
2/1/2012 1

6. Two Phase Commit

CSEP 545 Transaction Processing
for E-Commerce

Philip A. Bernstein

Sameh Elnikety

Copyright ©2012 Philip A. Bernstein

2/1/2012 2

Distributed Systems

• Failures

– Links and nodes

– Models

• Algorithms

– Correctness

– Termination

A B

2/1/2012 3

Introduction

• Goal - ensure the atomicity of a transaction that

accesses multiple resource managers.

• (Recall, resource abstracts data, messages, and other

items that are shared by transactions.)

• Why is this hard?

– After a transaction commits at RMa,what if resource

manager RMb fails?

– When RMb recovers, what to do if other resource

managers are down?

– What if a transaction thinks a resource manager failed

and therefore aborted, when it actually is still running?

2/1/2012 4

Assumptions

• Each resource manager independently commits or
aborts a transaction atomically on its resources.

• Home(T) decides when to start committing T.

• Home(T) doesn’t start committing T until T
terminates at all nodes (possibly hard).

• Resource managers fail by stopping.

– No Byzantine failures, where a failed process exhibits
arbitrary behavior, such as sending the wrong message.

2/1/2012 5

Problem Statement

• Transaction T accessed data at resource managers

R1, … Rn.

• The goal is to either

– Commit T at all of R1, … Rn, or

– Abort T at all of R1, … Rn

– Even if resource managers, nodes and communications

links fail during the commit or abort activity.

• That is, never commit at Ri but abort at Rk.

2/1/2012 6

Outline

1. Introduction

2. The Two-Phase Commit (2PC) Protocol

3. 2PC Failure Handling

4. 2PC Optimizations

5. Process Structuring

6. Three Phase Commit

2/1/2012 7

2. Two-Phase Commit
• Two phase commit (2PC) is the standard protocol

for making commit and abort atomic.

• Coordinator - the component that coordinates

commitment at home(T).

• Participant - a resource manager accessed by T.

• A participant P is ready to commit T if all of T’s

after-images at P are in stable storage.

• The coordinator must not commit T until all

participants are ready.

– If P isn’t ready, T commits, and P fails, then P can’t

commit when it recovers.

2/1/2012 8

The Protocol
1 (Begin Phase 1) The coordinator sends a

Request-to-Prepare message to each participant.

2 The coordinator waits for all participants to vote.

3 Each participant

 Votes Prepared if it’s ready to commit

 May vote No for any reason

 May delay voting indefinitely.

4 (Begin Phase 2) If coordinator receives Prepared

from all participants, it decides to commit.

(The transaction is now committed.)

Otherwise, it decides to abort.

2/1/2012 9

The Protocol (cont’d)

5 The coordinator sends its decision to all

participants (i.e., Commit or Abort).

6 Participants acknowledge receipt of Commit or

Abort by replying Done.

2/1/2012 10

Case 1: Commit

Coordinator Participant

Request-to-Prepare

Prepared

Commit

Done

2/1/2012 11

Case 2: Abort

Coordinator

Request-to-Prepare

No

Abort

Done

Participant

2/1/2012 12

Performance

• In the absence of failures, 2PC requires 3

rounds of messages before the decision is made

known to RM’s.

– Request-to-prepare

– Votes (Prepared, No)

– Decision (Commit, Abort).

• Done messages are just for bookkeeping .

– They don’t affect response time.

– They can be batched.

2/1/2012 13

Uncertainty

• Before it votes, a participant can abort unilaterally.

• After a participant votes Prepared and before it receives the

coordinator’s decision, it is uncertain. It can’t unilaterally

commit or abort during its uncertainty period.

Coordinator Participant
Request-to-Prepare

Prepared

Commit

Done

Uncertainty

Period

2/1/2012 14

Uncertainty (cont’d)

• The coordinator is never uncertain.

• If a participant fails or is disconnected from

the coordinator while it’s uncertain,

at recovery it must find out the decision.

