
1. Introduction
CSEP 545 Transaction Processing

Philip A. Bernstein

Sameh Elnikety

Copyright ©2012 Philip A. Bernstein

1/4/2012 1

Outline

1. The Basics

2. ACID Properties

3. Atomicity and Two-Phase Commit

4. Performance

5. Scalability

1/4/2012 2

1.1 The Basics - What’s a Transaction?

• The execution of a program that performs an

administrative function by accessing a shared

database, usually on behalf of an on-line user.

Examples

• Reserve an airline seat. Buy an airline ticket.

• Withdraw money from an ATM.

• Verify a credit card sale.

• Order an item from an Internet retailer.

• Place a bid at an on-line auction.

• Submit a corporate purchase order.
1/4/2012 3

The “ities” are What Makes

Transaction Processing (TP) Hard
• Reliability - system should rarely fail

• Availability - system must be up all the time

• Response time - within 1-2 seconds

• Throughput - thousands of transactions/second

• Scalability - start small, ramp up to Internet-scale

• Security – for confidentiality and high finance

• Configurability - for above requirements + low cost

• Atomicity - no partial results

• Durability - a transaction is a legal contract

• Distribution - of users and data
1/4/2012 4

What Makes TP Important?

• It’s at the core of electronic commerce

• Most medium-to-large businesses use TP for

their production systems. The business can’t

operate without it.

• It’s a huge slice of the computer system

market. One of the largest applications of

computers.

1/4/2012 5

TP System Infrastructure
• User’s viewpoint

– Enter a request from a browser or other display device

– The system performs some application-specific work,
which includes database accesses

– Receive a reply (usually, but not always)

• The TP system ensures that each transaction

– Is an independent unit of work

– Executes exactly once

– Produces permanent results

• TP system makes it easy to program transactions

• TP system has tools to make it easy to manage

1/4/2012 6

TP System Infrastructure …
Defines System and Application Structure

Front End Program

Request Controller
(routes requests and

supervises their execution)

Database System

Client

Back-End

(Server)

End-User

Transaction Server

requests

1/4/2012 7

System Characteristics

• Typically < 100 transaction types per application

• Transaction size has high variance. Typically,

– 0-30 disk accesses

– 10K - 1M instructions executed

– 2-20 messages

• A large-scale example: airline reservations

– Hundreds of thousands of active display devices

– Indirect access via Internet

– Tens of thousands of transactions per second, peak

1/4/2012 8

Availability
• Fraction of time system is able to do useful work

• Some systems are very sensitive to downtime

– Airline reservation, stock exchange, on-line retail, …

– Downtime is front page news

• Contributing factors

– Failures due to environment, system mgmt, h/w, s/w

– Recovery time

Downtime Availability

1 hour/day 95.8%

1 hour/week 99.41%

1 hour/month 99.86%

1 hour/year 99.9886%

1 hour/20years 99.99942%

1/4/2012 9

Application Servers
• A software product to create, execute and manage TP

applications

• Formerly called TP monitors. Some people say

App Server = TP monitor + web functionality.

• Programmer writes an app to process a single request.

App Server scales it up to a large, distributed system

– E.g. application developer writes programs to debit a checking

account and verify a credit card purchase.

– App Server helps system engineer deploy it to 10s/100s of

servers and 10Ks of displays

– App Server helps system engineer deploy it on the Internet,

accessible from web browsers

1/4/2012 10

Application Servers (cont’d)

• Components include

– An application programming interface (API)
(e.g., Enterprise Java Beans)

– Tools for program development

– Tools for system management (app deployment,
fault & performance monitoring, user mgmt, etc.)

• Enterprise Java Beans, IBM Websphere,
Microsoft .NET (COM+), Oracle Weblogic
and Application Server

1/4/2012 11

Front End Program

Request Controller

Transaction Server Transaction Server

Network

Message

Inputs

App Server Architecture, Pre-Web

• Boxes below are distributed on an intranet

Queues

1/4/2012 12

Automated Teller Machine

(ATM) Application Example

Request

Controller

Interbank

Transfer

Credit Card

Accounts

Loan

Accounts

Request

Controller

ATM ATM ATM ATM ATM ATM ATM ATM

Bank Branch 1 Bank Branch 2 Bank Branch 500

Checking

Accounts

1/4/2012 13

Web Server

Request Controller

Transaction Server Transaction Server

intranet

Message

Inputs

Application Server Architecture

Queues

other TP

systems

1/4/2012 14

Internet Retailer

Request

Controller

Music Computers

Web

Server

Electronics

The
Internet

Toys Books …

1/4/2012 15

Service Oriented Architecture (SOA)

Request

Controller

Music Computers

Web

Server

Electronics

The
Internet

Web Service W
e

b
 S

e
rv

ic
e

• Web services - interface and protocol standards

to do app server functions over the internet.

