
2/15/12 1

8. Application Servers

CSEP 545 Transaction Processing

Philip A. Bernstein

Copyright ©2012 Philip A. Bernstein

2

Outline
1. Introduction

2. Two-Tier vs. Three-Tier

3. Web Servers

4. Transaction Bracketing

5. Processes and Threads

6. Remote Procedure Call

2/15/12

2/15/12 3

8.1 Introduction
• An application server coordinates the flow of requests between

message sources (displays, applications, etc.) and application

programs that run requests as transactions.

Web Server

Request Controller

Transaction Server Transaction Server

intranet

Queues

other TP

systems

DBMS DBMS

Other
Internet

Sites

2/15/12 4

Application Server Components
• Web Browser

– A smart device, with forms, menus, input validation

• Web server
– Performs front-end work, e.g., security, data caching, ….
– “Calls” the web page associated with the URL, which in turn

calls a request controller

• Request controller

– Calls Start, Commit, and Abort

– App logic that transforms request (automatic loan payment,
money transfer) into calls on basic objects (loan, account).
Sometimes called business rules.

• Transaction server
– Business objects (customer, account, loan, teller)

• DBMS – Database Management System

2/15/12 5

Application Server Functions

• Glue and veneer for TP applications.
– Glue fills in gaps in system functionality.

– Covers the interface with a seamless veneer.

• Mostly, it provides run-time functions for applications

(request control and transaction servers).

– OS functions: threading and inter-process communication,

often passed through from the underlying OS.

– Dist’d system functions: transactions, security, queuing, name

service, object pools, load balancing, …

– Portal functions: shopping cart, catalog mgmt, personalization ...

• Provides some application development tools.

• Provides system mgmt for the running application.

2/15/12 6

Application Server Products

• Adobe (Macromedia)

ColdFusion

• Apple WebObjects

• HP (Tandem) Pathway

• HP (DEC) ACMS

• IBM CICS

• IBM IMS/DC

• IBM Websphere

• Iona iPortal App Server

• Microsoft .NET Enterprise Services

(formerly COM+,

MS Transaction Server (MTS))

• Oracle (BEA) Tuxedo

• Oracle (BEA) WebLogic

• Oracle Application Server

• RedHat JBoss

• Sybase EAServer

• Also see serverwatch.com

2/15/12 7

 8.2 Two-Tier vs. Three-Tier

• Before the web, most small-to-medium

scale apps were implemented in 2 tiers

on a LAN

– PC runs a 4GL, such as Sybase

PowerBuilder, Microsoft Visual Basic, or

Embarcadero Delphi

– Server system includes transaction server

application and DBMS

Front End

Program

Transaction

Server

DBMS

2/15/12 8

Two-Tier for the Web

• Front end program  Web server

– In essence, the web browser is a device

• Web server invokes a web page that
has embedded script

– Active Server Page (ASP .NET) or
Java Server Page (JSP)

– Page (file) extension tells the web server
to run the ASP/JSP interpreter

– Script can include DBMS calls and
can run as a transaction DBMS

Web Server
ASP/JSP

2/15/12 9

Two-Tier is Enabled by

DBMS Stored Procedures
• Stored procedure – An application

procedure that runs inside the DBMS

– Often in a proprietary language, such as
PL/SQL (Oracle), T-SQL (MS, Sybase)

– Moving toward standard languages,
such as Java and C#

• Implement transaction servers as
stored procedures

• Use DBMS client-server protocol

• No application server needed

– Hence, sometimes called “TP lite”

Presentation

 or Web Server

Stored

Procedures

SQL Engine

SQL DBMS

An Aside: DBMS Interfaces

• Most apps are object-oriented

• Most database interfaces are relational

• So the object-relational mapping layer is an

important part of TP applications

– Often custom for an app suite

– Some generic: Microsoft Entity Framework, Oracle

TopLink, Open Source Hibernate

• Language Integrated Query (LINQ)

