
1/18/12 1

4. Database System

Recovery

CSEP 545 Transaction Processing

for E-Commerce

Philip A. Bernstein

Copyright ©2012 Philip A. Bernstein

1/18/12 2

Outline

1. Introduction

2. Recovery Manager

3. Two Non-Logging Algorithms

4. Log-based Recovery

5. Media Failure

3

1. Introduction

• A database may become inconsistent because of

– Transaction failure (abort)

– Database system failure (possibly caused by OS crash)

– Media crash (disk-resident data is corrupted)

• The recovery system ensures the database contains
exactly those updates produced by committed
transactions

– I.e. atomicity and durability, despite failures

1/18/12

4

Assumptions

• Two-phase locking, holding write locks until after

a transaction commits. This implies

– Recoverability

– No cascading aborts

– Strictness (never overwrite uncommitted data)

• Page-level everything (for now)

– Database is a set of pages

– Page-granularity locks

– A transaction’s read or write operation operates on an

entire page

– We’ll look at record granularity later
1/18/12

5

Storage Model

• Stable database - survives system failures

• Cache (volatile) - contains copies of some pages,

which are lost by a system failure

Stable Database

Log

Read, Write

Fetch, Flush

Pin, Unpin, Deallocate

Cache Manager

Cache

Read, Write

1/18/12

6

Stable Storage
• Write(P) overwrites the entire contents of P on the

disk

• If Write is unsuccessful, the error might be

detected on the next read ...

– e.g. page checksum error => page is corrupted

• … or maybe not

– Write correctly wrote to the wrong location

• Write is the only operation that’s atomic with

respect to failures and whose successful execution

can be determined by recovery procedures.

1/18/12

7

The Cache
• Cache is divided into page-sized slots.

• Dirty bit tells if the page was updated since it was last
written to disk.

• Pin count tells number of pin ops without unpins

Page Dirty Bit Cache Address Pin Count

 P2 1 91976 1

 P47 0 812 2

 P21 1 10101 0

• Fetch(P) - read P into a cache slot. Return slot address.

• Flush(P) - If P’s slot is dirty and unpinned, then write it to

disk (i.e. return after the disk acks).

1/18/12

8

The Cache (cont’d)

• Pin(P) - make P’s slot non-flushable & non-replaceable.

– Non-flushable because P’s content may be inconsistent.

– Non-replaceable because someone has a pointer into P or is

accessing P’s content.

• Unpin(P) - release it.

• Deallocate(P) - allow P’s slot to be reused (even if dirty).

1/18/12

9

Big Picture

Database

System

Query Optimizer

Query Executor

Access Method

(record-oriented files)

Page-oriented Files

Database

Recovery manager

Cache manager

Page file manager

Fetch, Flush

Pin, Unpin,

Deallocate

• Record manager is the main user of the cache manager.

• It calls Fetch(P) and Pin(P) to ensure the page is in main

memory, non-flushable, and non-replaceable.

1/18/12

10

Latches
• A page is a data structure with many fields.

• A latch is a short-term lock that gives its owner

access to a page in main memory.

• A read latch allows the owner to read the content.

• A write latch allows the owner to modify the

content.

• The latch is usually a bit in a control structure,

not an entry in the lock manager. It can be set and

released much faster than a lock.

• There’s no deadlock detection for latches.
1/18/12

11

The Log

• A sequential file of records describing updates:

– Address of updated page.

– Id of transaction that did the update.

– Before-image and after-image of the page.

• Whenever you update the cache, also update the log.

• Log records for Commit(Ti) and Abort(Ti).

• Some older systems separated before-images and

after-images into separate log files.

• If opi conflicts with and executes before opk, then

opi’s log record must precede opk’s log record.

– Recovery will replay operations in log-record-order. 1/18/12

12

The Log (cont’d)
• To update records on a page:

– Fetch(P) read P into cache

– Pin(P) ensure P isn’t flushed

– write lock (P) for two-phase locking

– write latch (P) get exclusive access to P

– update P update P in cache

– log the update to P append it to the log

– unlatch (P) release exclusive access

– Unpin(P) allow P to be flushed

1/18/12

13

2. Recovery Manager
• Processes Commit, Abort and Restart

• Commit(T)

– Write T’s updated pages to stable storage atomically,

even if the system crashes

• Abort(T)

– Undo the effects of T’s writes

• Restart = recover from system failure

– Abort all transactions that were not committed at the time

of the previous failure

– Fix stable storage so it includes all committed writes and

no uncommitted ones (so it can be read by new txns)

1/18/12

14

Recovery Manager Model

Stable Database

Log

Read,

Write

Pin, Unpin

 Fetch

Cache Manager

Cache

Read, Write

Recovery Manager

Flush

Deallocate

Transaction 1 Transaction 2 Transaction N

Commit, Abort, Restart

Read,

Write

Flush, dealloc for normal operat’n

Restart uses Fetch, Pin, Unpin 1/18/12

15

Implementing Abort(T)

• Suppose T wrote page P.