1/4/2012 16

Toys Books …

Enterprise Application Integration

(EAI)

• A software product to route requests between

independent application systems. It often includes

– A queuing system

– A message mapping system

– Application adaptors (SAP, Oracle PeopleSoft, etc.)

• EAI and Application Servers address a similar

problem, with different emphasis

• Examples

– IBM Websphere MQ, TIBCO, Vitria, Sun SeeBeyond

1/4/2012 17

ATM Example

with an EAI System

Interbank

Transfer

Credit Card

Accounts

Loan

Accounts

EAI Routing

ATM ATM ATM ATM ATM ATM ATM ATM

Bank Branch 1 Bank Branch 2 Bank Branch 500

Checking

Accounts

EAI Routing Queues Queues

1/4/2012 18

Workflow, or Business Process Mgmt
• A software product that executes multi-transaction

long-running scripts (e.g., process an order)

• Product components

– A workflow script language

– Workflow script interpreter and scheduler

– Workflow tracking

– Message translation

– Application and queue system adaptors

• Transaction-centric vs. document-centric

• Structured processes vs. case management

• Examples: IBM Websphere MQ Workflow, Microsoft BizTalk, SAP,

Vitria, Oracle Workflow, IBM FileNET, EMC Documentum, TIBCO

1/4/2012 19

Data Integration Systems

(Enterprise Information Integration)

Query Mediator

Checking

Accounts

Loan

Accounts

Credit card

Accounts

• Heterogeneous query systems (mediators).

It’s database system software, but …

• It’s similar to EAI with more focus on data

transformations than on message mgmt.

1/4/2012 20

Transactional Middleware

• In summary, there are many variations that

package different combinations of middleware

features

– Application Server

– Enterprise Application Integration

– Business process management (aka Workflow)

– Enterprise Server Bus

• New ones all the time, that defy categorization

1/4/2012 21

System Software Vendor’s View

• TP is partly a component product problem

– Hardware

– Operating system

– Database system

– Application Server

• TP is partly a system engineering problem

– Getting all those components to work together
to produce a system with all those “ilities”

• This course focuses primarily on the
Database System and Application Server

1/4/2012 22

Outline

1. The Basics

 2. ACID Properties

 3. Atomicity and Two-Phase Commit

 4. Performance

 5. Scalability

1/4/2012 23

1.2 The ACID Properties

• Transactions have 4 main properties

– Atomicity - all or nothing

– Consistency - preserve database integrity

– Isolation - execute as if they were run alone

– Durability - results aren’t lost by a failure

1/4/2012 24

Atomicity
• All-or-nothing, no partial results

– E.g. in a money transfer, debit one account, credit the

other. Either debit and credit both run, or neither runs.

– Successful completion is called Commit

– Transaction failure is called Abort

• Commit and abort are irrevocable actions

• An Abort undoes operations that already executed

– For database operations, restore the data’s previous value

from before the transaction

– But some real world operations are not undoable

• Examples - transfer money, print ticket, fire missile

1/4/2012 25

Example - ATM Dispenses Money

(a non-undoable operation)

T1: Start

 . . .

 Commit

Dispense Money

T1: Start

 . . .

 Dispense Money

 Commit

System crashes

Deferred operation

never gets executed

System crashes

Transaction aborts

Money is dispensed

1/4/2012 26

Reading Uncommitted Output Isn’t

Undoable
T1: Start

 ...

 Display output

 ...

 If error, Abort

T2: Start

 Get input from display

 ...

