8 .Concurrency Control
for Transactions
PartTwo

CSEP 545 Transaction Processing
Philip A .Bemstein

Copyright© 2005 Philp A .Bemstein

Outline
.A M odelforConcunency Control
. Serializability Theory
. Synchronization R equirem ents forR ecoverability
.Tw o-Phase Locking
. In plem enting Tw o-Phase Locking
. Locking Perform ance
M ulbigranularity Lockng (evisied)
.HotSpotTechniques
.Q uery-U pdate Techniques
10.Phantom s
11.Shared D ik System s
12.B-Trees
13.Tree ocking

W oo Jo Ul d W

8 6 Locking Perform ance

® D eadlocks are 1are
-up to 1% -2% of tansactions deadlock

e The one exception o this is Jock conversions
- rlock a record and aterupgrade to w -lock
-eg,T;=mwadk).. wrek)

- if tw o tms do this concurently, they’' Il deadiock
ooth getan rlock on x before eithergets aw -lock)

— To avoid Jock conversion deadlocks, geta w -lock first
and dow n-grade to an rlock if you don’tneed to w rite.

- U= SQL Update statem entorexplicitprogram hints

Asbs 3

Conversions M S SQL Server

e Update-lock prevents lock conversion deadlock.
- Conflicts w ith otherupdate and w rite locks, butnot
w ith read Jocks.
- Only on pagesand 1ow s ot tables)
® Y ou getan update lock by using the UPD LOCK
hintin the FROM clause
SelectFoo A

From Foo UPDLOCK)
W here FooB = 7

Ashs

B Jocking and Lock Thrashing
e The locking perfom ance problem is too m uch delay
due to blocking
- little delay until locks are satirated
— then m ajordelay, due to the Jocking bottleneck
- thrashing - the pointw here throughputdecreases w ith
Increasing load
Throughput
Highl

| thmmshing

Low

— # of Active Txns
s Low High s

M ore on Thrashing

e T'spurely a blocking problem
— Thappens even w hen the abort ate is Iow
e A snum berof transactions ncrease
— each additional transaction ism ore lkely t block
— but first, tgathers som e Jocks, Increasing the
probability othersw illblock thegative feedback)

Avoiding Thrashing

e Tfover30% of active transactions are blocked,
then the system Is fearly) thrashing
0 reduce the num berof active transactions
o T'in eoutbased deadlock detection m istakes
- They happen due to long lock delays
— So the system is probably close to thrashing
- So if deadlock detection mate is too high (over2%)
reduce the num ber of active ttansactions

How t© Reduce Lock Contention

e Tf each transaction holds a Jock L fortseconds,
then them axin um throughput is 1 A txns/second

Start LockL Commi
|[+—t—

e To increase throughput, reduce t Jock holding tim €)
— Setthe Iock Jater in the transaction’s execution
eg., deferupdates tillcomm ittim €)
— Reduce transaction execution tin e (reduce path ength,
read from disk before setting locks)

— Splita transaction o an aller tansactions

Interesting Sidelights

¢ By getting all Iocks before transaction Start, you
can ncrease throughputat the thrashing point
because blocked transactions hold no locks

- Butitassum es you getexactly the Jocksyou need
and retries of get-all-locks are cheap

¢ Pure resrtpolicy -abortw hen there’s a conflict

and restartw hen the conflict disappears

— If aborts are cheap and there’s Iow contention for
other resources, then this policy produces higher
throughputbefore thrashing than a blocking policy

- Butresponse tin e is greater than a blocking policy

Ashs

R educing Lock Contention (cont’d)
¢ Reduce num berof conflicts
- U e finergrained Iocks, eg., by partdtoning ables
vertically
‘ Part# ‘ P]:ice‘o nH and‘ PartN am % CatabgPage‘

‘Part#‘ Price‘OnHand‘ ‘Part#‘ Parﬂ\lamQCa’abgPage‘

- U s record-kvel ocking (ie., selecta datgbase
system that supports i)

10

M athem aticalM odelof Locking
e K bockspertransaction e N transactions
e D bckabledata iems e T tinebetw een lock requests
e N transactions each own K 2 locks on average
- KN 2 i ol
e Each lock requesthas probability KN 2D of
conflicting w ith an existing lock.
e Each transaction requests K locks, so its probability
of experiencing a conflict is K2N 2D .
o Probability of a deadlock is proportional to KN D 2
- Prob deadlock) /Prop (conflict) = K20

- fK=10andD =10°, thenK?b = 0001 .