– Strongly-typed DB interface to .NET languages

10 2/15/12

2/15/12 11

Scalability Problem of Two-Tier
• 2-tier is feasible, but does not scale as well as 3-tier due to

session management

• Session - shared state between communicating parties
– Entails memory cost and a setup cost (3-way handshake)

• Sessions reduce amount of per-request context passing
(comm. addresses, authenticated user/device)

– Standard DB APIs (e.g., ODBC) work this way

– Hence, in 2-tier, N clients and M servers  N M sessions
– E.g. 105 presentation servers and 100 servers  107 sessions

• Partition presentation servers across request controllers

– Each request controller still connects to all txn servers but there
are many fewer request controllers than presentation servers

2/15/12 12

3-Tier Reduces the Number of Sessions

Request

Controller

Txn

Server

Txn

Server

Txn

Server

Request

Controller

Front

End

Front

End
. . . Front

End

Front

End
. . .

Txn

Server
. . .

• Partition the set of front end devices (e.g., 103 devices per RC)

• 100 RC  (103 devices/RC + 102 TS/RC) = 110,000 sessions

Partitioning Txn Servers
• If DB server is a bottleneck, then partition it.

– By value ranges or hashing

• E.g., partition Accounts by account range

– Range partitioning is susceptible to overload. It

benefits from auto-reconfiguration by splitting ranges.

– Table-lookup partitioning, per key-value.

• Enables upgrading a user to a new service or new release

• Request control is needed to direct a call to the

right DB partition (parameter-based routing)

– RC sends a Debit request for Account x to the TS

connected to the DB partition containing Account x
2/15/12 13

2/15/12 14

2-Tier vs. 3 Tier — Other Issues

• In early 90’s people argued whether 2-Tier was enough

– Scalability was the decisive factor, but there were other issues

• Database Servers

– Nonstandard stored procedure language, usually less expressive

with weaker development tools and it’s another language to learn

– Limited interoperability of cross-server calls

– Limited interoperability of distributed transactions

– Poor fit with OO design, which are inherently 3-tier

(client, business rules, business objects)

• Application Servers

– More system complexity

2/15/12 15

How the Web Changed Things

• Front End Program  Web server

• All requests have to pass through a Web server

– In 2-tier, each Web server needs sessions to all DB servers

– Session reduction by request control is less critical but still
useful

– DB partitioning may be implemented by the DB server

• Request control is still useful for request mgmt

– Calling Start, Commit, and Abort

– Encapsulating business rules that transform each request into
calls on basic objects

2/15/12 16

8.3 Web Servers
• Presentation independence - application is

independent of the display device used

– Today, this is via http and html

– In the past, it was via a display controller or middle-tier

minicomputer whose presentation functions insulated the

rest of the back-end system from different device types

• Web server performs presentation functions:

– Gathering input

– Validating input

– DB caching

– Authentication

• They also do some basic request routing
– Constructing requests – Invoking applications

• Examples - IIS (MS), Apache, Netscape Server

2/15/12 17

Gathering Input

• Gathering input - Select transaction type (menu item,
etc.), and fill in a form (request’s parameters)

– Today, Web forms, moving to XML (XForms, XSLT, …)

• 40-year evolution of presentation devices

– Teletype, character-at-a-time terminal (async), block-mode
terminal (IBM 3270)

– Specialized devices - ATMs, bar code readers, gas pumps,
robots, credit card authorization, cash registers, ticket
printers, etc.

– 4GL on a PC - ActiveX controls accessed from Visual Basic
(VB), PowerBuilder, Delphi, etc.

– HTML 5 in a web browser.

2/15/12 18

Caching
• Every process-to-process call has a cost

– Adds to response time and consumes resources

• Use a cache in Web server to avoid calling request

controller or DB system

– Cache popular read-only data that need not be refreshed

frequently

– E.g., catalog items, sale items, cover page at an auction site,

recent news, etc.

