
Assignment 3 -- Solution

1

Problem 1

H1: r1[y] r1[x] r2[x] w1[y] c1 w2[y] c2

H1 is normally-strict two-phase locked:

rl1[y] r1[y] rl1[x] r1[x] rl2[x] r2[x] wl1[y] w1[y] c1 ru1[x] wu1[y]

 wl2[y] w2[y] c2 ru2[x] wu2[y]

Note that ru1[y] isn’t needed, since ru1[y] was converted
into wu1[y], i.e., T1 holds only one lock on y.

2

H2: r1[y] r1[x] r2[x] w2[x] w1[y] c1 w2[y] c2

H2 is two-phase locked, but not strict two-phase locked. To run
w2[x], T1 must have released its read lock on x before w2[x], which
means it cannot be strict two-phase locked. Moreover, to be two-
phase locked, it must have gotten its write lock on y before it
released its read lock on x. Thus, we have the following:

rl1[y] r1[y] rl1[x] r1[x] rl2[x] r2[x] wl1[y] ru1[x] wl2[x] w2[x] w1[y] c1

wu1[y] wl2[y] w2[y] c2 ru2[x] wu2[y]

Problem 1 (continued)

3

H3: r1[y] r1[x] r2[x] w1[y] w2[y] c2 c1

H3 is two-phase locked, but not strict two-phase locked because
T1 must have released its write lock before w2[y] executed.

rl1[y] r1[y] rl1[x] r1[x] rl2[x] r2[x] wl1[y] w1[y] wu1[y] wl2[y] w2[y] c2
ru2[x] wu2[y] c1 ru1[x]

Problem 1 (continued)

4

H4: r1[y] r1[x] r2[x] w2[x] r3[y] w1[y] c1 w3[z] c3 w2[y] c2

H4 is not two-phase locked. To see why, consider the following
prefix of the history:

rl1[y] r1[y] rl1[x] r1[x] rl2[x] r2[x]

The next operation is w2[x]. So as in H2, T1 must have released its
read lock on x before w2[x], so again the next few operations must
have been wl1[y] ru1[x] wl2[x] w2[x], as in the following expanded
prefix.

rl1[y] r1[y] rl1[x] r1[x] rl2[x] r2[x] wl1[y] ru1[x] wl2[x] w2[x]

Problem 1 (continued)

5

6

H4 continued

H4: r1[y] r1[x] r2[x] w2[x] r3[y] w1[y] c1 w3[z] c3 w2[y] c2

rl1[y] r1[y] rl1[x] r1[x] rl2[x] r2[x] wl1[y] ru1[x] wl2[x] w2[x]

The next operation is r3[y]. To have executed here, T3 would
have to obtain its lock on y, which requires that T1 had already
released its lock on y, which it could not have done at this
point because it hasn’t yet executed w1[y].

Nevertheless, this history is SR. We have only the following SG
edges:
T1  T2 because (r1[x],w2[x]) and (w1[y], w2[y])
T3  T1 because (r3[y], w1[y])
There’s no cycle in the SG, so the history is serializable as T3 T1
T2. Note that there are no transaction handshakes in the input,
so there are none to preserve.

Extra credit: Is it possible for a history to be strict two-phase locked but
not normally-strict two phase locked?

No. To prove it, let H be a strict 2PL history that has been augmented
with lock and unlock operations to demonstrate that it’s strict 2PL. We
can transform H into a history each of whose lock operations
immediately precedes the operation it’s synchronizing, as follows.
• Suppose that for some operation oi[x] in H, the corresponding lock

request oli[x] does not immediately precede oi[x].
• The only constraint that prevents moving oli[x] to the right in H so

that it immediately precedes oi[x] is an unlock operation by Ti, since
that would break 2PL.

• However, since H is strict 2PL, all of Ti’s unlock operations follow ci.
• Therefore, it’s possible to move oli[x] to the right in H so that it

immediately precedes oi[x].
• This can be done for all offending lock operations in H, thereby

transforming it into a demonstration that H is normally-strict 2PL-ed.

7

Problem 2: Yes, a transaction can be involved in multiple deadlocks.
Consider the following three sequential transactions:
T1: r1[x] r1[y]
T2: r2 [x] r2[y]
T3: w3[y] w3[x]
Suppose they start executing as follows:
H1: r1[x] r2[x] w3[y]
So far, T1 and T2 each have a read lock on x, and T3 has a write lock on y.
Next, each transaction tries to set a lock for its second operation: r1[y],
r2[y], and w3[x]. However, no matter which order the three lock requests
are made, none of those lock requests can be granted, because another
transaction already owns a conflicting lock. In terms of the waits-for graph,
we have:
T1  T3 because T1 requests a read lock on y and T3 owns a write lock on y
T2  T3 for the same reason as above
T3  T1 because T3 requests a write lock on x and T1 owns a read lock on x
T3  T2 for the same reason as above.
Thus, there are two deadlock cycles in the graph,
 T1  T3 T1 and T2  T3 T2. 8

Since each transaction is sequential, it can only have one
blocked operation. It is therefore tempting to say that there
could only be one outgoing edge from the transaction in the
waits-for graph. But the italicized implication is wrong,
because a transaction may issue a write request, thereby
waiting for all of the transactions holding a read lock.
Therefore, it is waiting for each of those read transactions
and has more than one outgoing edge. In the above example
T3 is waiting for both T1 and T2 to unlock x. Then T1 and T2
each request a lock on y, which causes each of them to
deadlock (independently) with T3.

Problem 2 (continued):

9

Problem 3
Let’s hand execute each sequence by issuing a lock request for
each operation as it arrives:
a) H1: r1[x,y] r2[x] w1[x] w2[z] r3[z] r3[y] w3[y]

rl1[x,y] r1[x,y] rl2[x] r2[x] {wl1[x] is blocked} wl2[z] w2[z]

 {T2 is done so it could have issued commit at this point}

 c2 wu2[x] wu2[z] {now we can set wl1[x]} wl1[x] w1[x]

 {T1 is done so it can commit} c1 ru1[y] wu1[x]

 {now there are no locks held so T3 can execute and commit}.

So adding commits to H1:
H1: r1[x,y] r2[x] w1[x] w2[z] c2 c1 r3[z] r3[y] w3[y] c3

10

b) H2: r1[x,y] r2[x] w1[x] r3[z] w2[z] r3[y] w3[y]

rl1[x,y] r1[x,y] rl2[x] r2[x] {w1[x] is blocked} rl3[z] r3[z]

 {w2[z] is blocked} rl3[y] r3[y] {w3[y] is blocked}

There’s a deadlock: w1[x] is waiting for rl2[x], w2[z] is waiting
for rl3[z], and w3[y] is waiting for rl1[y].

Problem 3 (continued)

11

