2/29/2012

10. Replication

CSEP 545 Transaction Processing
Philip A. Bernstein
Sameh Elnikety

Copyright ©2012 Philip A. Bernstein

Outline

1. Introduction

2. Primary-Copy Replication
3. Multi-Master Replication
4. Other Approaches

5. Products

2/29/2012

1. Introduction

 Replication - using multiple copies of a server or
resource for better availability and performance.

— Replica and Copy are synonyms

 If you’re not careful, replication can lead to

— worse performance - updates must be applied to all
replicas and synchronized

— worse availability - some algorithms require multiple
replicas to be operational for any of them to be used

2/29/2012

Read-only Database

Database
Server

Database
Server 1

Database
Server 2

Database
Server 3

* Ty=1rlx]}

2/29/2012

Update-only Database

Database
Server

Database
Server 1

Database
Server 2

Database
Server 3

* Ty ={W[x=1]}
* T, ={W[x=2]}

2/29/2012

Update-only Database

Database
Server

Database
Server 1

Database
Server 2

Database
Server 3

* Ty ={W[x=1]}
* T,={wly=1] }

2/29/2012

Replicated Database

Database
Server 1

* Objective
— Avalilability
— Performance
« Transparency

— 1 copy serializability

« Challenge

— Propagating and synchronizing updates

2/29/2012

Database
Server 2

Database
Server 3

Replicated Server
« Can replicate servers on a common resource
— Data sharing - DB servers communicate with shared disk

Client

Server Replica 1| | Server Replica 2

* Helps availability for process (not resource) failure
» Requires a replica cache coherence mechanism, so
this helps performance only if
— little conflict between transactions at different servers or
— loose coherence guarantees (e.g. read committed)

2/29/2012

Replicated Resource

» To get more improvement in availability,
replicate the resources (too)

 Also increases potential throughput
* This 1s what’s usually meant by replication
 It’s the scenario we’ll focus on

Client Client

Server Replica 1 Server Replica 2

2/29/2012

Synchronous Replication

 Replicas function just like a non-replicated resource
— Txn writes data item x. System writes all replicas of x.
— Synchronous — replicas are written within the update txn

— Asynchronous — One replica is updated immediately.
Other replicas are updated later

Start | (Write(x1) - x1
Write(x)< Write(x2) E X2
Commit | { Write(x3)

» Problems with synchronous replication

— Too expensive for most applications, due to heavy
distributed transaction load (2-phase commit)

— Can’t control when updates are applied to replicas
2/29/2012 10

Synchronous Replication - Issues

* |f you just use transactions, availability suffers.

 For high-availability, the algorithms are complex and
expensive, because they require heavy-duty
synchronization of failures.

e ... of failures? How do you synchronize failures?
« Assume replicas X,, Xg of x and y., yp of y

AN » Yp faills — w;[yc] Notequivalenttoa
one-copy execution,

_ even if X, and yp
rlYpl > X fails > W,[Xg] never recover!

« DBMS products support it only in special situations

2/29/2012

11

Atomicity & Isolation Goal

One-copy serializability (abbr. 1SR)

— An execution of transactions on the replicated database has
the same effect as a serial execution on a one-copy database.

Readset (resp. writeset) - the set of data items (not

copies) that a transaction reads (resp. writes).

1SR Intuition: the execution Is SR and in an equivalent
serial execution, for each txn T and each data item X In
readset(T), T reads from the most recent txn that wrote
Into any copy of x.

To check for 1SR, first check for SR (using SG), then
see 1f there’s equivalent serial history with the above

property

2/29/2012

12

Atomicity & Isolation (cont’d)

* Previous example was not 1SR. It is equivalent to

— I1[Xal Wylyc] ralypl wolXg] and

— I,[Yp] Wo[Xg] ri[Xa]l WilYc]
— but In both cases, the second transaction does not read Its
Input from the previous transaction that wrote that input.

* These are 1SR
— Ii[Xal Wi[yp] ralyn] WaolXg]
— I[Xal Wilyc]l wWilypl ralyp] WaolXal wolXg]
» The previous history is the one you would expect

— Each transaction reads one copy of its readset and
writes into all copies of its writeset

« But it may not always be feasible, because some copies
may be unavailable.

2/29/2012

Asynchronous Replication

Asynchronous replication

— Each transaction updates one replica.

— Updates are propagated later to other replicas.
Primary copy: Each data item has a primary copy
— All transactions update the primary copy

— Other copies are for queries and failure handling
Multi-master: Transactions update different copies
— Useful for disconnected operation, partitioned network
Both approaches ensure that

— Updates propagate to all replicas

— If new updates stop, replicas converge to the same state

Primary copy ensures serializability, and often 1SR
— Multi-master does not.

