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8.1 Introduction 
• An application server coordinates the flow of requests between 

message sources (displays, applications, etc.) and application 

programs that run requests as transactions. 
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Application Server Components 
• Web Browser 

–  A smart device, with forms, menus, input validation  

• Web server  
– Performs front-end work, e.g., security, data caching, …. 
– “Calls” the web page associated with the URL, which in turn 

calls a request controller 

• Request controller  

– Calls Start, Commit, and Abort 

– App logic that transforms request (automatic loan payment, 
money transfer) into calls on basic objects (loan, account). 
Sometimes called business rules. 

• Transaction server 
– Business objects (customer, account, loan, teller) 

• DBMS – Database Management System 
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Application Server Functions 

• Glue and veneer for TP applications. 
– Glue fills in gaps in system functionality. 

– Covers the interface with a seamless veneer. 

• Mostly, it provides run-time functions for applications  

(request control and transaction servers).  

– OS functions: threading and inter-process communication,  

often passed through from the underlying OS. 

– Dist’d system functions: transactions, security, queuing, name 

service, object pools, load balancing, … 

– Portal functions: shopping cart, catalog mgmt, personalization ... 

• Provides some application development tools. 

• Provides system mgmt for the running application. 
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Application Server Products 

• Adobe (Macromedia) 

ColdFusion 

• Apple WebObjects 

• HP (Tandem) Pathway 

• HP (DEC) ACMS 

• IBM CICS 

• IBM IMS/DC 

• IBM Websphere 

• Iona iPortal App Server 

 

• Microsoft .NET Enterprise Services 

(formerly COM+,  

MS Transaction Server (MTS)) 

• Oracle (BEA) Tuxedo 

• Oracle (BEA) WebLogic  

• Oracle Application Server 

• RedHat JBoss 

• Sybase EAServer 

• Also see serverwatch.com 
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 8.2   Two-Tier vs. Three-Tier 

• Before the web, most small-to-medium 

scale apps were implemented in 2 tiers 

on a LAN  

– PC runs a 4GL, such as Sybase 

PowerBuilder, Microsoft Visual Basic, or  

Embarcadero Delphi 

– Server system includes transaction server 

application and DBMS 
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Two-Tier for the Web 

• Front end program  Web server 

– In essence, the web browser is a device 

• Web server invokes a web page that 
has embedded script  

– Active Server Page (ASP .NET) or 
Java Server Page (JSP) 

– Page (file) extension tells the web server 
to run the ASP/JSP interpreter 

– Script can include DBMS calls and  
can run as a transaction DBMS 

Web Server 
ASP/JSP 
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Two-Tier is Enabled by  

DBMS Stored Procedures 
• Stored procedure – An application 

procedure that runs inside the DBMS 

– Often in a proprietary language, such as 
PL/SQL (Oracle), T-SQL (MS, Sybase) 

– Moving toward standard languages, 
such as Java and C# 

• Implement transaction servers as 
stored procedures 

• Use DBMS client-server protocol 

• No application server needed 

– Hence, sometimes called “TP lite” 

Presentation  

 or Web Server 

Stored 

Procedures 

SQL Engine 

SQL DBMS 



An Aside: DBMS Interfaces 

• Most apps are object-oriented 

• Most database interfaces are relational 

• So the object-relational mapping layer is an 

important part of TP applications 

– Often custom for an app suite 

– Some generic: Microsoft Entity Framework, Oracle 

TopLink, Open Source Hibernate 

• Language Integrated Query (LINQ) 

– Strongly-typed DB interface to .NET languages 

10 2/15/12 
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Scalability Problem of Two-Tier 
• 2-tier is feasible, but does not scale as well as 3-tier due to 

session management 

• Session - shared state between communicating parties 
– Entails memory cost and a setup cost (3-way handshake) 

• Sessions reduce amount of per-request context passing 
(comm. addresses, authenticated user/device) 

