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A new algorithm for optimistic concurrency control 
(OCC) on tree-structured indices, called meld. 

Scenario 1: A data-sharing system 

The log is the database. All servers can access it. 

Each transaction appends its after-images to the log. 

Each server runs meld to do OCC and roll forward the log  
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The log is the 
database.  

All cores can access 
it. 

Each transaction 
appends its after-
images to the log. 

One core runs meld  
to do OCC and roll 
forward the log  
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D 

Update 

D’s value 

Copy on write 

To update a node, replace nodes up to the root 
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Each server has a cache of the last committed DB state 
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Transaction execution 

1. Get pointer to snapshot 

2. Generate updates locally 

3. Append intention log record 
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Each server processes intention records in 
sequence 

To process transaction T’s  intention record. 
Check whether T experienced a conflict 

If not, T committed, so the server merges the intention into 
its last committed state 

All servers make the same commit/abort decisions 
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Did a committed transaction write 
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1. Run transaction 

2. Broadcast intention 

3. Append intention to log 

4. Send log location 

5. De-serialize intention 

6. Meld 
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1. Broadcasting the intention 

2. Appending intention to the log 

3. Optimistic concurrency control (OCC) 

4. Meld 

Technology will improve 1 & 2 

For 3, app behavior drives OCC performance 

But 4 depends on single-threaded processor 
performance, which isn’t improving 

Hence, it’s important to optimize Meld 
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Last-committed state 

before T 

Compare transaction T’s after-image to the last committed state 

which is annotated with version and dependency metadata 

Traverse T’s intention, comparing versions to last-committed state 

Stop traversing when you reach an unchanged subtree 

If version(x)=version(x) then simply replace x by x 

Log x 

x[read: x] x 

state when T 

executed 

Transaction T’s  

intention 
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Must be computationally efficient 

Must be deterministic 

Must produce the same sequence of states on all servers 
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• T1 creates keys B,C,D,E 
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• T2 and T3 do not conflict, so 

the resulting melded state is 

A, B, C, D, E, F 

• T2 and T3 then execute 

concurrently, both 

based on the 

result of T1 

 

• T2 inserts A 

• T3 inserts F 
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Every node n has a unique version 
number (VN) 

VN(n) permanently identifies the exact 
content of n’s subtree  

Each node n in an intention T stores 
metadata about T’s snapshot 

Version of n in T’s snapshot 

Dependency information 

Each node’s metadata compresses to  
~30 bytes 
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• dependency info 
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T1 D 

B E 

C 
VN=51 

VN=53 

VN=54 

VN=52 

We need to avoid synchronization when assigning VNs 

Stored as offsets from the base location of their intention 

The base location is assigned when the  
intention is logged 

Given: T0’s root subtree has VN 50  

VN of each subtree S in T1= 50 + S’s offset 
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C B E D 

VN Offset  +1        +2        +3       +4   

Absolute VN:      50                           51        52        53        54   

 

… 

T1 T0 

16 



Subtree metadata includes a source structure version (SSV). 

Intutively, SSV(n) = version of n in transaction T’s snapshot 

DependsOn(n) = Y if T depends on n not having changed while 
T executed 

 

 

 

 

 

 

T1’s root subtree depends on the entire tree version 50.  

Since SSV(D) = VN(), T1 becomes the last-committed state. 
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Absolute VN  50                            51        52       53        54     

C B E D 

VN Offset:    +1       +2       +3        +4 

SSV:               0          0         0       50 

DependsOn:  N         N         N        Y  

 

… 

T0 T1 
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A serial intention is one whose source version is the last 
committed state.  

Meld is then trivial and needs to consider only the root node. 

T1 was serial. 

T2 is serial, so meld makes T2 the last committed state. 

Thus, a meld of a serial intention executes in constant time. 

C B E D 

VN Offset:  +1       +2       +3        +4  

SSV:             0          0        0        50 

DependsOn: N        N         N        Y  

Absolute VN            51        52       53        54     55        56        57 

A B D 

+1        +2       +3 

 0          52        54  

N          N         N 

T0 T1 T2 
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T3 is not serial because VN of D in T2 (= 57)  SSV(D) in T3 (= 54). 