8.7 M ulthgranularity Locking M GL)

e ATlow different ttns to lock atdifferentgranularity
- big queries should Iock coarse-grained data eg. Ebks)
— short transactions Iock fine-grained data g. 1w s)

e Lock m anager can’tdetect these conflicts
- each data iem g., Ebk orrow) has a different id

o M ultigranularity locking “Mxick”
- exploit the natiralhierarchy of data containm ent
- before Iocking fine-graned data, set intention locks on

coarse grained data thatcontans it

- eg., before setting a read-lock on a row , getan
Intention-read-lock on the @bl that contains the row

12

M GL Type and Instance G rzphs

‘Record‘ ‘Rl.l"R12"R21HR22HR23HR21HR22

Lock Type
G=ph
e Before setting a read lock on R 2 3, first setan ntention-read
JockonDB1,thenA2,and then F2.

. §etbd<s ootto-leaf. Release Iocks leaf+o-100t.

Lock Tsance G @ph

M GL Com patibility M atrix

r w r w .
r|y n Y n n rw = read w ih
w n n n n n htentto w rite,
N fora scan that
rly @ y| v y updates som e
W| n)/n Yy Y n of the records i
riw n y n n eads

e E g., rconflictsw ith w because Irsays there’s a fine-
grained rlock thatconflicts w ith aw -lock on the contaer

e To rlock an iem ,need an 1, Ir+- orriw -lock on its parent

.A ?ow—bd<anian ,need aw -, W - orriw -lock on J'isparent14

M GL Complexites

e RelationalDBM SsuseM GL to lock SQ L queries,
shortupdates, and scansw ith updates.

e U e lock escalation - start locking at fine-grat and
escalate o coarse grain aftern® Jock is set.

e The lock type graph isa
directed acyclic graph, not
a tree, to cope w ith Indices

e R -lock one path to an iem .
W -lock allpaths to it.

Ashs

8 8 HotSpotTechniques

e Tfeach ttm holds a lock fortseconds, then the
m ax throughput is 1 A tms/second for that Jock .
e Hotspot-A data item that'sm ore popularthan
others, o0 a large fraction of active ttmsneed it
- Summ ary Inform ation (ol hventory)
— End-of-file m arker in data entry application
— Counterused forassigning serialnum bers

¢ Hotspots often create a convoy of transactions.
The hot spot Iock serializes transactions.

M S SQL Server

e M S SQL Servercan Iock attable, page, and row level

e U ges Intention read (“share”) and ntention w rite
(“exclusive”) Jocks at the tabl and page level.

e Tries to avoid escalation by choosing the “appropriate”
granularity w hen the scan is nstantiated.

Ashs 16

H ot SpotTechnigues (cont/d)

e Special techniques are needed to reduce t
- Keep thehotdata nmain mem ory
— D elay operations on hotdata tillcomm ittim e
— U s= optn istic m ethods
— Batch up operations to hot spotdata
— Partiton hot spotdata

D elaying O perationsUntilComm it

e D ata m anager logs each transaction’s updates
e Only applies the updates (End sets locks) after
receiving Comm it from the transaction
e 1M S FastPath uses this for
—-Da@Entty DB
- M ain StorageDB
e W orks forw rite, nsert, and delete, butnotread

19

Locking H igherT.evel O perations

® Read is often partof a read-w rite pair, such as
Thcrem ent X, n), w hich adds constantn to x,
butdoesn 't retum a value.

e Tcrem ent @nd D ecrem ent) comm ute

® So, Inttoduce crem entand D ecrem ent Jocks

|r w ic dec Butif lcandDechavea
ry mn 1mn n threshold g.a quantity of
win n n_n zero), then they conflict
nen n @ fw hen the threshold isnean)
decin n

20

Solving the Threshold Problem
Another M S FastPath Technique
¢ Use ablind D ecrem ent (o threshold) and
Verfy x,n), which mumste ifx $+ n
e Re-execute Verify atcomm ittim e
- If itretums a different value than itdid during nom al
execution, then abort
- I's Ike checking that the threshold Jock you didn't
setduring D ecrem ent is sdllvalid.

bEnough = Verify(iQuantity, n);
If (bEnough) Decrement (iQuantity, n)
else print (“not enough”);

Ashs 21

O ptim istic Concunency Control

e The V erify trick is optim istic concunency control
e M am idea - execute operations on shared data
w tthoutsetting locks. A tcomm ittim g, test if there
w ere conflicts on the locks (thatyou didn’tset).
¢ O fien used In client/eerver system s
- Clientdoes allupdates In cache w ithout shared locks
- Atcomm ittim e, try t© get Iocks and perform updates

22

Batching

e Transactions add updates to am inibatch and only

periodically apply the m ni-batch to shared data.

