
Assignment 7 - Solution

Problem 1
Consider a system that uses persistent queues for requests and
replies, but where the queues do not support transactions.

Each queue simply supports the atomic operations:
• Enqueue(r)
• Dequeue(r)
• ReadTop(r) - non-destructive read of first element in queue.

Suppose the system adopts the three-transaction request-
processing model
• Txn1 enqueues a request,
• Txn2 executes a request and enqueues a reply,
• Txn3 dequeues a reply.

1

Problem 1A
Suggest an implementation of Txn2 such that each request
executes at least once.

1. Call ReadTop(r) to read request at top of queue
2. Run a transaction to process r.
3. After processing r, Dequeue it.

If the system stays up long enough, the top request will be
processed at least once. If there's a failure after the ReadTop and
before the Dequeue, then after recovery the request will be
processed a second time giving at-least-once semantics.

 2

Problem 1B
Suggest another implementation of Txn2 such that each request
executes at most once.

1. Dequeue(r)
2. Run a transaction to process r.

If there's a failure that causes the latter transaction to abort, then
r may not be processed. But since it's dequeued only once, it will
be processed at most once.

3

Problem 1C
Suggest another implementation of Txn2 such that each request
executes exactly once, under the assumption that each
transaction executed by Txn2 is testable.

Call ReadTop(r).
IF r has already executed
 (we can find out because the
 transaction executed for r is testable),
THEN
 dequeue(r),
ELSE
 run a transaction to process r.
 After transaction commits, dequeue(r).

4

Problem 2

Consider a system that uses persistent queues that do not support
transactions.

Each queue supports the atomic operations :
• Enqueue(r, qn) – enqueue r to end of queue qn,
• Dequeue(r, qn) – dequeue top from queue qn & return it in r,
• ReadTop(r, qn) - a non-destructive read of the first element in qn.

Suppose there is one single-threaded server that processes
requests from the request queue.

5

While (true) do {
 Write(Last = 0);
 // 0 is a value that is different from any request

 StartTransaction;
 ReadTop(r, RequestQueue);
 s = ProcessRequest(r);
 Write(Last = r);
 Write(Reply = s);
 Commit;

 Enqueue(Reply, ReplyQueue);
 Dequeue(x, RequestQueue);
}

6

In the above server program, Last and Reply are transactional data
items in stable storage.

Write operations on them are undone if the transaction that invokes
them aborts.

If the server fails, the values of local variables r, s, and x are lost.

After the server recovers, before restarting execution of the above
program it runs the following recovery program:
 ReadTop(r, RequestQueue)
 IF Last = r
 THEN {
 Dequeue(x, RequestQueue);
 Enqueue(Reply, ReplyQueue)
 }

7

Although the server fails occasionally, it is highly available.

Assume that ProcessRequest() supports transactions.
If its transaction aborts, it is undone as if it was never called.

8

Problem 2A.
The above programs ensure that for each request r, it is
processed exactly once, even in the presence of server failures
(assuming no other kinds of failures).

True.
If the containing transaction commits, ProcessRequest() is
executed and its reply is durable.

Recovery code ensures that it is not executed again.

If the containing transaction aborts, ProcessRequest() is
undone.

9

Problem 2B.
The above programs ensure that each reply is enqueued at
least once, even in the presence of server failures (assuming no
other kinds of failures).

False.

If the server fails during recovery after it dequeues x and before
it enqueues reply, it will never enqueue a reply.

Replies may be lost.

10

Problem 2C.
Atomic operation EnqueueDequeue(r, qn1, s, qn2) which
enqueues r on qn1 and dequeues top of qn2 and returns it in s.
In the server program, replace the last two lines by
EnqueueDequeue(s, ReplyQueue, x, RequestQueue).

In the recovery program, replace the then-clause by
EnqueueDequeue(Reply, ReplyQueue, x, RequestQueue).

Each reply is enqueued exactly once, even in the presence of
server failures (assuming no other kinds of failures).

True. Adding a reply is coupled with removing the
corresponding request in an atomic operation.
Exactly one reply is enqueued when the request dequeued.

11

Problem 3.
ProcessRequest() has side effects, and does not execute
atomically.

Problem 3A.
The above programs ensure that for each request r, it is
processed exactly once, even in the presence of server failures
(assuming no other kinds of failures).

False.
If the transaction containing ProcessRequest() aborts after the
call (for example we run out of disk space or hit a software
bug), and then the server crashes, then ProcessRequest() will
be called again after recovery.

12

Problem 3B.
The above programs ensure that each reply is enqueued at
least once, even in the presence of server failures (assuming no
other kinds of failures).

Same as problem 2B.

False.

If the server fails during recovery after it dequeues x and before
it enqueues reply, it will never enqueue a reply.

Replies may be lost.

13

Problem 3C.
Atomic operation EnqueueDequeue(r, qn1, s, qn2).
In the server program,
EnqueueDequeue(s, ReplyQueue, x, RequestQueue).
In the recovery program, replace the then-clause by
EnqueueDequeue(Reply, ReplyQueue, x, RequestQueue).
Each reply is enqueued exactly once, even in the presence of
server failures (assuming no other kinds of failures).

True.
Adding a reply is coupled with removing the corresponding
request in an atomic operation. Failures may cause a request to
be executed several times in ProcessRequest(r) generating
multiple replies. But exactly one reply is enqueued when the
request is dequeued.

14