Meld checks if T3 conflicts with a transaction in its conflict zone  

Traverses T3, comparing T3’s nodes to the last-committed state 

If there are no conflicts, then since T3 is concurrent, meld 
creates an ephemeral intention to merge T3’s state 
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M3 

A committed concurrent intention produces an  
ephemeral intention  (e.g. M3) 

It’s created deterministically in memory on all servers. 
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It logically commits immediately after the intention it melds. 

To meld the concurrent intention T3 above, we need to 
consider metadata only on the root node D. 
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Most are automatically trimmed  

Each committed intention I trims the previous ephemeral 
intention with either a persisted node (if I is serial) or an 
ephemeral node (if I is concurrent). 

To track them use an ephemeral flag (or count) on each 
node that has ephemeral descendants 

Periodically run a flush transaction 
It copies a set of ephemeral nodes that have no reachable 
ephemeral nodes 

It makes the original ephemeral nodes unreachable in the new 
committed state. 

It has no dependencies, so it can’t conflict 
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Phantom avoidance 

Asymmetric meld operations 

 Necessary in common case when subtrees do not align 

 Uses a key-range as a parameter to the top-down recursion 

Deletions 

Use tombstones in the intention header 

Checkpointing and recovery 
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Focus here is on meld throughput only 

For latency, see the paper 

We count committed and aborted transactions 

Experiment setup 

128K keys, all in main memory. Keys and payloads are 8 bytes. 

Serializable isolation, so intentions contain readsets 

De-serialize intentions on separate threads before meld 

Transaction size affects meld throughput 

So does conflict zone size (“concurrency degree”) 

As transaction size or concurrency degree increase 
 more concurrent transactions update keys with common  
     ancestors 
 meld has to traverse deeper in the tree 
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r:w ratio is 1:1 con-di = concurrency degree i 
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Brute force = traverse the whole tree 
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Lots of OCC papers but none that give details of 
efficient conflict-testing 

By contrast, there’s a huge literature on conflict-
testing for locking 

Oxenstored [Gazagnairem & Hanquezis, ICFP 09] 

Similar scenario: MV trees and OCC 

However, very coarse-grain conflict-testing 

Uses none of our optimizations 
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New algorithm for OCC 

Developed many optimizations to truncate the 
conflict checking early in the tree traversal 

Implemented and measure it 

Future work: 

Apply it to other tree structures 

Measure it on various storage devices 

Compare it with locking and other OCC methods on 
multiversion trees 

Try to apply it to physiological logging 
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Consider node n in Intention I 

SCV(n) = VN of the node that first generated the payload in n’s 
predecessor 

Altered(n) = true if n‘s payload differs from its predecessor’s 

DependsOn(n) = true if I depends on n’s predecessor’s content 

NCV(n) = if Altered(n) then VN(n) else SCV(n) 

n‘s content changed if SCV(nI)  NCV(nlast committed state) 

 
v1 v2 

SCV 

IsAltered=true DependsOn=true 

v14 v15 

SCV 

 NCV=self 

 

Implies 
a 

conflict 
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Again consider node n in Intention I 

DependsOnTree(n) = true if I depends on n’s subtree not having 
changed 

NSV(n) = oldest version of n whose subtree is exactly 
subtree(VN(n)) 

DependsOnTree(n) & NSV(nlast committed state)SSV(n)  a conflict 

Can extend DependsOnTree with DependencyRange of keys 

 

 
v1 v8 

NSV 

DependsOnTree=true 

v14 v15 

SSV 

 

Implies 
a 

conflict 

in last committed state 
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SubtreeIsOnlyReadDependent(n) = true iff  
                 none of n’s descendants are updated in I  
                 (i.e., have Altered = true). 

Analogous to an intention-to-read lock 

Avoids traversing entire tree when a descendent of n has 
DependsOnTree=true and NSV(nlast committed state) = SSV(n).  

It also enables computing NSV 

NSV(n) = (SubtreeIsOnlyReadDependent(n) = true)  SSV(n)  
                                                                                 else VN(n) 

33 