– Standard DB APIs (e.g., ODBC) work this way 

– Hence, in 2-tier, N clients and M servers  N M sessions 
– E.g. 105 presentation servers and 100 servers  107 sessions 

• Partition presentation servers across request controllers 

– Each request controller still connects to all txn servers but there 
are many fewer request controllers than presentation servers 
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3-Tier Reduces the Number of Sessions 
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• Partition the set of front end devices (e.g., 103 devices per RC) 

• 100 RC  (103 devices/RC + 102 TS/RC) = 110,000 sessions 



Partitioning Txn Servers 
• If DB server is a bottleneck, then partition it. 

– By value ranges or hashing 

• E.g., partition Accounts by account range 

– Range partitioning is susceptible to overload. It 

benefits from auto-reconfiguration by splitting ranges. 

– Table-lookup partitioning, per key-value.  

• Enables upgrading a user to a new service or new release 

• Request control is needed to direct a call to the 

right DB partition (parameter-based routing) 

– RC sends a Debit request for Account x to the TS 

connected to the DB partition containing Account x 
2/15/12 13 
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2-Tier vs. 3 Tier — Other Issues 

• In early 90’s people argued whether 2-Tier was enough 

– Scalability was the decisive factor, but there were other issues 

• Database Servers 

– Nonstandard stored procedure language, usually less expressive 

with weaker development tools and it’s another language to learn 

– Limited interoperability of cross-server calls 

– Limited interoperability of distributed transactions 

– Poor fit with OO design, which are inherently 3-tier  

(client, business rules, business objects) 

• Application Servers 

– More system complexity 
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How the Web Changed Things 

• Front End Program  Web server 
 

• All requests have to pass through a Web server 

– In 2-tier, each Web server needs sessions to all DB servers 

– Session reduction by request control is less critical but still 
useful 

– DB partitioning may be implemented by the DB server 
 

• Request control is still useful for request mgmt 

– Calling Start, Commit, and Abort 

– Encapsulating business rules that transform each request into 
calls on basic objects 
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8.3 Web Servers 
• Presentation independence - application is 

independent of the display device used 

– Today, this is via http and html 

– In the past, it was via a display controller or middle-tier 

minicomputer whose presentation functions insulated the 

rest of the back-end system from different device types 

• Web server performs presentation functions:  

– Gathering input 

– Validating input 

– DB caching  

– Authentication 

• They also do some basic request routing 
– Constructing requests – Invoking applications 

• Examples - IIS (MS), Apache, Netscape Server 
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Gathering Input 

• Gathering input - Select transaction type (menu item, 
etc.), and fill in a form (request’s parameters)  

– Today, Web forms, moving to XML (XForms, XSLT, …) 
 

• 40-year evolution of presentation devices  

– Teletype, character-at-a-time terminal (async), block-mode 
terminal (IBM 3270) 

– Specialized devices - ATMs, bar code readers, gas pumps, 
robots, credit card authorization, cash registers, ticket 
printers, etc.  

– 4GL on a PC - ActiveX controls accessed from Visual Basic 
(VB), PowerBuilder, Delphi, etc. 

– HTML 5 in a web browser. 
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Caching 
• Every process-to-process call has a cost 

– Adds to response time and consumes resources 

• Use a cache in Web server to avoid calling request 

controller or DB system 

– Cache popular read-only data that need not be refreshed 

frequently 

– E.g., catalog items, sale items, cover page at an auction site, 

recent news, etc. 

