

Preview

- k-Nearest Neighbor
- Other forms of IBL
- Collaborative filtering
- Second project

Instance-Based Learning

Key idea: Just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:

- Given x_q , take vote among its k nearest neighbors (if discrete-valued target function)
- Take mean of f values of k nearest neighbors (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{1}{k} \sum_{i=1}^{k} f(x_i)$$

Advantages and Disadvantages

Advantages:

- Training is very fast
- Learn complex target functions easily
- Don't lose information

Disadvantages:

- Slow at query time
- Lots of storage
- Easily fooled by irrelevant attributes

Behavior in the Limit

 $\epsilon^*(\mathbf{x})$: Error of optimal prediction $\epsilon_{NN}(\mathbf{x})$: Error of nearest neighbor **Theorem:** $\lim_{n\to\infty} \epsilon_{NN} \leq 2\epsilon^*$

Proof sketch (2-class case):

 $\epsilon_{NN} = p_+ p_{NN\in -} + p_- p_{NN\in +}$

 $= p_+(1 - p_{NN \in +}) + (1 - p_+)p_{NN \in +}$

 $\lim_{n \to \infty} p_{NN \in +} = p_+, \quad \lim_{n \to \infty} p_{NN \in -} = p_ \lim_{n \to \infty} \epsilon_{NN} = p_+ (1-p_+) + (1-p_+)p_+ = 2\epsilon^* (1-\epsilon^*) \le 2\epsilon^*$

 $\lim_{n\to\infty} (\text{Nearest neighbor}) = \text{Gibbs classifier}$

 $\lim_{n\to\infty} (1, \operatorname{curcet} \operatorname{neighbor}) = \operatorname{cubbs} \operatorname{cubbine}$

Theorem: $\lim_{n\to\infty, k\to\infty, k/n\to0} \epsilon_{kNN} = \epsilon^*$

Distance-Weighted k-NN

Might want to weight nearer neighbors more heavily ...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv rac{1}{d(x_q,x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Notice that now it makes sense to use all training examples instead of just k

Curse of Dimensionality

- Imagine instances described by 20 attributes, but only 2 are relevant to target function
- Curse of dimensionality:
 - Nearest neighbor is easily misled when hi-dim \boldsymbol{X}
 - $-\,$ Easy problems in low-dim are hard in hi-dim
 - Low-dim intuitions don't apply in hi-dim
- Examples:
 - Normal distribution
 - Uniform distribution on hypercube
 - Points on hypergrid
 - $-\,$ Approximation of sphere by cube
- Volume of hypersphere

Feature Selection

- Filter approach:
- Pre-select features individually
- E.g., by info gain
- Wrapper approach: Run learner with different combinations of features
 - Forward selection
 - Backward elimination
 - Etc.

$$\label{eq:scalarse} \begin{split} & \text{FORWARD_SELECTION}(FS) \\ & FS: \text{ Set of features used to describe examples} \\ & \text{Let } SS = \emptyset \\ & \text{Let } BestEval = 0 \\ & \text{Repeat} \\ & \text{Let } BestF = None \\ & \text{For each feature } F \text{ in } FS \text{ and not in } SS \\ & \text{Let } SS' = SS \cup \{F\} \\ & \text{If } Eval(SS') > BestEval \\ & \text{Then Let } BestF = F \\ & \text{Let } BestEval = Eval(SS') \\ & \text{If } BestF \neq None \\ & \text{Then Let } SS = SS \cup \{BestF\} \\ & \text{Until } BestF = None \text{ or } SS = FS \\ & \text{Return } SS \end{split}$$

$\begin{array}{l} \text{Backward_Elimination}(FS)\\ FS: \text{ Set of features used to describe examples}\\ \text{Let } SS = FS\\ \text{Let } BestEval = Eval(SS)\\ \text{Repeat}\\ \text{Let } WorstF = None.\\ \text{For each feature } F \text{ in } SS\\ \text{Let } SS' = SS - \{F\}\\ \text{If } Eval(SS') \geq BestEval\\ \text{Then Let } WorstF = F\\ \text{Let } BestEval = Eval(SS')\\ \text{If } WorstF \neq None\\ \text{Then Let } SS = SS - \{WorstF\}\\ \text{Until } WorstF = None \text{ or } SS = \emptyset\\ \text{Return } SS\\ \end{array}$