• If P was not transferred to stable storage,

then deallocate its cache slot.

• If it was transferred, then P’s before-image must be

in stable storage (else you couldn’t undo after a

system failure).

• Undo Rule - Do not flush an uncommitted update of

P until P’s before-image is stable. (Ensures undo is

possible.)

– Write-Ahead Log Protocol - Do not … until P’s

before-image is in the log.
1/18/12

16

Avoiding Undo

• Avoid the problem implied by the Undo Rule by

never flushing uncommitted updates.

– Avoids stable logging of before-images.

– Don’t need to undo updates after a system failure.

• A recovery algorithm requires undo if an update of

an uncommitted transaction can be flushed.

– Usually called a steal algorithm, because it allows a dirty

cache page to be “stolen.”

1/18/12

17

Implementing Commit(T)
• Commit must be atomic. So it must be implemented

by a disk write.

• Suppose T wrote P, T committed, and then the

system fails. P must be in stable storage.

• Redo rule - Don’t commit a transaction until the

after-images of all pages it wrote are in stable

storage (in the database or log). (Ensures redo is

possible.)

– Often called the Force-At-Commit rule.

1/18/12

18

Avoiding Redo
• To avoid redo, flush all of T’s updates to the stable

database before it commits. (They must be in stable

storage.)

– Usually called a Force algorithm, because updates are

forced to disk before commit.

– It’s easy, because you don’t need stable bookkeeping of

after-images.

– But it’s inefficient for hot pages. (Consider TPC-A/B.)

• Conversely, a recovery algorithm requires redo if a

transaction may commit before all of its updates are

in the stable database.
1/18/12

19

Avoiding Undo and Redo?

• To avoid both undo and redo

– Never flush uncommitted updates (to avoid undo), and

– Flush all of T’s updates to the stable database before it

commits (to avoid redo).

• Thus, it requires installing all of a transaction’s

updates into the stable database in one write to disk

• It can be done, but it isn’t efficient for short

transactions and record-level updates.

– Use shadow paging.

1/18/12

20

Implementing Restart

• To recover from a system failure

– Abort transactions that were active at the failure.

– For every committed transaction, redo updates that are in

the log but not the stable database.

– Resume normal processing of transactions.

• Idempotent operation - many executions of the

operation have the same effect as one execution.

• Restart must be idempotent. If it’s interrupted by a

failure, then it re-executes from the beginning.

• Restart contributes to unavailability. So make it fast!

1/18/12

21

3. Log-based Recovery
• Logging is the most popular mechanism for

implementing recovery algorithms.

• The recovery manager implements

– Commit - by writing a commit record to the log and

flushing the log (satisfies the Redo Rule).

– Abort - by using the transaction’s log records to restore

before-images.

– Restart - by scanning the log and undoing and redoing

operations as necessary.

• The algorithms are fast since they use sequential log

I/O in place of random database I/O. They greatly

affect TP and Restart performance.
1/18/12

22

Implementing Commit

• Every commit requires a log flush.

• If you can do K log flushes per second, then K is

your maximum transaction throughput.

• Group Commit Optimization - when processing

commit, if the last log page isn’t full, delay the

flush to give it time to fill.

• If there are multiple data managers on a system,

then each data mgr must flush its log to commit.

– If each data mgr isn’t using its log’s update bandwidth,

then a shared log saves log flushes.

– A good idea, but rarely supported commercially.
1/18/12

23

Implementing Abort

• To implement Abort(T), scan T’s log records and install

before images.

• To speed up Abort, back-chain each transaction’s update

records.

Transaction Descriptors

Transaction last log record

T7

Start of Log

End of Log

Ti Pk null pointer

Ti Pm backpointer

Ti’s first

log record

1/18/12

24

Satisfying the Undo Rule

• To implement the Write-Ahead Log Protocol, tag each

cache slot with the log sequence number (LSN) of the last

update record to that slot’s page.

Page Dirty Cache Pin LSN

 Bit Address Count

 P47 1 812 2

 P21 1 10101 0

 Log

Start

End

On disk

Main

Memory

• Cache manager won’t flush a page P until P’s last updated

record, pointed to by LSN, is on disk.