 Commit

User reads output

…

User enters input
Brain

transport

1/4/2012 27

Compensating Transactions

• A transaction that reverses the effect of another

transaction (that committed). For example,

– “Adjustment” in a financial system

– Annul a marriage

• Not all transactions have complete compensations

– E.g., Certain money transfers

– E.g., Fire missile, cancel contract

– Contract law talks a lot about appropriate compensations

 A well-designed TP application should have a

compensation for every transaction type

1/4/2012 28

Consistency

 Every transaction should maintain DB consistency

– Referential integrity - E.g., each order references an

existing customer number and existing part numbers

– The books balance (debits = credits, assets = liabilities)

 Consistency preservation is a property of a

transaction, not of the TP system

(unlike the A, I, and D of ACID)

• If each transaction maintains consistency,

then serial executions of transactions do too

1/4/2012 29

Some Notation

• ri[x] = Read(x) by transaction Ti

• wi[x] = Write(x) by transaction Ti

• ci = Commit by transaction Ti

• ai = Abort by transaction Ti

• A history is a sequence of such operations,

in the order that the database system

processed them

1/4/2012 30

Consistency Preservation Example
T1: Start;

 A = Read(x);

 A = A - 1;

 Write(y, A);

 Commit;

T2: Start;

 B = Read(x);

 C = Read(y);

 If (B -1> C) then B = B - 1;

 Write(x, B);

 Commit;

• Consistency predicate is x > y

• Serial executions preserve consistency.

Interleaved executions may not.

• H = r1[x] r2[x] r2[y] w2[x] w1[y]

– e.g., try it with x=4 and y=2 initially

1/4/2012 31

Isolation
• Intuitively, the effect of a set of transactions

should be the same as if they ran independently

• Formally, an interleaved execution of

transactions is serializable if its effect is

equivalent to a serial one

• Implies a user view where the system runs each

user’s transaction stand-alone

• Of course, transactions in fact run with lots of

concurrency, to use device parallelism

1/4/2012 32

Serializability Example 1
T1: Start;

 A = Read(x);

 A = A + 1;

 Write(x, A);

 Commit;

T2: Start;

 B = Read(y);

 B = B + 1;

 Write(y, B);

 Commit;

• H = r1[x] r2[y] w1[x] c1 w2[y] c2

• H is equivalent to executing

– T1 followed by T2

– T2 followed by T1

1/4/2012 33

Serializability Example 2
T1: Start;

 A = Read(x);

 A = A + 1;

 Write(x, A);

 Commit;

T2: Start;

 B = Read(x);

 B = B + 1;

 Write(y, B);

 Commit;

• H = r1[x] r2[x] w1[x] c1 w2[y] c2

• H is equivalent to executing T2 followed by T1

• Note, H is not equivalent to T1 followed by T2

• Also, note that T1 started before T2 and finished

before T2, yet the effect is that T2 ran first

1/4/2012 34

Serializability Examples

• Client must control the relative order of transactions,
using handshakes
(wait for T1 to commit before submitting T2)

• Some more serializable executions
r1[x] r2[y] w2[y] w1[x]  T1 T2  T2 T1

r1[y] r2[y] w2[y] w1[x]  T1 T2  T2 T1

r1[x] r2[y] w2[y] w1[y]  T2 T1  T1 T2

• Serializability says the execution is equivalent to
some serial order, not necessarily to all serial orders

1/4/2012 35

Non-Serializable Examples
• r1[x] r2[x] w2[x] w1[x] (race condition)

– e.g., T1 and T2 are each adding 100 to x

• r1[x] r2[y] w2[x] w1[y]

– e.g., each transaction is trying to make x = y,
but the interleaved effect is a swap

• r1[x] r1[y] w1[x] r2[x] r2[y] c2 w1[y] c1

(inconsistent retrieval)

– e.g., T1 is moving $100 from x to y

– T2 sees only half of the result of T1

• Compare to the OS view of synchronization

1/4/2012 36

Durability

• When a transaction commits, its results will

survive failures (e.g., of the application, OS,

DB system … even of the disk)

• Makes it possible for a transaction to be a legal

contract

• Implementation is usually via a log

– DB system writes all transaction updates to its log

– To commit, it adds a record “commit(Ti)” to the log

– When the commit record is on disk, the transaction is

committed

– System waits for disk ack before acking to user

1/4/2012 37

Outline

1. The Basics

2. ACID Properties

 3. Atomicity and Two-Phase Commit

 4. Performance

 5. Scalability

1/4/2012 38

1.3 Atomicity and Two-Phase Commit

• Distributed systems make atomicity harder

• Suppose a transaction updates data managed by
two DB systems

• One DB system could commit the transaction,
but a failure could prevent the other system from
committing

• The solution is the two-phase commit protocol

• Abstract “DB system” by resource manager
(could be a SQL DBMS, message mgr, queue
mgr, OO DBMS, etc.)