– Also, data required for input validation info

• Or use a cache server, such as memcached, Oracle

Coherence, or Windows Server AppFabric Caching

2/15/12 19

Input Validation
• Validate input against locally cached tables

– E.g., product types, department numbers

• Avoids wasting communications and server resources

for obvious input errors

– Fewer round-trips to the DBMS

– And faster feedback to the end user

• “Cache” is part of the web page

– List boxes, script

– Cache size is a factor (it affects page access time)

2/15/12 20

Authentication

• Authentication - determining the identity of a user and/or

display device

– Client system (e.g., PC) may do authentication, but the server

usually does it too (doesn’t trust clients)

– Encrypt the wire to avoid wiretapping and spoofing

• On the Web, Transport Layer Security (successor to SSL))

– Client gets a certificate with server’s public key from the server,
signed by trusted authority’s private key

– Client validates certificate using the authority’s public key

– Client and server exchange encryption keys

– Then all messages are encrypted

Authentication (cont’d)

• Geographical entitlement - check that a particular device

is allowed access (e.g., security trading room)

• Need system mgmt functions to create accounts,

initialize passwords, bracket hours of access

(simplify it using a role abstraction)

21 2/15/12

2/15/12 22

Constructing Requests

• A request includes

– User id – for authorization and personalization

– Device id – where to send a reply

– Device type - what message types can it understand?

– ObjectID – in a OO setting

– RequestID – to ask later about request status & to link a reply

– Request type – name of transaction type requested

– Request-specific parameters

• Can be combined with protocol header (e.g., http header)

2/15/12 23

Application Invocation

• Request arrives as an http message.

– Need to call a program (i.e. a WFC), to perform the request

• Common Gateway Interface

– Write a script, store it as a file in cgi-bin

– Web server creates a process to execute the request (Slow!!)

• ISAPI (Microsoft) and NSAPI (Netscape)

– Web server calls an in-proc .dll instead of creating a process

– Web server can cache the .dll

– More complex programming model, but much faster

• Active Server Pages and Java Server Pages

– Offers the performance of ISAPI with programmability of CGI

2/15/12 24

Load Balancing
• Web servers enable scale out, so you can just add more

server boxes to handle more load.

• To simplify this problem

– Ensure all web servers are stateless. I.e., no server-specific state

and don’t retain client state on web servers (hard to avoid …)

– Statelessness implies any web server can process any request.

– It also makes web server recovery is easy.

– Randomly assign requests to web servers (e.g., an IP sprayer)

– Avoid sending requests to a failed web server

– Downside: Have to pass all state with every request

• This is the philosophy behind REST/HTTP, using Get

and Post operations

2/15/12 25

8.4 Transaction Bracketing

• For the most part, Request Controllers (RC) and

Transaction Servers are just plain old server programs

• The main RC differentiating features

– Brackets transactions (issues Start, Commit, and Abort)

– Handles Aborts (returns cause of the Abort)

– Does not access the DBMS

2/15/12 26

Nested Transaction Calls

• What does Start do, when executed within a txn?

1. it starts an independent transaction, or

2. it does nothing, or

3. it increments a nested transaction count (which is decremented
by each commit and abort), or

4. it starts a sub-transaction.

• (2) and (3) are common.

– Enables a transaction-bracketed program to be called by
another transaction

• (1) implies Be Careful!

27

Transaction Bracketing
• Request controller brackets the transaction with Start,

Commit, Abort.

• Chained - All programs execute in a transaction.

A program can commit/abort a transaction,

after which another transaction immediately starts

– E.g., CICS syncpoint = Commit&Start

– Prevents programmer from accidentally issuing resource

manager operations outside a transaction

• Unchained - Explicit Start operation, so some statements

can execute outside a transaction

– No advantages, unless transactions have overhead even

if they don’t access resources.

2/15/12

2/15/12 28

Transparent Transaction Bracketing

• Transaction-hood is a property of the app component.

• In COM+, a class is declared:

– requires new - callee always starts a new transaction

– required - if caller is in a transaction, then run callee in

caller’s transaction, else start a new transaction

– supported - if caller is in a transaction, then run callee in

caller’s transaction, else run outside of any transaction

– not supported - don’t run in a transaction

• Caller can create a transaction context, which supports

Commit and Abort (chained model).