Reducing Computational Cost

- Efficient retrieval: k-D trees (only work in low dimensions)
- Efficient similarity comparison: - Use cheap approx. to weed out most instances
 - Use expensive measure on remainder
- Form prototypes
- Edited *k*-NN:
- Remove instances that don't affect frontier

Edited k-Nearest Neighbor

 $EDITED_k-NN(S)$ S: Set of instances For each instance \mathbf{x} in SIf **x** is correctly classified by $S - {\mathbf{x}}$ Remove **x** from SReturn S

 $EDITED_k-NN(S)$ S: Set of instances $T= \emptyset$ For each instance ${\bf x}$ in SIf ${\bf x}$ is ${\bf not}$ correctly classified by TAdd \mathbf{x} to TReturn T

Overfitting Avoidance

- Set k by cross-validation
- Form prototypes
- Remove noisy instances
- E.g., remove \mathbf{x} if all of \mathbf{x} 's k nearest neighbors are of another class

- Fit quadratic, ...
- $\bullet\,$ Produces "piecewise approximation" to f

Several choices of error to minimize:

• Squared error over k nearest neighbors

$$E_1(x_q) \equiv \sum_{x \in kNN(x_q)} (f(x) - \hat{f}(x))^2$$

• Distance-weighted squared error over all neighbors

$$E_2(x_q) \equiv \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

• ...

Training Radial Basis Function Networks

Q1: What x_u to use for each kernel function $K_u(d(x_u, x))$

- Scatter uniformly throughout instance space
- Use training instances (reflects distribution)
- Cluster instances and use centroids

Q2: How to train weights (assume here Gaussian K_u)

- First choose variance (and perhaps mean) for each K_u E.g., use EM
- Then hold K_u fixed, and train linear output layer – Efficient methods to fit linear function
- Or use backpropagation

Case-Based Reasoning

Can apply instance-based learning even when $X\neq \Re^n \to {\rm Need}$ different "distance" measure

Case-based reasoning is instance-based learning applied to instances with symbolic logic descriptions

Widely used for answering help-desk queries ((user-complaint error53-on-shutdown) (cpu-model PentiumIII) (operating-system Windows2000) (network-connection Ethernet) (memory 128MB) (installed-applications Office PhotoShop VirusScan) (disk 10GB) (likely-cause ???))

Case-Based Reasoning in CADET CADET: Database of mechanical devices

- Each training example:
- \langle qualitative function, mechanical structure \rangle
- $\bullet\,$ New query: desired function
- Target value: mechanical structure for this function
- Distance measure: match qualitative function descriptions

Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Lazy vs. Eager Learning

- Lazy: Wait for query before generalizing
- $\bullet\,$ k-nearest neighbor, case-based reasoning

Eager: Generalize before seeing query

 $\bullet\,$ ID3, FOIL, Naive Bayes, neural networks, \ldots

Does it matter?

- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same H, lazy can represent more complex functions (e.g., consider H = linear functions)

Collaborative Filtering

(AKA Recommender Systems)

• Problem:

Predict whether someone will like a Web page, newsgroup posting, movie, book, CD, etc.

- Previous approach: Look at content
- Collaborative filtering:
 - Look at what similar users liked
 - Similar users = Similar likes & dislikes

Collaborative Filtering

- Represent each user by vector of ratings
- Two types: – Yes/No
- Explicit ratings (e.g., 0 * * * * *)
- Predict rating:

$$\hat{R}_{ik} = \overline{R}_i + \alpha \sum_{ij \in I} W_{ij} (R_{jk} - \overline{R}_j)$$

$$W_{ij} = \frac{\sum_{k} (R_{ik} - \overline{R}_i)(R_{jk} - \overline{R}_j)}{\sqrt{\sum_{k} (R_{ik} - \overline{R}_i)^2 (R_{jk} - \overline{R}_j)^2}}$$

Example						
	R_1	R_2	R_3	R_4	R_5	R_6
Alice	2	-	4	4	-	5
Bob	1	5	4	-	3	4
Chris	5	2	-	2	1	-
Diana	3	-	2	2	-	4

Second Project: Text Classification

- Given Training set of news stories & their topics
- **Predict** Topics of new stories
- Using
 - Naïve Bayes
 - K-nearest neighbor (with various distance measures)
- Data: Reuters newswire
 - 13,000 stories
 - 135 topics (e.g.: gold, housing, jobs, retail, wheat)

Instance-Based Learning: Summary

- k-Nearest Neighbor
- $\bullet\,$ Other forms of IBL
- Collaborative filtering
- Second project