variance
Loss > Max {Bias — Var, Var — Bias}

Bias

0 Y e Loss
Possible values of loss

PAC Learning

Overfitting happens because training error
is bad estimate of generalization error

— Can we infer something about generalization error from
training error?

Overfitting happens when the learner doesn’t see
“enough” examples

— Can we estimate how many examples are enough?

Problem Setting

Given:
e Set of instances X
e Set of hypotheses H
e Set of possible target concepts C

e Training instances generated by a fixed, unknown
probability distribution D over X

Learner observes sequence D of training examples (z, c(z)),
for some target concept ¢ € C

e Instances z are drawn from distribution D

e Teacher provides target value c(z) for each

Learner must output a hypothesis h estimating ¢

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: probabilistic instances, noise-free classifications




True Error of a Hypothesis

Instance space X

Where ¢
and h disagree

Definition: The true error (denoted errorp(h)) of
hypothesis h with respect to target concept ¢ and
distribution D is the probability that h will misclassify an
instance drawn at random according to D.

errorp(h) = zl?;)[c(av) # h(z)]

Two Notions of Error

Training error of hypothesis h with respect to target
concept ¢

e How often h(z) # c(z) over training instances

True error of hypothesis h with respect to ¢

e How often h(z) # c(z) over future random instances

Our concern:

e Can we bound the true error of h given the training
error of h?

e First consider when training error of h is zero

Version Spaces

Version Space V Sy, p:
Subset of hypotheses in H consistent with training data D

Hypothesis space H

. 1 error=3
error=. =
£=2

error=2
r=0

VSH.D

error=2
serror=. r=3
r=0

error=3
r=1

(r = training error, error = true error)

How Many Examples Are Enough?

Theorem:
If the hypothesis space H is finite, and D is a sequence of
m > 1 independent random examples of some target
concept ¢, then for any 0 < e < 1, the probability that
VSu,p contains a hypothesis with error greater than € is
less than

]Hle—em

Proof sketch:

Prob(1 hyp. w/ error > € consistent w/ 1 ex.) <1l—e<e~
Prob(1 hyp. w/ error > € consistent with m exs.) < e™™
Prob(1 of |H| hyps. consistent with m exs.) < |H|e™*™

€

Interesting! This bounds the probability that any consistent
learner will output a hypothesis k with error(h) > €

If we want this probability to be at most §
|Hle™*™ < §
then

m > é(ln |H|+1In(1/6))

Learning Conjunctions

How many examples are sufficient to ensure with
probability at least (1 — 6) that every hin V.Sy,p
satisfies errorp(h) < €?

Use our theorem:

m> %(m\m +1n(1/6))

Suppose H contains conjunctions of constraints on up to n
Boolean attributes (i.e., n literals). Then |H| = 3", and

m > %(1n3"+1n(1/6))

> %(nln3 +1n(1/8))




How About PlayTennis?

1 attribute with 3 values (outlook)
9 attributes with 2 values (temp, humidity, wind, etc.)
Language: Conjunction of features or null concept

|[H| =4x3°+1="78733
1
m> E(ln 78733 + In(1/6))

If we want to ensure that with probability 95%,
V'S contains only hypotheses with errorp(h) < 10%,
then it is sufficient to have m examples, where

1
m > 5= (In78733 +In(1/.05)) = 143

(# examples in domain: 3 x 2° = 1536)

PAC Learning

Consider a class C of possible target concepts defined over
a set of instances X of length n, and a learner L using
hypothesis space H.

Definition: C is PAC-learnable by L using H iff
for all ¢ € C, distributions D over X, € such that
0 < e<1/2, and é such that 0 < § < 1/2,

learner L will with probability at least (1 — §)
output a hypothesis h € H such that

errorp(h) <, in time that is polynomial in 1/,
1/6, n and size(c).

Agnostic Learning
So far, assumed ¢ € H

Agnostic learning setting: don’t assume c € H
e What can we say in this case?
— Hoeffding bounds:

Prlerrorp(h) > errorp(h) + € < e=2m<’
— For hypothesis space H:
Prlerrorp(hiest) > errorp(hiest) + € < |H|e=2me

e What is the sample complexity in this case?

m %(ln|H| +1n(1/6))

VC Dimension

e What about hypotheses with numeric parameters?

e Solution: Use VC dimension instead of In|H|

Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition
of S into two disjoint subsets.

Definition: a set of instances S is shattered by
hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis in H
consistent with this dichotomy.

Three Instances Shattered

Instance space X




The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of the
largest finite subset of X shattered by H.

If arbitrarily large finite sets of X can be shattered
by H, then VC(H) = oo.

VC Dim. of Linear Decision Surfaces

@ ®

VC dim. of hyperplane in d-dimensional space is d + 1

Sample Complexity from VC Dimension

How many randomly drawn examples suffice to guarantee
error of at most € with probability at least (1 — §)?

m> %(4 logy(2/6) + 8V C(H) log,(13/¢))

Support Vector Machines

Support Vector Machines

e Many different hyperplanes can separate positive and
negative examples

e Choose hyperplane with maximum margin
e Margin: Min. distance between plane and example
e Bound on VC dimension decreases with margin

e Support vectors: Examples that determine the plane

o Elerrorp(h)] < B(# support vectors)

Ftraining vectors — 1

e Noisy data: use slack variables

e Avoids overfitting even in very high-dimensional spaces
(e.g., text)
e Non-linear: augment data with derived features

Learning Theory: Summary

e “No free lunch” theorems
e Bias and variance

e PAC learning

e VC dimension

e Support vector machines