• P’s last log record is usually stable before Flush(P),

so this rarely costs an extra flush

• LSN must be updated while latch is held on P’s slot
1/18/12

25

Implementing Restart (rev 1)

• Assume undo and redo are required.

• Scan the log backwards, starting at the end.

– How do you find the end?

• Construct a commit list and recovered-page-list

during the scan (assuming page level logging).

• Commit(T) record => add T to commit list

• Update record for P by T

– if P is not in the recovered-page-list then

• Add P to the recovered-page-list.

• If T is in the commit list, then redo the update,

else undo the update.

26

Checkpoints
• Problem - Prevent Restart from scanning back to the

start of the log

• A checkpoint is a procedure to limit the amount of
work for Restart

• Cache-consistent checkpointing

– Stop accepting new update, commit, and abort operations

– Make list of [active transaction, pointer to last log record]

– Flush all dirty pages

– Append a checkpoint record to log; include the list

– Resume normal processing

• Database and log are now mutually consistent

1/18/12

27

Restart Algorithm (rev 2)

• No need to redo records before last checkpoint, so

– Starting with the last checkpoint, scan forward in the log.

– Redo all update records. Process all aborts.

Maintain list of active transactions (initialized to content

of checkpoint record).

– After you’re done scanning, abort all active transactions.

• Restart time is proportional to the amount of log

after the last checkpoint.

• Reduce restart time by checkpointing frequently.

• Thus, checkpointing must be cheap.

1/18/12

28

Fuzzy Checkpointing
• Make checkpoints cheap by avoiding synchronized flushing

of dirty cache at checkpoint time.

– Stop accepting new update, commit, and abort operations

– Make a list of all dirty pages in cache

– Make list of [active transaction, pointer to last log record]

– Append a checkpoint record to log; include the list

– Resume normal processing

– Initiate low priority flush of all dirty pages

• Don’t checkpoint again until all of the last checkpoint’s

dirty pages are flushed.

• Restart begins at second-to-last (penultimate) checkpoint.

• Checkpoint frequency depends on disk bandwidth.
1/18/12

29

Operation Logging

• Record locking requires (at least) record logging.

– Suppose records x and y are on page P

– w1[x] w2[y] abort1 commit2 (not strict w.r.t. pages)

• Record logging requires Restart to read a page

before updating it. This reduces log size.

• Further reduce log size by logging description of an

update, not the entire before/after image of record.

– Only log after-image of an insertion

– Only log fields being updated

• Now Restart can’t blindly redo.

– E.g., it must not insert a record twice
1/18/12

30

LSN-based logging
• Each database page P’s header has the LSN of the last log

record whose operation updated P.

• Restart compares log record and page LSN before redoing

the log record’s update U.

– Redo the update only if LSN(P) < LSN(U)

• Undo is a problem. If U’s transaction aborts and you undo

U, what LSN to put on the page?

– Suppose T1 and T2 update records x and y on P

– w1[x] w2[y] c2 a1 (what LSN does a1 put on P?)

– not LSN before w1[x] (which says w2[y] didn’t run)

– not w2[y] (which says w1[x] wasn’t aborted)

1/18/12

31

LSN-based logging (cont’d)

• w1[x] w2[y] c2 a1 (what LSN does a1 put on P?)

• Why not use a1’s LSN?

– must latch all of T1’s updated pages before logging a1

– else, some w3[z] on P could be logged after a1 but be

executed before a1, leaving a1’s LSN on P instead of

w3[z]’s.

1/18/12

32

Logging Undo’s
• Log the undo(U) operation, and use its LSN on P

– CLR = Compensation Log Record = a logged undo

– Do this for all undo’s (during normal abort or recovery)

• This preserves the invariant that the LSN on each page P

exactly describes P’s state relative to the log.

– P contains all updates to P up to and including the LSN

on P, and no updates with larger LSN.

• So every aborted transaction’s log is a palindrome

of update records and undo records.

• Restart processes Commit and Abort the same way

– It redoes the transaction’s log records.

– It only aborts active transactions after the forward scan
1/18/12

33

Logging Undo’s (cont’d)
• Tricky issues

– Multi-page updates (it’s best to avoid them)

– Restart grows the log by logging undos.

Each time it crashes, it has more log to process

• Optimization - CLR points to the transaction’s log

record preceding the corresponding “do”.

– Splices out undone work

– Avoids undoing undone work during abort

– Avoids growing the log due to aborts during Restart

DoA1 DoB1 DoC1 UndoC1 UndoB1

1/18/12

34

Restart Algorithm (rev 3)

• Starting with the penultimate checkpoint, scan forward in

the log.

– Maintain list of active transactions (initialized to content

of checkpoint record).

