1/4/2012

1. Introduction

CSEP 545 Transaction Processing
Philip A. Bernstein
Sameh Elnikety

Copyright ©2012 Philip A. Bernstein

Outline

1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit

4. Performance
5. Scalability

1/4/2012

1.1 The Basics - What’s a Transaction?

* The execution of a program that performs an
administrative function by accessing a shared
database, usually on behalf of an on-line user.

Examples

» Reserve an airline seat. Buy an airline ticket.
« Withdraw money from an ATM.

 Verify a credit card sale.

« QOrder an item from an Internet retailer.
 Place a bid at an on-line auction.

« Submit a corporate purchase order.

1/4/2012 3

The “ities’” are What Makes

Transaction Processing (TP) Hard

1/4/2012

Reliability - system should rarely fall

Avalilability - system must be up all the time
Response time - within 1-2 seconds

Throughput - thousands of transactions/second
Scalability - start small, ramp up to Internet-scale
Security — for confidentiality and high finance
Configurability - for above requirements + low cost
Atomicity - no partial results

Durability - a transaction Is a legal contract
Distribution - of users and data

What Makes TP Important?

e [t’s at the core of electronic commerce

» Most medium-to-large businesses use TP for
their production systems. The business can’t
operate without It.

* It’s a huge slice of the computer system
market. One of the largest applications of
computers.

1/4/2012

TP System Infrastructure
» User’s viewpoint
— Enter a request from a browser or other display device

— The system performs some application-specific work,
which includes database accesses

— Receive a reply (usually, but not always)

* The TP system ensures that each transaction
— Is an independent unit of work
— Executes exactly once
— Produces permanent results

« TP system makes It easy to program transactions
» TP system has tools to make It easy to manage

1/4/2012

1/4/2012

TP System Infrastructure ...
Defines System and Application Structure

End-User —»g a
|

Front End Program — Client
requestsl
Request Controller
(routes requests and
supervises their execution) < Back-End
Transaction Server (Server)

Database System

System Characteristics

» Typically < 100 transaction types per application

 Transaction size has high variance. Typically,
— 0-30 disk accesses
— 10K - 1M Instructions executed
— 2-20 messages

A large-scale example: airline reservations
— Hundreds of thousands of active display devices

— Indirect access via Internet
— Tens of thousands of transactions per second, peak

1/4/2012

Avalilability
 Fraction of time system is able to do useful work

» Some systems are very sensitive to downtime
— Alrline reservation, stock exchange, on-line retail, ...
— Downtime is front page news

Downtime Avallability
1 hour/day 95.8%

1 hour/week 99.41%

1 hour/month 99.86%

1 hour/year 99.9886%
1 hour/20years 99.99942%

» Contributing factors
— Failures due to environment, system mgmt, h/w, s/w
— Recovery time

1/4/2012

Application Servers

A software product to create, execute and manage TP
applications

* Formerly called TP monitors. Some people say
App Server = TP monitor + web functionality.

» Programmer writes an app to process a single request.
App Server scales it up to a large, distributed system

— E.qg. application developer writes programs to debit a checking
account and verify a credit card purchase.

— App Server helps system engineer deploy it to 10s/100s of
servers and 10Ks of displays

— App Server helps system engineer deploy it on the Internet,
accessible from web browsers

1/4/2012

Application Servers (cont’d)

« Components include

— An application programming interface (API)
(e.g., Enterprise Java Beans)

— Tools for program development

— Tools for system management (app deployment,
fault & performance monitoring, user mgmt, etc.)

 Enterprise Java Beans, IBM Websphere,
Microsoft .NET (COM+), Oracle Weblogic
and Application Server

1/4/2012

11

App Server Architecture, Pre-Web

e Boxes below are distributed on an intranet

Message
Front End Program INputs
Queues . Requests
Network

Request Controller | —/\WWW—

Transaction Server

1/4/2012

Transaction Server

Automated Teller Machine
(ATM) Application Example

Bank Branch1 Bank Branch 2 Bank Branch 500
ATM [==«| ATM ATM [===| ATM || === || ATM |===| ATM
| | | | | |

Request Request

Controller Controller
Interbank | | Checking Credit Card Loan
Transfer Accounts Accounts Accounts

1/4/2012

13

Application Server Architecture

Web Browser

http
Q

htto Message

Web Server

Inputs
Requests
P \ | other TP
Request Controller | — Intranet systems

Transaction Server Transaction Server

1/4/2012

1/4/2012

Internet Retaller

The
Internet

T

Toys J Books | ...