– Also, data required for input validation info 

• Or use a cache server, such as memcached, Oracle 

Coherence, or Windows Server AppFabric Caching 
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Input Validation 
• Validate input against locally cached tables 

– E.g., product types, department numbers 

• Avoids wasting communications and server resources 

for obvious input errors 

– Fewer round-trips to the DBMS 

– And faster feedback to the end user 

• “Cache” is part of the web page 

– List boxes, script 

– Cache size is a factor (it affects page access time) 
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Authentication 

• Authentication - determining the identity of a user and/or 

display device 

– Client system (e.g., PC) may do authentication, but the server 

usually does it too (doesn’t trust clients) 

– Encrypt the wire to avoid wiretapping and spoofing  

• On the Web, Transport Layer Security (successor to SSL)) 

– Client gets a certificate with server’s public key from the server, 
signed by trusted authority’s private key 

– Client validates certificate using the authority’s public key 

– Client and server exchange encryption keys 

– Then all messages are encrypted 

 

 



Authentication (cont’d) 

• Geographical entitlement - check that a particular device 

is allowed access (e.g., security trading room) 

• Need system mgmt functions to create accounts, 

initialize passwords, bracket hours of access  

(simplify it using a role abstraction) 

 

21 2/15/12 
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Constructing Requests 

• A request includes 

– User id – for authorization and personalization 

– Device id – where to send a reply 

– Device type - what message types can it understand? 

– ObjectID – in a OO setting 

– RequestID – to ask later about request status & to link a reply 

– Request type – name of transaction type requested 

– Request-specific parameters 

 

• Can be combined with protocol header (e.g., http header) 
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Application Invocation 

• Request arrives as an http message. 

– Need to call a program (i.e. a WFC), to perform the request 

• Common Gateway Interface 

– Write a script, store it as a file in cgi-bin 

– Web server creates a process to execute the request (Slow!!) 

• ISAPI (Microsoft) and NSAPI (Netscape) 

– Web server calls an in-proc .dll instead of creating a process 

– Web server can cache the .dll 

– More complex programming model, but much faster 

• Active Server Pages and Java Server Pages 

– Offers the performance of ISAPI with programmability of CGI 
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Load Balancing 
• Web servers enable scale out, so you can just add more 

server boxes to handle more load. 

• To simplify this problem  

– Ensure all web servers are stateless. I.e., no server-specific state 

and don’t retain client state on web servers (hard to avoid …) 

– Statelessness implies any web server can process any request.  

– It also makes web server recovery is easy. 

– Randomly assign requests to web servers (e.g., an IP sprayer) 

– Avoid sending requests to a failed web server 

– Downside: Have to pass all state with every request 

• This is the philosophy behind REST/HTTP, using Get 

and Post operations 
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8.4 Transaction Bracketing 

• For the most part, Request Controllers (RC) and  

Transaction Servers are just plain old server programs 

 

• The main RC differentiating features 

– Brackets transactions (issues Start, Commit, and Abort) 

– Handles Aborts (returns cause of the Abort) 

– Does not access the DBMS 
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Nested Transaction Calls 

• What does Start do, when executed within a txn? 

1. it starts an independent transaction, or 

2. it does nothing, or 

3. it increments a nested transaction count (which is decremented 
by each commit and abort), or 

4. it starts a sub-transaction. 
 

• (2) and (3) are common.  

– Enables a transaction-bracketed program to be called by 
another transaction 
 

• (1) implies Be Careful! 
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Transaction Bracketing 
• Request controller brackets the transaction with Start, 

Commit, Abort. 

• Chained - All programs execute in a transaction.  

A program can commit/abort a transaction,  

after which another transaction immediately starts 

– E.g., CICS syncpoint = Commit&Start 

– Prevents programmer from accidentally issuing resource 

manager operations outside a transaction 

• Unchained - Explicit Start operation, so some statements 

can execute outside a transaction 

– No advantages, unless transactions have overhead even  

if they don’t access resources. 

2/15/12 
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Transparent Transaction Bracketing 

• Transaction-hood is a property of the app component. 

• In COM+, a class is declared: 

– requires new - callee always starts a new transaction 

– required - if caller is in a transaction, then run callee in  

caller’s transaction, else start a new transaction  

– supported - if caller is in a transaction, then run callee in 

caller’s transaction, else run outside of any transaction  

– not supported - don’t run in a transaction 

• Caller can create a transaction context, which supports 

Commit and Abort (chained model). 