2/1/2012 15

The Bad News Theorems

• Uncertainty periods are unavoidable.

• Blocking - a participant must await a repair before

continuing. Blocking is bad.

• Theorem 1 - For every possible commit protocol

(not just 2PC), a communications failure can cause

a participant to become blocked.

• Independent recovery - a recovered participant can

decide to commit or abort without communicating

with other nodes.

• Theorem 2 - No commit protocol can guarantee

independent recovery of failed participants.

2/1/2012 16

3. 2PC Failure Handling

• Failure handling - what to do if the coordinator or

a participant times out waiting for a message.

– Remember, all failures are detected by timeout.

• A participant times out waiting for coordinator’s

Request-to-prepare.

– It decides to abort.

• The coordinator times out waiting for a

participant’s vote.

– It decides to abort.

2/1/2012 17

2PC Failure Handling (cont’d)

• A participant that voted Prepared times out waiting
for the coordinator’s decision

– It’s blocked.

– Use a termination protocol to decide what to do.

– Naïve termination protocol - wait till the coordinator
recovers.

• The coordinator times out waiting for Done.

– It must resolicit them, so it can forget the decision.

2/1/2012 18

Forgetting Transactions

• After a participant receives the decision, it may

forget the transaction.

• After the coordinator receives Done from all

participants, it may forget the transaction.

• A participant must not reply Done until its commit

or abort log record is stable.

– Else, if it fails, then recovers, then asks the coordinator

for a decision, the coordinator may not know.

2/1/2012 19

Logging 2PC State Changes
• Logging may be eager.

– It’s flushed to disk before the next Send Message.

• Or it may be lazy = not eager

Coordinator

Participant
Request-to-Prepare

Prepared

Commit

Done

Log commit

 (eager)

Log commit (eager)

Log commit (lazy)

Log prepared (eager)

Log Start2PC

 (eager)

2/1/2012 20

Coordinator Recovery
• If the coordinator fails and later recovers, it must know the

decision. It must therefore log:

– The fact that it began T’s 2PC protocol, including the list

of participants, and

– Commit or Abort, before sending Commit or Abort to any

participant (so it knows whether to commit or abort after

it recovers).

• If the coordinator fails and recovers, it resends the decision

to participants from which it doesn’t remember getting Done

– If the participant forgot the transaction, it replies Done

– The coordinator should therefore log Done after it has

received them all.

2/1/2012 21

Participant Recovery
• If a participant P fails and later recovers, it first performs

centralized recovery (Restart).

• For each distributed transaction T that was active at the

time of failure:

– If P is not uncertain about T, then it unilaterally aborts T

– If P is uncertain, it runs the termination protocol

(which may leave P blocked).

• To ensure it can tell whether it’s uncertain, P must log its

vote before sending it to the coordinator.

• To avoid becoming totally blocked due to one blocked

transaction, P should reacquire T’s locks during Restart

and allow Restart to finish before T is resolved.

2/1/2012 22

Heuristic Commit

• Suppose a participant recovers, but the termination

protocol leaves T blocked.

• Operator can guess whether to commit or abort

– Must detect wrong guesses when coordinator recovers.

– Must run compensations for wrong guesses.

• Heuristic commit

– If T is blocked, the local resource manager (actually,

transaction manager) guesses.

– At coordinator recovery, the transaction managers jointly

detect wrong guesses.

2/1/2012 23

4. 2PC Optimizations and Variations

• Optimizations

– Read-only transaction

– Presumed Abort

– Transfer of coordination

– Cooperative termination protocol

• Variations

– Re-infection

– Phase Zero

2/1/2012 24

Read-only Transaction

• A read-only participant need only respond to phase

one. It doesn’t care what the decision is.

• It responds Prepared-Read-Only to

Request-to-Prepare, to tell the coordinator not to

send the decision.