Music

Web Request
Server Controller
Electronics Computers

15

Service Oriented Architecture (SOA)

» \Web services - interface and protocol standards
to do app server functions over the internet.

‘a N | The

Internet

Toys | Books ...

Web Service

Web Service

Web Request
Server Controller

1
Music Electronics Computers

1/4/2012 16

Enterprise Application Integration
=)

A software product to route requests between
Independent application systems. It often includes
— A queuing system
— A message mapping system
— Application adaptors (SAP, Oracle PeopleSoft, etc.)

« EAI and Application Servers address a similar
problem, with different emphasis

« Examples
— IBM Websphere MQ, TIBCO, Vitria, Sun SeeBeyond

1/4/2012

17

ATM Example
with an EAI System

Bank Branch1 Bank Branch 2 Bank Branch 500
ATM |===| ATM ATM === ATM || === || ATM === ATM
| | | | | |

—

EAI Routing| === - EAI Routing
Interbank | | Checking Credit Card Loan
Transfer Accounts Accounts Accounts

1/4/2012

18

Workflow, or Business Process Mgmt

A software product that executes multi-transaction
long-running scripts (e.g., process an order)

Product components

— A workflow script language

— Workflow script interpreter and scheduler
— Workflow tracking

— Message translation

— Application and queue system adaptors

Transaction-centric vs. document-centric

Structured Processes vs. case management

Examples: IBM Websphere MQ Workflow, Microsoft BizTalk, SAP,
Vitria, Oracle Workflow, IBM FileNET, EMC Documentum, TIBCO

1/4/2012 19

Data Integration Systems
(Enterprise Information Integration)

Query Mediator

Checking Loan Credit card
Accounts) LAccounts) L_Accounts

» Heterogeneous query systems (mediators).
It’s database system software, but ...

» It’s stmilar to EAI with more focus on data
transformations than on message mgmt.

1/4/2012

20

Transactional Middleware

 In summary, there are many variations that
package different combinations of middleware
features
— Application Server
— Enterprise Application Integration
— Business process management (aka Workflow)
— Enterprise Server Bus

* New ones all the time, that defy categorization

1/4/2012

21

System Software Vendor’s View

« TP Is partly a component product problem
— Hardware
— Operating system
— Database system
— Application Server

» TP Is partly a system engineering problem

— Getting all those components to work together
to produce a system with all those “ilities”

 This course focuses primarily on the
Database System and Application Server

1/4/2012 22

1/4/2012

Outline

v'1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4, Performance
5. Scalability

A

1/4/2012

1.2 The ACID Properties

 Transactions have 4 main properties
— Atomicity - all or nothing
— Consistency - preserve database integrity
— Isolation - execute as If they were run alone
— Durabllity - results aren’t lost by a failure

24

Atomicity
» All-or-nothing, no partial results

— E.g. In a money transfer, debit one account, credit the
other. Either debit and credit both run, or neither runs.

— Successful completion is called Commit
— Transaction failure is called Abort

« Commit and abort are irrevocable actions
« An Abort undoes operations that already executed

— For database operations, restore the data’s previous value
from before the transaction

— But some real world operations are not undoable
« Examples - transfer money, print ticket, fire missile

1/4/2012 25

Example - ATM Dispenses Money
(a non-undoable operation)

T1:

Start

Dispense Money

Comﬂit

T1:

Start

Commit

System crashes
Transaction aborts
Money Is dispensed

<
<::*Dispense Money
D

eferred operation
never gets executed

1/4/2012

System crashes

Reading Uncommitted Output Isn’t

Undoable

T1:

Start

Display output-

If error,

S User reads output a
Abort , %%

1/4/2012

User enters mput
Braln

transport

T2: Start
———»Get input from display

Commit

27

Compensating Transactions

e A transaction that reverses the effect of another
transaction (that committed). For example,

— “Adjustment” 1n a financial system
— Annul a marriage

 Not all transactions have complete compensations
— E.g., Certain money transfers
— E.g., Fire missile, cancel contract
— Contract law talks a lot about appropriate compensations

¢ A well-designed TP application should have a
compensation for every transaction type