– Callee issues SetComplete when it’s done and willing to 

commit, or SetAbort to abort. 
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Transparent Txn Bracketing (cont’d) 

• Java Enterprise Edition 

– Implements COM+ technology in Java: RequiresNew, 

Required, Supported, NotSupported 

– It came later, so there are two additions. 

– Mandatory – If caller is in a transaction, then run the callee in 

that transaction, else raise an exception 

– Never – If caller is in a transaction, then raise an exception 

 



2/15/12 30 

Runtime Library Support  
• TP services require runtime library support 

– May or may not be language-specific 
 

• Language-specific 

– Java 2 Enterprise Edition (J2EE, formerly Enterprise Java Beans) 

• Encapsulates runtime library as a container object. 

• BEA Weblogic, IBM Websphere, …. 

– Older examples are Tandem Pathway (Screen COBOL) 
 and Digital’s ACMSxp (Structured Txn Defn Lang) 
 

•  Language-independent runtime library 

– MS COM+, IBM’s CICS, Oracle App Server, … 
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Exception Handling 

• Request control brackets the transaction, so it must say what 

to do if the transaction aborts 

• An exception handler must know what state information is 

available 

– Cause of the abort, e.g., a status variable 

– Possibly program exception separate from abort reason 

– For system failures, application must save state in stable storage; 

note that none of the aborted txn’s state will be available 

• Chained model - exception handler starts a new txn 

• COM+ - component returns a failure hresult 
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Integrity of Request after Abort 

• To permit request retries, it’s useful if get-request  
runs inside the request’s transaction: 

  Start; 
  get-request; 

    . . .  

  Commit; 

• If the transaction aborts, then get-request is undone, so 
the request becomes available for the next get-request. 

• In the RPC or “push model,” make the “catch-the-call” 
operation explicit, so it can be undone. Possibly hidden in 
the dispatch mechanism. Often requires a queue manager. 
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Savepoints 
• Savepoint - a point in a program where an application 

saves all its recoverable state 

• Can restore a savepoint within the transaction that issued 

the savepoint. (It’s a partial rollback.) 

• SQL DBMSs use them to support atomic SQL statements. 

Start;  

get-request; 

Savepoint(“B”); . . .; 

if (error) {Restore(“B”); …; Commit;} 

. . .; 

Commit; 

• Savepoints are not recoverable. If the system fails or the 

transaction aborts, the txn is completely undone. 
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8.5 Processes and Threads 
• Application Server architecture is greatly affected by 

– which components share an address space 

– how many control threads per address space 

• TP grew up in the days of batch processing, and reached 

maturity in the days of timesharing. 

• TP users learned early that a process-per-user fails: 

– Too much context switching 

– Too much fixed memory overhead per process 

– Process per user per machine, when distributed 

– Some OS functions scan the list of processes 

– Load control is hard 
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Multithreading 

• Have multiple threads of control in an address space 

• Used to be a major Application Server feature 

– Application Server switches threads when app calls a 

Application Server function that blocks 

• Now, most OS’s support it natively 

– Can run a process’s threads on different processors (SMP) 

• Whether at the user or OS level,  

– multithreading has fewer processes and less context switching 

– but little protection between threads and a server failure affects 

many transactions 
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Mapping Servers to Processes 

• Presentation/Web servers, request controllers, and 

transaction servers are multithreaded servers 

 

• Costs 1500 -  25,000 instructions per process call, vs.  

50 instructions per local procedure call …  

– but it scales, with flexible configuration and control 
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8.6 Remote Procedure Call 

• Program calls remote procedure the same way it would call 

a local procedure 

• Hides certain underlying complexities 

– communications and message ordering errors  

– data representation differences between programs 

• Transactional RPC 

– Ideally, Start returns a transaction ID that’s hidden from the caller 

– Procedures don’t need to explicitly pass transaction id’s. 