• Limitation - All other participants must be fully

terminated, since the read-only participant will

release locks after voting.

– No more testing of SQL integrity constraints.

– No more evaluation of SQL triggers.

2/1/2012 25

Presumed Abort
• After a coordinator decides Abort and sends Abort to

participants, it forgets about T immediately.

• Participants don’t acknowledge Abort (with Done).

Coordinator
Participant

Request-to-Prepare

Prepared

Abort

Log abort

(forget T)

Log abort (forget T)

Log prepared

Log Start2PC

• If a participant times out waiting for the decision, it asks the

coordinator to retry.

– If the coordinator has no info for T, it replies Abort.

2/1/2012 26

Transfer of Coordination
If there is one participant, you can save a round of messages

1. Coordinator asks participant to prepare and become the

 coordinator.

2. The participant (now coordinator) prepares, commits, and

 tells the former coordinator to commit.

3. The coordinator commits and replies Done.

Coordinator
Participant

Request-to-Prepare-and

-transfer-coordination

Commit Log commit
Log committed

Log prepared

Done

• Supported by some app servers, but not in any standards.

2/1/2012 27

Cooperative Termination Protocol (CTP)

• Assume coordinator includes a list of participants in

Request-to-Prepare.

• If a participant times-out waiting for the decision,

it runs the following protocol.

1. Participant P sends Decision-Req to other participants.

2. If participant Q voted No or hasn’t voted or received Abort

from the coordinator, it responds Abort.

3. If participant Q received Commit from the coordinator,

it responds Commit.

4. If participant Q is uncertain, it responds Uncertain

(or doesn’t respond at all).

• If all participants are uncertain, then P remains blocked.

2/1/2012 28

Cooperative Termination Issues

• Participants don’t know when to forget T,

since other participants may require CTP

– Solution 1 - After receiving Done from all participants,

coordinator sends End to all participants.

– Solution 2 - After receiving a decision, a participant may

forget T any time.

• To ensure it can run CTP, a participant should

include the list of participants in the vote log record.

2/1/2012 29

Reinfection
• Suppose A is coordinator and B and C are participants

– A asks B and C to prepare.

– B votes prepared.

– C calls B to do some work. (B is reinfected.)

– B does the work and tells C it has prepared,
but now it expects C to be its coordinator.

– When A asks C to prepare, C propagates the request to B
and votes prepared only if both B and C are prepared.
(See Tree of Processes discussion later.)

• Can be used to implement integrity constraint checking,
triggers, and other commit-time processing, without
requiring an extra phase (between phases 1 and 2 of 2PC).

2/1/2012 30

Phase Zero
• Suppose a participant P is caching transaction T’s

updates that P needs to send to an RM (another

participant) before T commits.

– P must send the updates after T invokes Commit, to ensure P

has all of T’s updates

– P must send the updates before the RM prepares, to ensure the

updates are made stable during phase one.

– Thus, we need an extra phase, before phase 1.

• A participant explicitly enlists for phase zero.

– It doesn’t ack phase zero until it finishes flushing its cached

updates to other participants.

• Supported in Microsoft DTC.

2/1/2012 31

5. Process Structuring
• To support multiple RMs on multiple nodes, and minimize

communication, use one transaction manager (TM) per node

• TM may be in the OS (VAX/VMS, Win), the app server
(IBM CICS), DBMS, or a separate product (early Tandem).

• TM performs coordinator and participant roles for all
transactions at its node.

• TM communicates with local RMs and remote TMs.

Transaction Manager

Resource Manager Resource Manager Resource Manager

Application

Enlist and 2PC ops

RM ops

StartTransaction,

Commit, Rollback TX

XA
2PC ops Other

TMs

2/1/2012 32

Enlisting in a Transaction

• When an Application in a transaction T first calls an RM,

the RM must tell the TM it is part of T.