1/4/2012 28

Consistency

e Every transaction should maintain DB consistency

— Referential integrity - E.g., each order references an
existing customer number and existing part numbers

— The books balance (debits = credits, assets = liabilities)

¢ Consistency preservation is a property of a
transaction, not of the TP system
(unlike the A, I, and D of ACID)

» |f each transaction maintains consistency,
then serial executions of transactions do too

1/4/2012 VAY

Some Notation

» 1:[x] = Read(x) by transaction T,
« wWi[x] = Write(x) by transaction T,
« ¢. = Commit by transaction T,
 a. = Abort by transaction T

A history Is a sequence of such operations,
In the order that the database system
processed them

1/4/2012

30

Consistency Preservation Example

T,: Start; T,: Start;
A = Read(x); B = Read(x);
A=A-1: C = Read(y);
Write(y, A), I (B -1> C) then B =B - 1;
Commit; Write(x, B);
Commit;

« Consistency predicate iIs X >y

» Serial executions preserve consistency.
Interleaved executions may not.

* H=ry[x] ry[x] ry[y] w,[x] w,[y]
— e.g., try It with x=4 and y=2 initially

1/4/2012

1/4/2012

|solation

Intuitively, the effect of a set of transactions
should be the same as If they ran independently

Formally, an interleaved execution of
transactions is serializable if its effect is
equivalent to a serial one

Implies a user view where the system runs each
user’s transaction stand-alone

Of course, transactions In fact run with lots of
concurrency, to use device parallelism

32

Serializability Example 1

T,: Start; T,: Start;
A = Read(x): B = Read(y);
JANIANE S B=B+1;
Write(x, A); Write(y, B);
Commit; Commit;

* H=r[x] r,lyl w,[x] ¢, w[y] ¢,
* H Is equivalent to executing

— T, followed by T,

— T, followed by T,

1/4/2012

33

Serializability Example 2

T,: Start; T,: Start;
A = Read(x); B = Read(x);
A=A+1,; B=B+1;
Write(x, A); Write(y, B);
Commit; Commit;

e H= rl[x] rZ[X] Wl[X] Cq Wz[Y] C,
« H is equivalent to executing T, followed by T,
 Note, H is not equivalent to T, followed by T,

 Also, note that T, started before T, and finished
before T,, yet the effect is that T, ran first

1/4/2012

34

Serializability Examples

e Client must control the relative order of transactions,
using handshakes
(wait for T, to commit before submitting T,)

« Some more serializable executions
Xl wolyl wiX] =T, T,=T, T,

Y] BIYI WYl wi X =T, T, #T, Ty

LIXT Lyl wolyl wylyl =T, T, #T, T,
o Serializability says the execution is equivalent to
some serial order, not necessarily to all serial orders

1/4/2012 35

Non-Serializable Examples

* 1,[X] ro[X] w,[Xx] w,[X] (race condition)
—e.g., T, and T, are each adding 100 to x
o 1y[X] roly] wolx] wy[y]

— e.g., each transaction Is trying to make x =y,
but the interleaved effect Is a swap

* 0 [X] ralyl wylX] ro[X] roly] ¢, waly] ¢,
(Inconsistent retrieval)

—e.g., T, is moving $100 from x to y
— T, sees only half of the result of T,

« Compare to the OS view of synchronization

1/4/2012

36

Durability

 \When a transaction commits, its results will

survive failures (e.g., of the application, OS,
DB system ... even of the disk)

» Makes It possible for a transaction to be a legal
contract

 Implementation is usually via a log
— DB system writes all transaction updates to its log

— To commit, it adds a record “commit(T;)” to the log

— When the commit record 1s on disk, the transaction Is
committed

— System walits for disk ack before acking to user

1/4/2012

37

1/4/2012

Outline

v'1. The Basics

v'2. ACID Properties
3. Atomicity and Two-Phase Commit
4, Performance
5. Scalability

38

1.3 Atomicity and Two-Phase Commit

1/4/2012

Distributed systems ma

Ke atomicity harder

Suppose a transaction u
two DB systems

One DB system could c

ndates data managed by

ommit the transaction,

but a failure could prevent the other system from

committing

The solution is the two-

phase commit protocol

Abstract “DB system’ by resource manager
(could be a SQL DBMS, message mgr, queue

mgr, OO DBMS, etc.)