— Each process has a private data entry file,

Tn addition to a globalshared data entry file

- Each transaction appends to s process’ file

- Periodically append the process file to the shared file
e Tricky failire handling

— Gathering up private files

— Avoiding holes In serialnum berorder

23

Partitioning

e Splitup nventory into parttons
e Each transaction only accesses one partition
e Example

— Each ticketagency has a subsetof the tickets

— Ifone agency sellsoutearly, tneedsaway t©
getm ore tickets friom otheragencies fpartitions)

24

8 9 Q uery-U pdate Techniques
® Queries un fora long tim e and lock a otofdaa—
a perform ance nightm are w hen trying also to in
shortupdate transactions
e There are several good solutions
- Useadatawarchouse
— A cosptw eaker consistency guarantees
- U sem ultversion data
e Solutions trade data quality ortim eliness for
pexrform ance

Data W archouse
e A dataw archouse contains a snapshotof the DB
w hich is periodically refreshed fiom the TP DB
e A llqueries min on the data w axehouse
e A Tlupdate transactions min on the TP DB
® Queries don’tgetabsolutely up-to-date data
e How to refresh the data w arehouse?

— Stop processing transactions and copy the TP DB o the
data w arehouse. Possbly min queries w hile refreshing

— Treatthe w arehouse asaD B replica and use a r=plication
technique

D egrees of Tsolation
o Serializability = D egree 3 Isolation
e Degree 2 Tsolation @k a.cursor stability)
— D atam anagerholds read-lock &) only w hile reading %,
butholdsw rite Jocks tillcomm it @s n 2PL)
- E g.when scanning records 1 a file, each getnextrecord
releases Jock on cunentrecord and gets lock on nextone
- 1ead () isnot “repeatable” w ithin a tansacton, eg.,
A Ky KlmKwl Klw, klwy Kl 4 K5 Ko K]
- Degree 2 iscommonly used by ISAM file system s
- Degree 2 isoften aDB system ‘s defaultbehavior!
And custom ers seem o acceptit!!!

D egrees of Tsolation (cont’d)

e Could min queries D egree 2 and updaters D egree 3
— Updaters are still serializable w rt. each other
e Degree 1 -no rwad Jocks; hold w rite Jocks to comm 1t
e Unfortumately, SQ L concunency control stendards
have been stated In term s of “repeatable reads” and
“cursor stability” nstead of serializability, leading
to much confusion.

ANSISQL Isolaton Levels

e Uncomm ited Read -Degree 1

e Comm ited Read -D egree 2

¢ Repeatable Read -U ses read Jocks and w rite Jocks,
butallow s “phantom s”

e Serializable -D egree 3

M S SQL Server

e Lock hintsin SQL FROM clause

- Allthe AN STisolation kvels, plis...

- UPDLOCK -useupdate Iocks nstead of read locks

- READPAST -ignore Iocked row s (if mnning read
comm ited)

- PAGLOCK -usepage Iock w hen the system would
otherw ise use a table lock

- TABLOCK - shared @bl Jock tllend of comm and or
transaction

- TABLOCKX -exclusive table Jock tillend of
com m and or transaction

M ultversion D ata
e A ssum e record granularity Jocking
¢ Each w rite operation creates anew version nstead
of overw riting existing value.
® So each logical record has a sequence of versions.

e Tag each record w ith transaction id of the
transaction thatw 1ote that version

Tid ‘Prevjous ‘ E# ‘Name ‘Othe‘fﬁelis

123 null 1 Bill
175 123 1 Bill
134 null 2 Sue
199 134 2 Sue

227 null 27 Steve

M ultiversion D ata (cont'd)

¢ Execute update ttansactions using oxdinary 2PL
¢ Execute queries In snapshotmode
— System keepsa comm it listof tids of allcomm itted tns
— W hen a query starts executing, it reads the comm it list
— W hen a query rads x, itreads the Jatestversion of x
w ritten by a transaction on is comm it list
— Thus, it reads the database sate thatexisted when it
sarted mnning