– Callee issues SetComplete when it’s done and willing to

commit, or SetAbort to abort.

2/15/12 29

Transparent Txn Bracketing (cont’d)

• Java Enterprise Edition

– Implements COM+ technology in Java: RequiresNew,

Required, Supported, NotSupported

– It came later, so there are two additions.

– Mandatory – If caller is in a transaction, then run the callee in

that transaction, else raise an exception

– Never – If caller is in a transaction, then raise an exception

2/15/12 30

Runtime Library Support
• TP services require runtime library support

– May or may not be language-specific

• Language-specific

– Java 2 Enterprise Edition (J2EE, formerly Enterprise Java Beans)

• Encapsulates runtime library as a container object.

• BEA Weblogic, IBM Websphere, ….

– Older examples are Tandem Pathway (Screen COBOL)
 and Digital’s ACMSxp (Structured Txn Defn Lang)

• Language-independent runtime library

– MS COM+, IBM’s CICS, Oracle App Server, …

2/15/12 31

Exception Handling

• Request control brackets the transaction, so it must say what

to do if the transaction aborts

• An exception handler must know what state information is

available

– Cause of the abort, e.g., a status variable

– Possibly program exception separate from abort reason

– For system failures, application must save state in stable storage;

note that none of the aborted txn’s state will be available

• Chained model - exception handler starts a new txn

• COM+ - component returns a failure hresult

2/15/12 32

Integrity of Request after Abort

• To permit request retries, it’s useful if get-request
runs inside the request’s transaction:

 Start;
 get-request;

 . . .

 Commit;

• If the transaction aborts, then get-request is undone, so
the request becomes available for the next get-request.

• In the RPC or “push model,” make the “catch-the-call”
operation explicit, so it can be undone. Possibly hidden in
the dispatch mechanism. Often requires a queue manager.

2/15/12 33

Savepoints
• Savepoint - a point in a program where an application

saves all its recoverable state

• Can restore a savepoint within the transaction that issued

the savepoint. (It’s a partial rollback.)

• SQL DBMSs use them to support atomic SQL statements.

Start;

get-request;

Savepoint(“B”); . . .;

if (error) {Restore(“B”); …; Commit;}

. . .;

Commit;

• Savepoints are not recoverable. If the system fails or the

transaction aborts, the txn is completely undone.

2/15/12 34

8.5 Processes and Threads
• Application Server architecture is greatly affected by

– which components share an address space

– how many control threads per address space

• TP grew up in the days of batch processing, and reached

maturity in the days of timesharing.

• TP users learned early that a process-per-user fails:

– Too much context switching

– Too much fixed memory overhead per process

– Process per user per machine, when distributed

– Some OS functions scan the list of processes

– Load control is hard

2/15/12 35

Multithreading

• Have multiple threads of control in an address space

• Used to be a major Application Server feature

– Application Server switches threads when app calls a

Application Server function that blocks

• Now, most OS’s support it natively

– Can run a process’s threads on different processors (SMP)

• Whether at the user or OS level,

– multithreading has fewer processes and less context switching

– but little protection between threads and a server failure affects

many transactions

2/15/12 36

Mapping Servers to Processes

• Presentation/Web servers, request controllers, and

transaction servers are multithreaded servers

• Costs 1500 - 25,000 instructions per process call, vs.

50 instructions per local procedure call …

– but it scales, with flexible configuration and control

2/15/12 37

8.6 Remote Procedure Call

• Program calls remote procedure the same way it would call

a local procedure

• Hides certain underlying complexities

– communications and message ordering errors

– data representation differences between programs

• Transactional RPC

– Ideally, Start returns a transaction ID that’s hidden from the caller

– Procedures don’t need to explicitly pass transaction id’s.