2/29/2012

14

2. Primary-Copy Replication

 Designate one replica as the primary copy (publisher)
 Transactions may update only the primary copy

« Updates to the primary are sent later to secondary replicas
(subscribers) in the order they were applied to the primary

T1: Start |
... Write(x1) ...
Commit

T2-

Tn / e Secondaries

2/29/2012

Update Propagation

 Collect updates at the primary using triggers or
by post-processing the log

— Triggers: on every update at the primary, a trigger fires
to store the update in the update propagation table.

— Log post-processing: “sniff” the log to generate update
propagations
 Log post-processing (log sniffing)
— Saves triggered update overhead during on-line txn.
— But R/W log synchronization has a (small) cost
« Optionally identify updated fields to compress log
« Most DB systems support this today.

2/29/2012 16

Update Processing 1/2

At the replica, for each tx T In the propagation stream,
execute a refresh tx that applies T’s updates to replica.

» Process the stream serially

— Otherwise, conflicting transactions may run in a
different order at the replica than at the primary.

— Suppose log contains w,[X] ¢; wW,[X] C,.
Obviously, T, must run before T, at the replica.

— So the execution of update transactions Is serial.
« Optimizations
— Batching: {w(x)} {w(y)} -> {w(x), w(y)}

— “Concurrent” execution
2/29/2012

17

Update Processing 2/2

» To get a 1SR execution at the replica

— Refresh transactions and read-only queries use an
atomic and isolated mechanism (e.g., 2PL)

* Why this works
— The execution Is serializable

— Each state In the serial execution IS one that
occurred at the primary copy

— Each query reads one of those states
« Client view
— Session consistency

2/29/2012

18

Request Propagation

« An alternative to propagating updates is to propagate
procedure calls (e.g., a DB stored procedure call).

_ DB-B
DBAW[X SP1: Write(x) — J sP1: Write(x) FIX]
Ky L) | Witey) | Repieate | wriely) | WOV TSN
 Or propagate requests (e.g. txn-bracketed stored proc calls)

* Regquirements
— Must ensure same order at primary and replicas
— Determinism

 This Is often a txn middleware (not DB) feature.

2/29/2012 19

Failure & Recovery Handling 1/3

 Secondary failure - nothing to do till it recovers
— At recovery, apply the updates it missed while down

— Needs to determine which updates it missed,
just like non-replicated log-based recovery

— If down for too long, may be faster to get a whole copy
* Primary failure

— Normally, secondaries wait till the primary recovers

— Can get higher availability by electing a new primary

— A secondary that detects primary’s failure starts a new
election by broadcasting its unique replica identifier

— Other secondaries reply with their replica identifier
— The largest replica identifier wins

2/29/2012 20

Fallure & Recovery Handling 2/3

* Primary failure (cont’d)

— All replicas must now check that they have the
same updates from the failed primary

— During the election, each replica reports the id of the
last log record it received from the primary

— The most up-to-date replica sends its latest updates to
(at least) the new primary.

2/29/2012 21

Fallure & Recovery Handling 3/3

* Primary failure (cont’d)
— Lost updates
— Could still lose an update that committed at the primary
and wasn’t forwarded before the primary failed ...
but solving it requires synchronous replication
(2-phase commit to propagate updates to replicas)

— One primary and one backup
 There is always a window for lost updates.

2/29/2012 22

Communications Failures

Secondaries can’t distinguish a primary failure from a
communication failure that partitions the network.

If the secondaries elect a new primary and the old primary
Is still running, there will be a reconciliation problem
when they’re reunited. This 1s multi-master.

To avoid this, one partition must know it’s the only one
that can operate. It can’t communicate with other
partitions to figure this out.

Could make a static decision.
E.g., the partition that has the primary wins.

Dynamic solutions are based on Majority Consensus

2/29/2012 23

Majority Consensus

» Whenever a set of communicating replicas detects a
replica failure or recovery, they test if they have a
majority (more than half) of the replicas.