Comm itListM anagem ent
® M amtain and periodically r=com pute a tid T -0 Hdest, such
that
- Every active tn’s tid isgreaterthan T-O est
- Everynew tid isgreaterthan T-O dest
- Forevery comm itted transaction w ith tid £ T -O dest,
its versions are comm itted
- Forevery aborted transaction w ith tid £ T-O Kest,
its versions are w iped out
e Queriesdon’tnesd to know tids £ T-O Hest
- So only m antain the comm it list fortids > T-O Idest

Asbs 3

O racle M ultiversion
Concurrency Control

¢ D ata page contains htestversion of each record, w hich
points o oderversion n rlback ssgm ent.

® Read-comm ited query reads data asof its starttim e.

Read-only isolation reads data as of transaction starttim e.

e “Serializablk” query reads data asof the ttm’s sarttim e.

- An update checks that the updated record w as notm odified after
tm starttine.

— Ifthatcheck fails, O racle retums an enor.
- If there isn’tenough history for0 macle to perfom the check,

0 racle rtums an enor. (Y ou can control the history area’s size.)
- W hatif T, and T, m odify each other's readset concunently?

e g 35

M ultiversion G atbage C ollection

e Can delete an old version of x ifno query w ill
everread it

- There's a laterversion of x whose tid < T-O est
(oris on every active query’s comm it ist)
e O righally used In Prim e Com puter's
CODASYL DB system and O racle’sRAbA’M S

Ashs 34

O racke Concurrency Contol (cont/d)

K gkl glylw, kdcw,dc

e The resulisnotserializable!

e Thany SR execution, one transaction w ould have
1=ad the other’s output

8 10 Phantom s
e Problem sw hen using 2PL w ith Inserts and deletes
A coounts Asets
A cctit \ Location\ Baknce Location \ Total
1 Seattle 400 Seattle | 400
2 Tacoma | 200 Tacoma| 500

3 Tacoma | 300

T,:Read Accounts 1,2, and 3 AT/mphanm record
T, : lnsertA ccounts 4, Tacom &, 100]

T, :Read A ssets(Tacom a), retums 500

T,:W rie A ssets(Tacom a, 600)

T, :Read A ssets(Tacom a), retums 600

T,:Comm i

37

Avoiding Phantom s - Predicate Locks

® Suppose a query reads all records satisfying
predicate P. Forexam ple,
— Select * From A coountsW here Location = “Tacom a”
— Nom ally would hash each record i to an nteger ock id
— And ock control stuctures. Too coarse grained.

® deally, seta read Jock on P
— w hich conflictsw ith a w rite Jock Q if som e record can

satisfy PandQ)

e Forarbitrary predicates, this is too slow to check

- Notw ithi a few hundred structions, anyw ay

The Phantom Phantom Problem

e Ttlooks like T; should Jock record 4, which isn't
there!
® W hich of T, s operations determ Ined that there
w ere only 3 records?
- Read end-of file?
- Read record counter?
- SQL Selectoperation?
¢ This operation conflictsw ith T, ‘s Tnsert
A coounts 4 ,Tacom &,100]
o Therefore, hsert A coounts 4 ;Tacom a,100]
shouldn’tmn untdlafter T, comm is

L

38

39

Precision L.ocks

e Suppose update operations are on single records

e M amntain a listof predicate R ead-locks

e Teert, D elete, & Update w rite-lock the record and
check forconflictw ith all predicate locks

e Query sets a read Jock on the predicate and check
forconflictw ith all record locks

® Chesgperthan predicate satisfiability, but stdll too
expensive forpractical in plem entation.

40

8 11 Shared D ik System s
ProcessA ProcessB e Can cache a page in tw o processes
thatw rite-lock different records
3 o e Only one processata tin e can
Eo have w rite privilege
o e U == aglbballock m anager

e W hen settingawrte lockon P,
m ay need to refresh the cached
copy from disk (if anotherprocess
recently updated i)

e U =e a version num beron the page and In the lock

41

Shared D isk System

® W hen a process sets the lock, ittells the lock
m anager version num berof is cached page.

e A process increm ents the version num berthe first
tm e tupdates a cached page.

e W hen a process is done w ith an updated page, it
flushes the page to disk and then Increm ents
version num ber in the lock.

