Lecture 6

Genetic Algorithms Model Ensembles

Genetic Algorithms

- Evolutionary computation
- Prototypical GA
- An example: GABIL
- Schema theorem
- Genetic programming
- The Baldwin effect

Evolutionary Computation

- ${\bf 1.} \ \ {\bf Computational\ procedures\ patterned\ after\ biological}$ evolution
- 2. Search procedure that probabilistically applies search operators to set of points in the search space

Biological Evolution

Lamarck

• Species "transmute" over time

Darwin

- Consistent, heritable variation among individuals in population
- Natural selection of the fittest

Mendel/Genetics:

- A mechanism for inheriting traits
- Mapping: Genotype \rightarrow Phenotype

${\rm GA}(Fitness_threshold,p,r,m)$

- \bullet $\textit{Initialize: } P \leftarrow p \text{ random hypotheses}$
- \bullet $\mathit{Evaluate} :$ for each h in P, compute Fitness(h)
- \bullet While $[\max_h Fitness(h)] < Fitness_threshold$
 - 1. Select: Randomly select (1-r)p members of P to add to P_S . $\Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{j} Fitness(h_j)}$
 - Crossover: Randomly select ^{r-p}/₂ pairs of hypotheses from P. For each pair ⟨h₁, h₂⟩, produce two offspring by crossover. Add all offspring to P_s.
 - 3. Mutate: Invert random bit in mp random hyps.
 - 4. Update: $P \leftarrow P_s$
 - 5. Evaluate: for each h in P, compute Fitness(h)
- \bullet Return hypothesis from P with highest fitness.

Representing Hypotheses

Represent

 $(Outlook = Overcast \lor Rain) \land (Wind = Strong)$

by

 $\begin{array}{cc} Outlook & Wind \\ 011 & 10 \end{array}$

Represent

 $\mbox{ IF } \mbox{ } Wind = Strong \ \ \, \mbox{ THEN } \mbox{ } PlayTennis = yes$

by

Outlook Wind PlayTennis 111 10 10

Operators for Genetic Algorithms



Selecting Fittest Hypotheses

Fitness-proportionate selection:

$$Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{p} Fitness(h_j)}$$

... can lead to crowding

Tournament selection:

- ullet Pick h_1,h_2 at random with uniform probability
- \bullet With probability p, select the more fit

Rank selection:

- Sort all hypotheses by fitness
- \bullet Prob. of selection is proportional to rank

Example: The GABIL System

Learn disjunctive set of propositional rules Competitive with C4.5

Fitness: $Fitness(h) = (correct(h))^2$

Representation:

IF $a_1 = T \wedge a_2 = F$ THEN c = T; IF $a_2 = T$ THEN c = Frepresented by

 a_1 a_2 c a_1 a_2 c10 01 1 11 10 0

Genetic operators: ???

- \bullet Want variable length rule sets
- \bullet Want only well-formed bits tring hypotheses

Crossover with Variable-Length Bitstrings

Start with

- 1. Choose crossover points for h_1 , e.g., after bits 1, 8
- 2. Now restrict points in h_2 to those that produce bitstrings with well-defined semantics, e.g., $\langle 1, 3 \rangle$, $\langle 1, 8 \rangle$, $\langle 6, 8 \rangle$.

If we choose $\langle 1, 3 \rangle$, result is

 a_1 a_2 c

GABIL Extensions

Add new genetic operators, also applied probabilistically:

- 1. AddAlternative: generalize constraint on a_i by changing a 0 to 1
- 2. DropCondition: generalize constraint on a_i by changing every 0 to 1

And add new field to bitstring to determine whether to

a_1	a_2	c	a_1	a_2	c	AA	DC
01	11	0	10	01	0	1	0

So now the learning strategy also evolves!

Schemas

How to characterize evolution of population in GA?

 $Schema = string\ containing\ 0,\ 1,\ *\ ("don't\ care")$

- Typical schema: 10**0*
- Instances of above schema: 101101, 100000, ...

Characterize population by number of instances representing each possible schema

• m(s,t)=# instances of schema s in pop, at time t

Consider Just Selection

- $\bar{f}(t)$ = average fitness of pop. at time t
- m(s,t) = instances of schema s in pop. at time t
- $\hat{u}(s,t) =$ average fitness of instances of s at time t

Probability of selecting h in one selection step

$$Pr(h) = \frac{f(h)}{\sum_{i=1}^{n} f(h_i)}$$
$$= \frac{f(h)}{n\bar{f}(t)}$$

Probability of selecting an instance of s in one step

$$\begin{array}{lcl} \Pr(h \in s) & = & \displaystyle \sum_{h \in s \cap p_t} \frac{f(h)}{n\bar{f}(t)} \\ & = & \displaystyle \frac{\hat{u}(s,t)}{n\bar{f}(t)} m(s,t) \end{array}$$

Expected number of instances of s after n selections

$$E[m(s,t+1)] = \frac{\hat{u}(s,t)}{\bar{f}(t)}m(s,t)$$

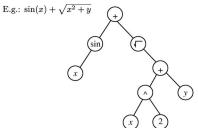
Schema Theorem

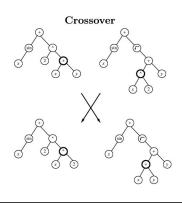
$$E[m(s,t+1)] \geq \frac{\hat{u}(s,t)}{\bar{f}(t)}m(s,t)\left(1-p_c\frac{d(s)}{l-1}\right)(1-p_m)^{o(s)}$$