39

Two-Phase Commit

« Main idea - all resource managers (RMs) save a
durable copy of the transaction’s updates before
any of them commit

* |If one RM falls after another commits, the failed
RM can still commit after it recovers

» The protocol to commit transaction T

— Phase 1 - T’s coordinator asks all participant RMs to
“prepare the transaction”. Each participant RM replies
“prepared” after T’s updates are durable.

— Phase 2 - After receiving “prepared” from all
participant RMs, the coordinator tells all participant

RMSs to commit

1/4/2012 40

Two-Phase Commit
System Architecture

Application Program

lRe_ad, Start

Lelrisz Commit, Abort

Resource >Transaction X Other _
Manager || YERELE @) Transaction

Managers

1. Start transaction returns a unique transaction identifier

2. Resource accesses Include the transaction identifier
For each transaction, RM registers with TM

3. When application asks TM to commit, the TM runs
two-phase commit

1/4/2012

41

1/4/2012

Outline

v'1. The Basics

v'2. ACID Properties

v'3. Atomicity and Two-Phase Commit
4. Performance
5. Scalability

42

1.4 Performance Requirements

« Measured in max transaction per second (tps) or
per minute (tpm), and dollars per tps or tpm

 Dollars measured by list purchase price plus 5 year
vendor maintenance (“cost of ownership”)

» Workload typically has this profile
— 10% application server plus application
— 30% communications system (not counting presentation)

— 950% DB system
« TP Performance Council (TPC) sets standards
— http://www.tpc.org

. TPC A & B (‘89-°95), now TPC C & E

1/4/2012 43

TPC-A/B — Bank Tellers

» QObsolete (a retired standard), but interesting
 [nput is 100 byte message requesting deposit/withdrawal
 Database tables = {Accounts, Tellers, Branches, History}

Start
Read message from terminal (100 bytes)
Read+write account record (random access)
Write history record (sequential access)
Read+write teller record (random access)
Read+write branch record (random access)
Write message to terminal (200 bytes)

Commit

 End of history and branch records are bottlenecks

1/4/2012

44

TPC-C Order-Entry for Warehouse

Table Rows/Whse | Bytes/row
Warehouse 1 89
District 10 95
Customer 30K 655
History £10] ¢ 46
Order 30K 24
New-Order oK 8
OrderLine 300K 54
Stock 100K 306
[tem 1{0[0] ¢ 82

» TPC-C uses heavier weight transactions

1/4/2012

45

TPC-C Transactions

* New-Order
— Get records describing a warehouse, customer, & district
— Update the district
— Increment next available order number
— Insert record into Order and New-Order tables
— For 5-15 items, get Item record, get/update Stock record
— Insert Order-Line Record

« Payment, Order-Status, Delivery, Stock-Level have
similar complexity, with different frequencies

« tpmC = number of New-Order transaction per min

1/4/2012 46

Comments on TPC-C

 Enables apples-to-apples comparison of TP
systems

 Does not predict how your application will run,
or how much hardware you will need,
or which system will work best on your workload

 Not all vendors optimize for TPC-C

— Some high-end system sales require custom
benchmarks

1/4/2012 47

Current TPC-C Numbers

 All numbers are sensitive to date submitted

e Systems
— cost $60K (Dell/HP) - $12M (Oracle/IBM)
— mostly Oracle/DB2/MS SQL on Unix variants/Windows
— $0.40 - $5/tpmC

« Example of high throughput
— Oracle, 30M tpmC, $30.0M, $1/tpmC, Oracle/Solaris

« Example of low cost
— HP ProLiant, 290K tpmC, $113K, $0.39/tpmC, Oracle/Linux

1/4/2012 48

TPC-E

« Approved in 2007

« Models a stock trading app for brokerage firm
 Should replace TPC-C, it’s database-centric

» More complex but less disk 10 per transaction

1/4/2012

49

TPC-E

33 tables in four sets
— Market data (11 tables)
— Customer data (9 tables)
— Broker data (9 tables)
— Reference data (4 tables)

« Scale
— 9500 customers per tpsE

1/4/2012

50

TPC-E Transactions

« Activities
— Stock-trade, customer-inquiry, feeds from markets,
market-analysis

 tpskE = number of Trade-Result transaction per sec

» Trade-Result
— Completes a stock market trade
— Receive from market exchange confirmation & price