* |f so, they can elect a primary
* Only one set of replicas can have a majority.
* Doesn’t work with an even number of copies.
— Useless with 2 copies
« Quorum consensus
— Glve a weight to each replica
— The replica set that has a majority of the weight wins
— E.g. 2 replicas, one has weight 1, the other weight 2

2/29/2012

24

3. Multi-Master Replication

Some systems must operate when partitioned.
— Requires many updatable copies, not just one primary
— Conflicting updates on different copies are detected late

Classic example - salesperson’s disconnected laptop
Customer table (rarely updated) Orders table (insert mostly)
Customer log table (append only)

— So conflicting updates from different salespeople are rare

Use primary-copy algorithm, with multiple masters

— Each master exchanges updates (““‘gossips’) with other replicas
when it reconnects to the network

— Conflicting updates require reconciliation (i.e. merging)

* In Lotus Notes, Access, SQL Server, Oracle, ...
2129/2012 25

Example of Conflicting Updates

» Assume all updates propagate via the primary

Replica 1 Primary ~ Replica 2
Initially x=0 ~ Initiallyx=0 = Initially x=0
3| T Xt T,: X=2
Send(X=1r\\\\%\\\\> X=1 _Send (X=2)
v ~ Send (X=1)

X=2

Send (X=2
Y= / () =1

 Replicas end up in different states

2/29/2012

Thomas’ Write Rule

» To ensure replicas end up In the same state
— Tag each data item with a timestamp

— A transaction updates the value and timestamp of data
Items (timestamps monotonically increase)

— An update to a replica 1s applied only 1f the update’s
timestamp 1s greater than the data item’s timestamp

— You only need timestamps of data items that were
recently updated (where an older update could still be
floating around the system)

 All multi-master products use some variation of this
 Robert Thomas, ACM TODS, June 79

2/29/2012 27

Thomas Write Rule A Serializability

Replica 1 ~ Primary ~ Replica 2
T, read x=0 (TS=0) = Initially x=0,TS=0 T,: read x=0 (TS=0)
T, X=1, TS=1 ; § T,: X=2, TS=2
Send (X=1, TS=1) \ X=1, TS=1 ~Send (X=2, TS=2)

 Send (X=1, TS=1),
. X=2,TS=2¥ |
— Send (X=2, TS=2) |
x=2, Tszae— oond)

 Replicas end in the same state, but neither T, nor T, reads
the other’s output, so the execution 1sn’t serializable.
o NIS TEQUIres reconciliation 28

Multi-Master Performance

» The longer a replica is disconnected and
performing updates, the more likely it will
need reconciliation

« The amount of propagation activity increases
with more replicas

— If each replica is performing updates,
the effect Is quadratic in the number of
replicas

2/29/2012 29

Making Multi-Master Work

 Transactions
— T x++ {x=1} atre
— T,: x++ {x=1} atre
— T4 x++ {y=1} atre

nlica 1
nlica 2

nlica 3

— Replica 2 and 3 already exchanged updates

* Onreplical
— Current state { x=1,

y=0}

— Receive update from replica 2 {x=1, y=1}
— Recelve update from replica 3 {x=1, y=1}

2/29/2012

30

Making Multi-Master Work

« Time in a distributed system
— Emulate global clock
— Use local clock
— Logical clock
— Vector clock

» Dependency tracking metadata
— Per data item
— Per replica
— This could be bigger than the data

2/29/2012

31

Microsoft Access and SQL Server

« Each row R of a table has 4 additional columns
— Globally unique id (GUID)

— Generation number, to determine which updates from
other replicas have been applied

— Version num = the number of updates to R

— Array of [replica, version num] pairs, identifying the
largest version num it got for R from every other replica

o Uses Thomas’ write rule, based on version nums

— Access uses replica id to break ties.

— SQL Server 7 uses subscriber priority or custom conflict
resolution.

2/29/2012 32

4. Other Approaches (1/2)

« Non-transactional replication using timestamped
updates and variations of Thomas’ write rule

— Directory services are managed this way
» Quorum consensus per-transaction
— Read and write a quorum of copies
— Each data item has a version number and timestamp

— Each read chooses a replica with largest version
number

— Each write increments version number one greater
than any one It has seen

— No special work needed for a failure or recovery

2/29/2012 33

Other Approaches 2/2

» Read-one replica, write-all-available replicas

— Requires careful management of failures and
recoveries

« E.g., Virtual partition algorithm

— Each node knows the nodes It can communicate
with, called its view

— Txn T can execute If its home node has a view
including a quorum of T’s readset and writeset

— If a node falls or recovers, run a view formation
protocol (much like an election protocol)

— For each data item with a read quorum, read the
latest version and update the others with smaller
version #.

2/29/2012

34

Summary

 State-of-the-art products have rich functionality.

— It’s a complicated world for app designers
— Lots of options to choose from

» Most failover stories are weak
— Fine for data warehousing

— For 24x7 TP, need better integration with
cluster node failover

2/29/2012

35