- m(s,t) = instances of schema s in pop at time t
- $\bar{f}(t) = \text{average fitness of pop. at time } t$
- $\hat{u}(s,t) = \text{ave. fitness of instances of } s \text{ at time } t$
- \bullet $p_c =$ probability of single point crossover operator
- $p_m =$ probability of mutation operator
- l = length of single bit strings
- o(s) number of defined (non "*") bits in s
- d(s) = dist. between left & rightmost defined bits in s

Genetic Programming

Population of programs represented by trees





Example: Electronic Circuit Design

- Individuals are programs that transform beginning circuit to final circuit, by adding/subtracting components and connections
- Use population of 640,000, run on 64-node parallel processor
- Discovers circuits competitive with best human designs

Biological Evolution

Lamarck (19th century)

- Believed individual genetic makeup was altered by lifetime experience
- But current evidence contradicts this view

What is the impact of individual learning on population evolution?

Baldwin Effect

Assume

- Individual learning has no direct influence on individual DNA
- \bullet But ability to learn reduces need to "hard wire" traits in DNA

Then

- Ability of individuals to learn will support more diverse gene pool, because learning allows individuals with various "hard wired" traits to be successful
- $\bullet\,$ More diverse gene pool will support faster evolution of gene pool
- \Rightarrow Individual learning increases rate of evolution

Baldwin Effect

Plausible example:

- 1. New predator appears in environment
- $2.\,$ Individuals who can learn (to avoid it) will be selected
- 3. Increase in learning individuals will support more diverse gene pool
- 4. Resulting in faster evolution
- $\begin{tabular}{ll} 5. & Possibly resulting in new non-learned traits such as instintive fear of predator \end{tabular}$

Computer Experiments on Baldwin Effect

Evolve simple neural networks:

- \bullet Some network weights fixed, others trainable
- \bullet Genetic make up determines which are fixed, and their weight values

Results:

- With no individual learning, population failed to improve over time
- \bullet When individual learning allowed
 - Early generations: population contained many individuals with many trainable weights
 - Later generations: higher fitness, while number of trainable weights decreased

Genetic Algorithms: Summary

- $\bullet\,$ Evolving algorithms by natural selection
- Genetic operators avoid (some) local minima
- Why it works: schema theorem
- Genetic programming
- Baldwin effect

Model Ensembles

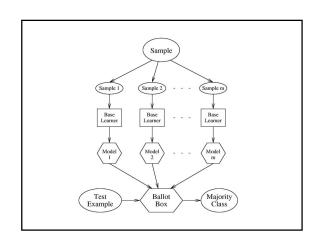
• Basic idea:

Instead of learning one model, Learn several and combine them

- Typically improves accuracy, often by a lot
- Many methods:
 - Bagging
 - Boosting
 - ECOC (error-correcting output coding)
 - Stacking
 - Etc.

Bagging

- Generate "bootstrap" replicates of training set by sampling with replacement
- $\bullet\,$ Learn one model on each replicate
- $\bullet\,$ Combine by uniform voting



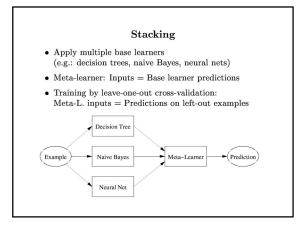
Boosting

- Maintain vector of weights for examples
- Initialize with uniform weights
- \bullet Loop:
 - Apply learner to weighted examples (or sample)
 - $-\,$ Increase weights of misclassified examples
- Combine models by weighted voting

```
\begin{aligned} & \text{AdaBoost}(S, Learn, \, k) \\ & S \colon \text{Training set } \{(x_1, y_1), \dots, (x_m, y_m)\}, \  \, y_i \in Y \\ & Learn \colon \text{Learner}(S, \text{ weights}) \\ & k \colon \# \text{Rounds} \\ & \text{For all } i \text{ in } S \colon w_1(i) = 1/m \\ & \text{For } r = 1 \text{ to } k \text{ do} \\ & \text{For all } i \colon p_r(i) = w_r(i)/\sum_i w_r(i) \\ & h_r = Learn(S, p_r) \\ & \epsilon_r = \sum_i p_r(i) \mathbf{1}[h_r(i) \neq y_i] \\ & \text{If } \epsilon_r > 1/2 \text{ then} \\ & k = r - 1 \\ & \text{Exit} \\ & \beta_r = \epsilon_r/(1 - \epsilon_r) \\ & \text{For all } i \colon w_{r+1}(i) = w_r(i)\beta_r^{1-1[h_r(x_i) \neq y_i]} \\ & \text{Output: } h(x) = \operatorname{argmax}_{y \in Y} \sum_{r=1}^k (\log \frac{1}{\beta_r}) \mathbf{1}[h_r(x) = y] \end{aligned}
```

Error-Correcting Output Coding

- Motivation:
 - Applying binary classifiers to multiclass problems
- Train: Repeat L times:
 - Form a binary problem by randomly assigning classes to "superclasses" 0 and 1 E.g.: A, B, D \rightarrow 0; C, E \rightarrow 1
 - Apply binary learner to binary problem
- \bullet Each class is represented by a binary vector
- Test:
 - Apply each classifier to test example, forming vector of predictions ${f P}$
 - Predict class whose vector is closest to P (Hamming)



Model Ensembles: Summary

- Learn several models and combine them
- \bullet Bagging: Random resamples
- Boosting: Weighted resamples
- ECOC: Recode outputs
- \bullet Stacking: Multiple learners