— Update customer‘s holdings
— Update broker commission
— Record historical information

1/4/2012

o1

TPC-E Transactions

Name Access | Description
Broker-Volume RO DSS-type medium query
Customer-Position RO |[“What am | worth?”
Market-Feed RW | Processing of Stock Ticker
Market-Watch RO | “What's the market doing?”
Security-Detall RO Details about a security
Trade-Lookup N0 Look up historical trade info
Trade-Order RW | Enter a stock trade
Trade-Result RW | Completion of a stock trade
Trade-Status N0 Check status of trade order
Trade-Update RW | Correct historical trade info

1/4/2012

52

Current TPC-E Numbers

e Systems
— Cost $60K - $2.3M
— Almost all are MS SQL on Windows
— $130 - $250 / tpskE

« Example of high throughput

— IBM, 4.5k tpsk, $645k, $140/tpsE, MS SQL/Windows

« Example of low cost
— IBM, 2.9K tpsk, $371K, $130/tpsk, MS SQL/Windows

1/4/2012

53

1/4/2012

Outline

v'1. The Basics
v'2. ACID Properties
v'3. Atomicity and Two-Phase Commit
v'4. Performance
5. Scalability

o4

1.5 Scalability

» Techniques for better performance
— Textbook, Chapter 2, Section 6
 Scale-up
— Caching
— Resource Pooling
 Scale-out
— Partitioning
— Replication

1/4/2012

55

Caching

« Key idea
— Use more memory
— Keep a copy of data from its permanent home
— Accessing a cached copy Is fast
» Key Issues
— Which data to keep
 Popular read-only data
— Cache replacement

— What if original data iIs updated
 |Invalidations
e Timeouts

1/4/2012

56

Caching

« Applied at multiple levels
— Database and application server

« Updates

— Write through
« Better cache coherence

— Write back
 Batching and write absorption

» Example products
— Memcached, MS Velocity

1/4/2012

S7

Resource Pooling

« Key idea
— If a logical resource Is expensive to create and cheap
to access, then manage a pool of the resource

« Examples
— Session pool
— Thread pool

1/4/2012

58

Partitioning

« To add system capacity, add server machines

« Sometimes, you can just relocate some server
processes to different machines

« But If an individual server process overloads one

machine, then you need to partition the process

— Example — One server process manages flights, cars,

and hotel rooms. Later, you partition them in separate
Processes.

— We need mapping from resource name to server name

1/4/2012 59

Partitioning: Routing

* Sometimes, it’s not enough to partition by
resource type, because a resource Is too popular

— Example: flights

« Partition popular resource based on value ranges

— Example — flight number 1-1000 on Server A, flight
number 1000-2000 on Server B, etc.

— Request controller has to direct its calls based on
parameter value (e.g. flight number)

— This Is called parameter-based routing
 E.g., range, hashing, dynamic

1/4/2012

60

Replication

 Replication - using multiple copies of a server or
resource for better availability and performance.

— Replica and Copy are synonyms

 If you’re not careful, replication can lead to

— worse performance - updates must be applied to all
replicas and synchronized

— worse availability - some algorithms require multiple
replicas to be operational for any of them to be used

1/4/2012 61

Replicated Server
e Can replicate Servers on a common resource

— Data sharing - DB servers communicate with shared disk
Client

Server Replica 1| | Server Replica 2

» Helps availability for process (not resource) failure
 Requires a replica cache coherence mechanism, so
this helps performance only If
— Little conflict between transactions at different servers or
— Loose coherence guarantees (e.g. read committed)

1/4/2012 62

Replicated Resource

* To get more improvement in availability,
replicate the resources (too)

 Also increases potential throughput
* This 1s what’s usually meant by replication

Client Client

Server Replica 1 Server Replica 2

ﬁjrce replﬁ ﬁme replﬁ

1/4/2012

63

1/4/2012

Outline

v'1. The Basics

v'2. ACID Properties

v'3. Atomicity and Two-Phase Commit
v'4. Performance

v'5. Scalability

64

What’s Next?

 This chapter covered TP system structure and
properties of transactions and TP systems

* The rest of the course drills deeply into each
of these areas, one by one.

1/4/2012 65

Next Steps

» We covered
— Chapter 1
— Chapter 2, Section 6

« Assignment 1
« Teams for the project

1/4/2012

66

