
Philip A. Bernstein
Colin Reid
Ming Wu
Xinhao Yuan

Microsoft Corporation
March 7, 2012

Published at VLDB 2011: http://www.vldb.org/pvldb/vol4/p944-bernstein.pdf

http://www.vldb.org/pvldb/vol4/p944-bernstein.pdf
http://www.vldb.org/pvldb/vol4/p944-bernstein.pdf
http://www.vldb.org/pvldb/vol4/p944-bernstein.pdf
http://www.vldb.org/pvldb/vol4/p944-bernstein.pdf

A new algorithm for optimistic concurrency control
(OCC) on tree-structured indices, called meld.

Scenario 1: A data-sharing system

The log is the database. All servers can access it.

Each transaction appends its after-images to the log.

Each server runs meld to do OCC and roll forward the log

Log

2

DBMS
cache

App
Server

Meld DBMS
cache

App
Server

Meld DBMS
cache

App
Server

Meld

Log

DBMS

App
Core

Cache

DBMS

App
Core

Core

Roll Forward

The log is the
database.

All cores can access
it.

Each transaction
appends its after-
images to the log.

One core runs meld
to do OCC and roll
forward the log

Motivation

System architecture

Meld Algorithm

Performance

Conclusion

4

5

G

B

A

H

C I

D

A D C B I H G

Binary

Search

Tree

Tree is marshaled into the log

5

D

Update

D’s value

Copy on write

To update a node, replace nodes up to the root

6

G

B

A

H

C I

D

C

G

B

6

Each server has a cache of the last committed DB state

7

A D C B I H G

Transaction execution

1. Get pointer to snapshot

2. Generate updates locally

3. Append intention log record

D C B G

 Snapshot

G

B

C

D

 DB cache

G

B

C

D

H

I A

last committed

Each server processes intention records in
sequence

To process transaction T’s intention record.
Check whether T experienced a conflict

If not, T committed, so the server merges the intention into
its last committed state

All servers make the same commit/abort decisions

8

A D C B I H G D C B G

T’s conflict

zone

transaction T

Did a committed transaction write

into T’s readset or writeset here?

 Snapshot

1. Run transaction

2. Broadcast intention

3. Append intention to log

4. Send log location

5. De-serialize intention

6. Meld

9 9

1. Broadcasting the intention

2. Appending intention to the log

3. Optimistic concurrency control (OCC)

4. Meld

Technology will improve 1 & 2

For 3, app behavior drives OCC performance

But 4 depends on single-threaded processor
performance, which isn’t improving

Hence, it’s important to optimize Meld

10

Last-committed state

before T

Compare transaction T’s after-image to the last committed state

which is annotated with version and dependency metadata

Traverse T’s intention, comparing versions to last-committed state

Stop traversing when you reach an unchanged subtree

If version(x)=version(x) then simply replace x by x

Log x

x[read: x] x

state when T

executed

Transaction T’s

intention

x

11

Motivation

System architecture

Meld Algorithm

Performance

Conclusion

12

Must be computationally efficient

Must be deterministic

Must produce the same sequence of states on all servers

13

Meld
Latest version of

database state

Intention

record

New version of

database state

14

• T1 creates keys B,C,D,E

D

B E

C

T1

T2 D

B E

C A

D

B E

C F

T3

D

B E

C F A

• T2 and T3 do not conflict, so

the resulting melded state is

A, B, C, D, E, F

• T2 and T3 then execute

concurrently, both

based on the

result of T1

• T2 inserts A

• T3 inserts F

14

Every node n has a unique version
number (VN)

VN(n) permanently identifies the exact
content of n’s subtree

Each node n in an intention T stores
metadata about T’s snapshot

Version of n in T’s snapshot

Dependency information

Each node’s metadata compresses to
~30 bytes

15

Root

D

B E

C

Node Metadata

• version of the subtree

• dependency info

metadata

…
…

…

15

T1 D

B E

C
VN=51

VN=53

VN=54

VN=52

We need to avoid synchronization when assigning VNs

Stored as offsets from the base location of their intention

The base location is assigned when the
intention is logged

Given: T0’s root subtree has VN 50

VN of each subtree S in T1= 50 + S’s offset

16

C B E D

VN Offset +1 +2 +3 +4

Absolute VN: 50 51 52 53 54



…

T1 T0

16

Subtree metadata includes a source structure version (SSV).

Intutively, SSV(n) = version of n in transaction T’s snapshot

DependsOn(n) = Y if T depends on n not having changed while
T executed

T1’s root subtree depends on the entire tree version 50.

Since SSV(D) = VN(), T1 becomes the last-committed state.

17

Absolute VN 50 51 52 53 54

C B E D

VN Offset: +1 +2 +3 +4

SSV: 0 0 0 50

DependsOn: N N N Y



…

T0 T1

17

A serial intention is one whose source version is the last
committed state.

Meld is then trivial and needs to consider only the root node.

T1 was serial.

T2 is serial, so meld makes T2 the last committed state.