42

Logging
e Since updates are happening on different
system s, w here is the Iog?
e A gingle log server is sin plest, butm akes
Jogging m ore expensive.
e Be carefiilnotto flush to the log until
necessary .
— This requires Jocally-assioned LSN s
— M ust flush the Iog before flushing an updated page

4

3

812 B -Trees

e An ndexm aps field values to record ids.
- Reocord d = fpage-id, offsetw ithi-page]
—M ostcommon DB index stmctures: hashing and B -xees
- DB Index stuctures are page-oriented
e Hashingusesa function H ¥fi B, fiom field values
o block num bers.
-V = socizl security num bers. B = {1 ..1000}
H () = vimod 1000
— Ifa page overflow s, then use an extra overflow page
- At90% Jad onpages, 1 2 block accesses perrequest!
- BUT,doesn'thelp forkey range access (10 < v < 75)

L

44

B -T'ree Sttucture
e Tndex node is a sequence of fpointey, key] pairs

® K, <K,<.. <K ,<K_;

e P, pohts to anode containing keys< K,

e P, polnts to a node containing keys in range K, ,K;)
e P pomts to anode containing keys > K,

® So,K 7<K 5<.. <K ,<K

Example n=3
- [127, [296 |
g [o] | feen [osg || [s2q Jeo] |
p

|
r&%‘/ \k

[127 [145 [189 | [221 | 245|320 | [352 | 353] 487]

o N otice that Jeaves are sorted by key, Eftto-right

e Search forvalue v by follow ing path from the oot

e Tfkey = 8 bytes, ptr= 2 bytes, page = 4K , thenn = 409
e So 3-lkevelindex hasup to 68M Jeaves @093)

® A t20 records per leaf, that’'s 136M records

Ashs 46

Ki| Py| o.. | Ky| Py| Kyq| .. |Kyq|Py
</ _
K7 P% ... |K3|PY K5l -..|K5a Py
Ashe 45
Tnsertion

e To Insertkey v, search forthe Jeaf w here v should appear

o Tf there’s space on the leave, Isert the record

e Tfno, splitthe leaf n half, and split the key range 1 its

parent to pointto the tw o leaves

To insertkey 15

o plitthe Jeaf

¢ split the parent’s range [0, 19)
to [0,15) and [15,19)

o if the parentw as full, you’d
splitthattoo ot shown here)

o this autom atically keeps the

‘ tree balanced

AEINEER

| [15]27

(12 14

L b

47

B -Tree O bservations
e D elete algorithm m exges adpcentnodes < 50% firll,
butrarely used n practice
o Rootand m ost level-1 nodes are cached, to reduce
disk accesses
® Secondary fhon-clustered) ndex - Leaves contain
key, record id] pairs.
e Prin ary (Clustered) index - Leaves contam =coxdls
e U key prefix forlong (srng) key values
— drop prefix and add to suffix asyou m ove dow n the tree

48

Key Range Locks
e T,ock on B -tzee key range is a cheap predicate lock

e SelectD eptW here (Budget> 250)
and (Budget< 350))

| [221 [352].| ook the key nge 221,352) record

e only usefillw hen query ison an
30 | Pdexed Fell

e Commonly used w ith m uld-granularity Jocking

- heertAelete Jocks record and tention-w rite Jocks range

—M GL tree defines a fixed setof predicates, and thereby
avolds predicate satisfiability

8 13 Tree Lockng
e Can beat 2PL by exploitng rootto-leaf access n a
tee

e If searching fora leaf, after setting a Jock on anode,
elease the Jock on itsparent

e The lock orderon the mot serializes access
o othernodes

e g 50

wl@)wlB)wul)wlE)wuB)

B -ree Locking

e Rootlock on a B -ree is a bottleneck
e U e tree Iocking to wlieve it
e Problem :node splits

If you unlock P before splitting C,
then you have to back up and lock
P again, w hich breaks the tree
Tocking protocol.

e So,don’tunlock anode tillyou're sure its chid w on’t gplit
(ie.has space foran nsert)

e Tnplies different Jocking mles fordifferent ops
(search vs. nsertipdate)

Ashs 51

B -1ink O ptim ization
e B-Iink tree - Each node has a side ponterto the next

¢ A fiersearching a node, you can release its Iock before
Jocking its child
-z PlgPIgClw,Clw,CIw,PIgClxC]

7 EEIINEEIN
c - c c- X
B EERE T

e Searching has the sam e behavioras if it Iocked the child
before rleasing the parent... and ran hter @fterthe nsert)

i

<

Ashs 52