– Redo an update record U for page P only if

LSN(P) < LSN(U).

– After you’re done scanning, abort all active transactions.

Log undos while aborting. Log an abort record when

you’re done aborting.

• This style of record logging, logging undo’s, and replaying

history during restart was popularized in the ARIES

algorithm by Mohan et al at IBM, published in 1992.
1/18/12

35

Analysis Pass

• Log flush record after a flush occurs (to avoid redo)

• To improve redo efficiency, pre-analyze the log

– Requires accessing only the log, not the database

• Build a Dirty Page Table that contains list of dirty pages

and, for each page, the oldestLSN that must be redone

– Flush(P) says to delete P from Dirty Page Table

– Write(P) adds P to Dirty Page Table, if it isn’t there

– Include Dirty Page Table in checkpoint records

– Start at last checkpt record, scan forward building the table

• Also build list of active txns with lastLSN

1/18/12

36

Analysis Pass (cont’d)

• Start redo at oldest oldestLSN in Dirty Page Table

– Then scan forward in the log, as usual

– Only redo records that might need it,

that is, those where LSN(redo record) oldestLSN,

hence there’s no later flush record

– Also use Dirty Page Table to guide page prefetching

• Prefetch pages in oldestLSN order in Dirty Page Table

1/18/12

37

Logging B-Tree Operations

• To split a page

– log records deleted from the first page (for undo)

– log records inserted to the second page (for redo)

– they’re the same records, so long them once!

• This doubles the amount of log used for inserts

– log the inserted data when the record is first inserted

– if a page has N records, log N/2 records, every time a

page is split, which occurs once for every N/2 insertions

1/18/12

38

User-level Optimizations

• If checkpoint frequency is controllable,

then run some experiments.

• Partition DB across more disks to reduce

restart time (if Restart is multithreaded).

• Increase resources (e.g. cache) available to

restart program.

1/18/12

39

Shared Disk System

• Use version number on the page and in the lock

Process A

P

r2

Process B

P

r7

P

• Can cache a page in two processes

that write-lock different records

• Only one process at a time can

have write privilege

• Use a global lock manager

• When setting a write lock on P,

may need to refresh the cached

copy from disk (if another process

recently updated it)

1/18/12

40

Shared Disk System

• When a process sets the lock, it tells the lock

manager version number of its cached page.

• A process increments the version number the first

time it updates a cached page.

• When a process is done with an updated page, it

flushes the page to disk and then increments

version number in the lock.

• Need a shared log manager, possibly with local

caching in each machine.

 1/18/12

41

4. Media Failures

• A media failure is the loss of some of stable storage.

• Most disks have MTBF over 10 years.

• Still, if you have 10 disks ...

• So shadowed disks are important.

– Writes go to both copies. Handshake between Writes to

avoid common failure modes (e.g. power failure).

– Service each read from one copy.

• To bring up a new shadow

– Copy tracks from good disk to new disk, one at a time.

– A Write goes to both disks if the track has been copied.

– A read goes to the good disk, until the track is copied. 1/18/12

42

RAID

• RAID - redundant array of inexpensive disks

– Use an array of N disks in parallel

– A stripe is an array of the ith block from each disk

– A stripe is partitioned as follows:

... ...

M data blocks N-M error

correction blocks

• Each stripe is one logical block, which can

survive a single-disk failure.

1/18/12

43

Where to Use Disk Redundancy?

• Preferably for both the DB and log.

• But at least for the log

– In an undo algorithm, it’s the only place that

has certain before images.

– In a redo algorithm, it’s the only place that has

certain after images.

• If you don’t shadow the log, it’s a single

point of failure.

1/18/12

44

Archiving
• An archive is a database snapshot used for media recovery.

– Load the archive and redo the log

• To take an archive snapshot

– write a start-archive record to the log

– copy the DB to an archive medium

– write an end-archive record to the log

(or simply mark the archive as complete)

• So, the end-archive record says that all updates before the

start-archive record are in the archive

• Can use the standard LSN-based Restart algorithm to

recover an archive copy relative to the log.

1/18/12

45

Archiving (cont’d)

• To archive the log, use 2 pairs of shadowed disks. Dump

one pair to archive (e.g. tape) while using the other pair for

on-line logging. (I.e. ping-pong to avoid disk contention)

– Optimization - only archive committed pages and

purge undo information from the log before archiving

• To do incremental archive, use an archive bit in each page.

– Each page update sets the bit.

– To archive, copies pages with the bit set, then clear it.

• To reduce media recovery time

– rebuild archive from incremental copies

– partition log to enable fast recovery of a few corrupted

pages
1/18/12