1/4/2012 39

Two-Phase Commit

• Main idea - all resource managers (RMs) save a
durable copy of the transaction’s updates before
any of them commit

• If one RM fails after another commits, the failed
RM can still commit after it recovers

• The protocol to commit transaction T

– Phase 1 - T’s coordinator asks all participant RMs to
“prepare the transaction”. Each participant RM replies
“prepared” after T’s updates are durable.

– Phase 2 - After receiving “prepared” from all
participant RMs, the coordinator tells all participant
RMs to commit

1/4/2012 40

Two-Phase Commit

System Architecture

Resource

Manager

Transaction

Manager (TM)

Application Program

Other

Transaction

Managers

1. Start transaction returns a unique transaction identifier

2. Resource accesses include the transaction identifier

 For each transaction, RM registers with TM

3. When application asks TM to commit, the TM runs

 two-phase commit

Start

Commit, Abort

Read,
Write

1/4/2012 41

Outline

1. The Basics

2. ACID Properties

3. Atomicity and Two-Phase Commit

 4. Performance

 5. Scalability

1/4/2012 42

1.4 Performance Requirements

• Measured in max transaction per second (tps) or
per minute (tpm), and dollars per tps or tpm

• Dollars measured by list purchase price plus 5 year
vendor maintenance (“cost of ownership”)

• Workload typically has this profile
– 10% application server plus application
– 30% communications system (not counting presentation)
– 50% DB system

• TP Performance Council (TPC) sets standards

– http://www.tpc.org

• TPC A & B (‘89-’95), now TPC C & E

1/4/2012 43

TPC-A/B — Bank Tellers

Start

 Read message from terminal (100 bytes)

 Read+write account record (random access)

 Write history record (sequential access)

 Read+write teller record (random access)

 Read+write branch record (random access)

 Write message to terminal (200 bytes)

Commit

• End of history and branch records are bottlenecks

• Obsolete (a retired standard), but interesting

• Input is 100 byte message requesting deposit/withdrawal

• Database tables = {Accounts, Tellers, Branches, History}

1/4/2012 44

TPC-C Order-Entry for Warehouse

• TPC-C uses heavier weight transactions

Table Rows/Whse Bytes/row

Warehouse 1 89

District 10 95

Customer 30K 655

History 30K 46

Order 30K 24

New-Order 9K 8

OrderLine 300K 54

Stock 100K 306

Item 100K 82

1/4/2012 45

TPC-C Transactions

• New-Order

– Get records describing a warehouse, customer, & district

– Update the district

– Increment next available order number

– Insert record into Order and New-Order tables

– For 5-15 items, get Item record, get/update Stock record

– Insert Order-Line Record

• Payment, Order-Status, Delivery, Stock-Level have

similar complexity, with different frequencies

• tpmC = number of New-Order transaction per min

1/4/2012 46

Comments on TPC-C

• Enables apples-to-apples comparison of TP

systems

• Does not predict how your application will run,

or how much hardware you will need,

or which system will work best on your workload

• Not all vendors optimize for TPC-C

– Some high-end system sales require custom

benchmarks

1/4/2012 47

Current TPC-C Numbers
• All numbers are sensitive to date submitted

• Systems

– cost $60K (Dell/HP) - $12M (Oracle/IBM)

– mostly Oracle/DB2/MS SQL on Unix variants/Windows

– $0.40 - $5 / tpmC

• Example of high throughput
– Oracle, 30M tpmC, $30.0M, $1/tpmC, Oracle/Solaris

• Example of low cost
– HP ProLiant, 290K tpmC, $113K, $0.39/tpmC, Oracle/Linux

1/4/2012 48

TPC-E

• Approved in 2007

• Models a stock trading app for brokerage firm

• Should replace TPC-C, it’s database-centric

• More complex but less disk IO per transaction

1/4/2012 49

TPC-E

• 33 tables in four sets

– Market data (11 tables)

– Customer data (9 tables)

– Broker data (9 tables)

– Reference data (4 tables)

• Scale

– 500 customers per tpsE

1/4/2012 50

TPC-E Transactions

• Activities

– Stock-trade, customer-inquiry, feeds from markets,

market-analysis

• tpsE = number of Trade-Result transaction per sec

• Trade-Result

– Completes a stock market trade

– Receive from market exchange confirmation & price

– Update customer‘s holdings

– Update broker commission

– Record historical information

1/4/2012 51

TPC-E Transactions

1/4/2012 52

Name Access Description

Broker-Volume RO DSS-type medium query

Customer-Position RO “What am I worth?”