– Easier and avoids errors

2/15/12 38

Binding
• Interface definitions

– From app or written in an interface definition language (IDL)

– compiles into Proxy and Stub programs

– Client calls the Proxy (representing the server)

– Stub calls the Server (represents the client on the server)

• Marshaling

– proxy marshals (sequentially lays out) calling parameters in a

packet and decodes marshaled return values

– stub decodes marshaled calling params and marshals return params

• Communications binding

– Client finds the server location via a directory service, based on

server name and possibly a parameter value

– To load balance across identical servers, randomly choose a server

2/15/12 39

Binding (cont’d)
• The binding process has security guarantees

– The client must have privileges to bind to the server

– The client must know it’s binding to an appropriate server to

avoid being spoofed

– E.g. client and server authenticate each other during session

creation, and maybe per-access too

2/15/12 40

RPC Walkthrough

RPC

Runtime

Server

stub

Server

App

receive

send

unpack

argu-

ments

Pack

results

P

work

return

Client

App

Client

Proxy
RPC

Runtime

Call P

Return

to caller

pack

argu-

ments

unpack

results

send

receive

wait

Client’s System Server’s System

Call

packet

Return

packet

2/15/12 41

Performance

• There are basically 3 costs

– marshaling and unmarshaling

– RPC runtime and network protocol

– physical wire transfer

• In a LAN, these are typically about equal

• Typical commercial numbers are 10-25K machine

instructions

• Can do much better in the local case by avoiding a full

context switch

2/15/12 42

Stateful Applications
• Sometimes an application maintains state on client’s behalf,

possibly across transactions. E.g.,

– Server scans a file. Each time it hits a relevant record it returns it.

Next call picks up the scan where it left off.

– Web server maintains a shopping basket or itinerary, etc.

– Server caches client’s authenticated identity or authorizations

– Server caches user’s profile for personalization

Approach 1: client passes state to server on each call, and

server returns it on each reply. Server retains no state.

– Doesn’t work well for TP, because there’s too much state

– Note that transaction id context is handled this way.

2/15/12 43

Stateful Servers Using Sessions
Approach 2: Shared client & server state via a session

– Server maintains state, indexed by client id (txn id or cookie).

Client’s later RPCs must go to same server.

– If the client fails, server must be notified to release client’s state or

deallocate based on timeout

– For transaction RPC, encapsulate context as a (volatile) resource.

Delete the state at commit/abort. Or possibly, maintain state across

transaction boundaries, but reconstruct it after system failure.

• E.g., COM+: Client can call a server object many times

– Client creates server object, which retains state across RPCs

– SetComplete (or SetAbort) by server app says that transaction can

be committed (or aborted) and state can be deleted

– EnableCommit (or DisableCommit) by server app says transaction

can (or cannot) be committed by client and don’t delete server state

Stateful Servers Using Sessions (cont’d)

• Session state can be stored persistently

– In a database system

• Possibly saved within a transaction

– Requires explicit deletion when the session fails

• E.g., via a lease that times out

– Could be tied to a long-lived business process

44 2/15/12

2/15/12 45

Fault Tolerance

• If a client doesn’t receive a reply within its timeout period

– RPC runtime can send a “ping” for non-idempotent calls

– After multiple pings, it return an error.

– For idempotent calls, RPC runtime can retry the call

(server interface definition can say whether it’s idempotent)

2/15/12 46

Web Services

• Distributed computing standards to enable

interoperation on the Internet

• SOAP - RPC with XML as marshalling format and

WSDL as interface definition

• UDDI - directory for finding Web Service

descriptions

• WS-Transaction - 2PC

• WS-Security, WS-Coordination, WS-Routing, …

• www.ws-i.org

2/15/12 47

Summary

• Scalability – 2 vs. 3 tier, sessions, stored procedures

• Web Server – gathering input, validating input, caching,

authentication, constructing requests, invoking

applications, load balancing

• Transaction bracketing – transparency, nesting,

exceptions, request integrity, savepoints

• Server processes – threads

• RPC – binding, stateful servers