– Easier and avoids errors 
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Binding 
• Interface definitions 

– From app or written in an interface definition language (IDL) 

– compiles into Proxy and Stub programs 

– Client calls the Proxy (representing the server) 

– Stub calls the Server (represents the client on the server) 

• Marshaling 

– proxy marshals (sequentially lays out) calling parameters in a 

packet and decodes marshaled return values 

– stub decodes marshaled calling params and marshals return params 

• Communications binding 

– Client finds the server location via a directory service, based on 

server name and possibly a parameter value 

– To load balance across identical servers, randomly choose a server 
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Binding (cont’d) 
• The binding process has security guarantees 

– The client must have privileges to bind to the server  

– The client must know it’s binding to an appropriate server to 

avoid being spoofed 

– E.g. client and server authenticate each other during session 

creation, and maybe per-access too 
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RPC Walkthrough 
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Performance 

• There are basically 3 costs 

– marshaling and unmarshaling 

– RPC runtime and network protocol 

– physical wire transfer 

• In a LAN, these are typically about equal  

• Typical commercial numbers are 10-25K machine 

instructions 

• Can do much better in the local case by avoiding a full 

context switch 



2/15/12 42 

Stateful Applications 
• Sometimes an application maintains state on client’s behalf, 

possibly across transactions. E.g.,  

– Server scans a file. Each time it hits a relevant record it returns it. 

Next call picks up the scan where it left off. 

– Web server maintains a shopping basket or itinerary, etc. 

– Server caches client’s authenticated identity or authorizations 

– Server caches user’s profile for personalization 

Approach 1: client passes state to server on each call, and 

server returns it on each reply. Server retains no state. 

– Doesn’t work well for TP, because there’s too much state 

– Note that transaction id context is handled this way. 
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Stateful Servers Using Sessions 
Approach 2: Shared client & server state via a session 

– Server maintains state, indexed by client id (txn id or cookie). 

Client’s later RPCs must go to same server. 

– If the client fails, server must be notified to release client’s state or 

deallocate based on timeout 

– For transaction RPC, encapsulate context as a (volatile) resource. 

Delete the state at commit/abort. Or possibly, maintain state across 

transaction boundaries, but reconstruct it after system failure. 

• E.g., COM+: Client can call a server object many times 

– Client creates server object, which retains state across RPCs 

– SetComplete (or SetAbort) by server app says that transaction can 

be committed (or aborted) and state can be deleted 

– EnableCommit (or DisableCommit) by server app says transaction 

can (or cannot) be committed by client and don’t delete server state 



Stateful Servers Using Sessions (cont’d) 

• Session state can be stored persistently 

– In a database system 

• Possibly saved within a transaction 

– Requires explicit deletion when the session fails 

• E.g., via a lease that times out 

– Could be tied to a long-lived business process 

44 2/15/12 
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Fault Tolerance 

• If a client doesn’t receive a reply within its timeout period 

– RPC runtime can send a “ping” for non-idempotent calls 

– After multiple pings, it return an error. 

– For idempotent calls, RPC runtime can retry the call  

(server interface definition can say whether it’s idempotent) 
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Web Services 

• Distributed computing standards to enable 

interoperation on the Internet 

• SOAP - RPC with XML as marshalling format and 

WSDL as interface definition 

• UDDI - directory for finding Web Service 

descriptions 

• WS-Transaction - 2PC 

• WS-Security, WS-Coordination, WS-Routing, … 

• www.ws-i.org 
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Summary 

• Scalability – 2 vs. 3 tier, sessions, stored procedures 

• Web Server – gathering input, validating input, caching, 

authentication, constructing requests, invoking 

applications, load balancing 

• Transaction bracketing – transparency, nesting, 

exceptions, request integrity, savepoints 

• Server processes – threads 

• RPC – binding, stateful servers 