Market-Feed RW Processing of Stock Ticker

Market-Watch RO “What’s the market doing?”

Security-Detail RO Details about a security

Trade-Lookup RO Look up historical trade info

Trade-Order RW Enter a stock trade

Trade-Result RW Completion of a stock trade

Trade-Status RO Check status of trade order

Trade-Update RW Correct historical trade info

Current TPC-E Numbers
• Systems

– Cost $60K - $2.3M

– Almost all are MS SQL on Windows

– $130 - $250 / tpsE

• Example of high throughput

– IBM, 4.5k tpsE, $645k, $140/tpsE, MS SQL/Windows

• Example of low cost
– IBM, 2.9K tpsE, $371K, $130/tpsE, MS SQL/Windows

1/4/2012 53

Outline

1. The Basics

2. ACID Properties

3. Atomicity and Two-Phase Commit

4. Performance

 5. Scalability

1/4/2012 54

1.5 Scalability
• Techniques for better performance

– Textbook, Chapter 2, Section 6

• Scale-up

– Caching

– Resource Pooling

• Scale-out

– Partitioning

– Replication

1/4/2012 55

Caching

• Key idea

– Use more memory

– Keep a copy of data from its permanent home

– Accessing a cached copy is fast

• Key issues

– Which data to keep

• Popular read-only data

– Cache replacement

– What if original data is updated

• Invalidations

• Timeouts

1/4/2012 56

Caching

• Applied at multiple levels

– Database and application server

• Updates

– Write through

• Better cache coherence

– Write back

• Batching and write absorption

• Example products

– Memcached, MS Velocity

1/4/2012 57

Resource Pooling

• Key idea

– If a logical resource is expensive to create and cheap

to access, then manage a pool of the resource

• Examples

– Session pool

– Thread pool

1/4/2012 58

Partitioning

• To add system capacity, add server machines

• Sometimes, you can just relocate some server

processes to different machines

• But if an individual server process overloads one

machine, then you need to partition the process

– Example – One server process manages flights, cars,

and hotel rooms. Later, you partition them in separate

processes.

– We need mapping from resource name to server name

1/4/2012 59

Partitioning: Routing

• Sometimes, it’s not enough to partition by

resource type, because a resource is too popular

– Example: flights

• Partition popular resource based on value ranges

– Example – flight number 1-1000 on Server A, flight

number 1000-2000 on Server B, etc.

– Request controller has to direct its calls based on

parameter value (e.g. flight number)

– This is called parameter-based routing

• E.g., range, hashing, dynamic

1/4/2012 60

Replication

• Replication - using multiple copies of a server or

resource for better availability and performance.

– Replica and Copy are synonyms

• If you’re not careful, replication can lead to

– worse performance - updates must be applied to all

replicas and synchronized

– worse availability - some algorithms require multiple

replicas to be operational for any of them to be used

1/4/2012 61

Replicated Server

1/4/2012 62

• Can replicate servers on a common resource

– Data sharing - DB servers communicate with shared disk

Resource

Server Replica 1 Server Replica 2

Client

• Helps availability for process (not resource) failure

• Requires a replica cache coherence mechanism, so
this helps performance only if

– Little conflict between transactions at different servers or

– Loose coherence guarantees (e.g. read committed)

Replicated Resource

1/4/2012 63

Resource replica

Server Replica 1 Server Replica 2

Client Client

Resource replica

• To get more improvement in availability,
replicate the resources (too)

• Also increases potential throughput

• This is what’s usually meant by replication

Outline

1. The Basics

2. ACID Properties

3. Atomicity and Two-Phase Commit

4. Performance

5. Scalability

1/4/2012 64

What’s Next?

• This chapter covered TP system structure and

properties of transactions and TP systems

• The rest of the course drills deeply into each

of these areas, one by one.

1/4/2012 65

Next Steps

• We covered

– Chapter 1

– Chapter 2, Section 6

• Assignment 1

• Teams for the project

1/4/2012 66