Thus, a meld of a serial intention executes in constant time.

C B E D

VN Offset: +1 +2 +3 +4

SSV: 0 0 0 50

DependsOn: N N N Y

Absolute VN 51 52 53 54 55 56 57

A B D

+1 +2 +3

 0 52 54

N N N

T0 T1 T2

18

19

D

B E

C

T1

T2 D

B E

C A

D

B E

C F

T3

D

B E

C F A

19

T3 is not serial because VN of D in T2 (= 57)  SSV(D) in T3 (= 54).

Meld checks if T3 conflicts with a transaction in its conflict zone

Traverses T3, comparing T3’s nodes to the last-committed state

If there are no conflicts, then since T3 is concurrent, meld
creates an ephemeral intention to merge T3’s state

20
Absolute VN 51 52 53 54 55 56 57 58 59 60

T0 T1

C B E D A B D

T2

VN Offset: +1 +2 +3 +4

SSV: 0 0 0 50

DependsOn: N N N Y

+1 +2 +3

 0 53 54

N N N

F E D

T3

+1 +2 +3

 0 52 54

N N N

20

M3

A committed concurrent intention produces an
ephemeral intention (e.g. M3)

It’s created deterministically in memory on all servers.

21

Absolute VN 51 52 53 54 55 56 57 58 59 60 61

+1 +2 +3

0 52 54

N N N

T0 T1

C B E D A B D

T2

VN Offset: +1 +2 +3 +4

SSV: 0 0 0 50

DependsOn: N N N Y

+1 +2 +3

 0 53 54

N N N

F E D

T3

+1

57

N

D

It logically commits immediately after the intention it melds.

To meld the concurrent intention T3 above, we need to
consider metadata only on the root node D.

21

Most are automatically trimmed

Each committed intention I trims the previous ephemeral
intention with either a persisted node (if I is serial) or an
ephemeral node (if I is concurrent).

To track them use an ephemeral flag (or count) on each
node that has ephemeral descendants

Periodically run a flush transaction
It copies a set of ephemeral nodes that have no reachable
ephemeral nodes

It makes the original ephemeral nodes unreachable in the new
committed state.

It has no dependencies, so it can’t conflict

22

Phantom avoidance

Asymmetric meld operations

 Necessary in common case when subtrees do not align

 Uses a key-range as a parameter to the top-down recursion

Deletions

Use tombstones in the intention header

Checkpointing and recovery

23
23

Focus here is on meld throughput only

For latency, see the paper

We count committed and aborted transactions

Experiment setup

128K keys, all in main memory. Keys and payloads are 8 bytes.

Serializable isolation, so intentions contain readsets

De-serialize intentions on separate threads before meld

Transaction size affects meld throughput

So does conflict zone size (“concurrency degree”)

As transaction size or concurrency degree increase
 more concurrent transactions update keys with common
 ancestors
 meld has to traverse deeper in the tree

24

r:w ratio is 1:1 con-di = concurrency degree i

25

26

Brute force = traverse the whole tree

27

Lots of OCC papers but none that give details of
efficient conflict-testing

By contrast, there’s a huge literature on conflict-
testing for locking

Oxenstored [Gazagnairem & Hanquezis, ICFP 09]

Similar scenario: MV trees and OCC

However, very coarse-grain conflict-testing

Uses none of our optimizations

28

New algorithm for OCC

Developed many optimizations to truncate the
conflict checking early in the tree traversal

Implemented and measure it

Future work:

Apply it to other tree structures

Measure it on various storage devices

Compare it with locking and other OCC methods on
multiversion trees

Try to apply it to physiological logging

29

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it

should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Consider node n in Intention I

SCV(n) = VN of the node that first generated the payload in n’s
predecessor

Altered(n) = true if n‘s payload differs from its predecessor’s

DependsOn(n) = true if I depends on n’s predecessor’s content

NCV(n) = if Altered(n) then VN(n) else SCV(n)

n‘s content changed if SCV(nI)  NCV(nlast committed state)

v1 v2

SCV

IsAltered=true DependsOn=true

v14 v15

SCV

 NCV=self



Implies
a

conflict

31

Again consider node n in Intention I

DependsOnTree(n) = true if I depends on n’s subtree not having
changed

NSV(n) = oldest version of n whose subtree is exactly
subtree(VN(n))

DependsOnTree(n) & NSV(nlast committed state)SSV(n)  a conflict

Can extend DependsOnTree with DependencyRange of keys

v1 v8

NSV

DependsOnTree=true

v14 v15

SSV



Implies
a

conflict

in last committed state

32

SubtreeIsOnlyReadDependent(n) = true iff
 none of n’s descendants are updated in I
 (i.e., have Altered = true).

Analogous to an intention-to-read lock

Avoids traversing entire tree when a descendent of n has
DependsOnTree=true and NSV(nlast committed state) = SSV(n).

It also enables computing NSV

NSV(n) = (SubtreeIsOnlyReadDependent(n) = true)  SSV(n)
 else VN(n)

33