• Called enlisting or joining the transaction

Transaction Manager

Resource Manager

Application

3. Enlist(T)

2. Write(X, T)
1. StartTransaction

(returns Tranction ID)

2/1/2012 33

Enlisting in a Transaction (cont’d)
• When an application A in a transaction T first calls an

application B at another node, B must tell its local TM that

the transaction has arrived.

Transaction

Manager

Communications

Manager

Application A

2. AddBranch(N, T)

1. Call(AP-B, T)

Transaction

Manager

Communications

Manager

Application B

4. StartBranch(N, T)

5. Call(AP-B, T)

3. Send Call(AP-B, T)

Node M Node N

2/1/2012 34

Tree of Processes
• Application calls to RMs and other applications induces a

tree of processes.

• Each internal node is the coordinator for its descendants,
and a participant to its parents.

• This adds delay to two-phase commit.

• Optimization: flatten the tree, e.g. during phase 1

TM1

TM2
TM3

TM4

RM1

RM2 RM3

RM4
RM5

Different

Nodes

2/1/2012 35

Handling Multiple Protocols
• Communication managers solve the problem of handling

multiple 2PC protocols by providing:

– A model for communication between address spaces.

– A wire protocol for two-phase commit.

• But, expect restrictions on multi-protocol interoperation.

• The RM only talks to the TM-RM interface. The multi-
protocol problem is solved by the TM vendor.

Transaction Manager

Resource Manager Resource Manager Resource Manager

Application

Enlist and 2PC ops

RM ops

TX

XA

2PC ops

other

TMs

Communication
Manager

Send/receive msg

XA+

2/1/2012 36

Complete Walkthrough
Application:

Start-trans

Call DBMS

Call remote app

Commit

Application

Comm Mgr

Database

System

Txn Manager

Transaction

Manager

Comm

Manager

8. Req-prepare

9. Prepared

10. Commit

11. Done

1. Start Tran

4. Add-branch

7. Commit

2. Call DBMS

5. Call

6. Start-branch

3. Enlist

 DBMS

2/1/2012 37

Customer Checklist
• Does your DBMS support 2PC?

• Does your execution environment support it? If so,

– With what DBMSs?

– Using what protocol(s)?

– Do these protocols meet your interoperation needs?

• Is the TM-DBMS interface open (for home-grown

DBMSs)?

• Can an operator commit/abort a blocked txn?

– If so, is there automated support for reconciling

mistakes?

– Is there automated heuristic commit?

2/1/2012 38

6. Three Phase Commit- The Idea
• 3PC prevents blocking in the absence of communications

failures (unrealistic, but …). It can be made resilient to

communications failures, but then it may block

• 3PC is much more complex than 2PC, but only marginally

improves reliability — prevents some blocking situations.

• 3PC therefore is not used much in practice.

• Main idea: becoming certain and deciding to commit are

separate steps.

• 3PC ensures that if any operational process is uncertain,

then no (failed or operational) process has committed.

• So, in the termination protocol, if the operational processes

are all uncertain, they can decide to abort (avoids blocking).

2/1/2012 39

Three Phase Commit- The Protocol

1. (Begin phase 1) Coordinator C sends Request-to-prepare

to all participants.

2. Participants vote Prepared or No, just like 2PC.

3. If C receives Prepared from all participants, then (begin

phase 2) it sends Pre-Commit to all participants.

4. Participants wait for Abort or Pre-Commit.

Participant acknowledges Pre-commit.

5. After C receives acks from all participants, or times out

on some of them, it (begin third phase) sends Commit to

all participants (that are up).

2/1/2012 40

3PC Failure Handling

• If coordinator times out before receiving Prepared

from all participants, it decides to abort.

• Coordinator ignores participants that don’t ack its

Pre-Commit.

• Participants that voted Prepared and timed out

waiting for Pre-Commit or Commit use the termination

protocol.

• The termination protocol is where the complexity

lies. (E.g. see [Bernstein, Hadzilacos, Goodman 87],

Section 7.4).

