CSES93 Transaction Processing 1/3/01

Microsoft Application TP Project

The purpose of this project isto gain an understanding of how to build a transaction processing
(TP) application using acommercial application server and related products. Your goal isto use
Microsoft’s products to construct a distributed TP application that implements atravel
reservation system.

The core TP services of Microsoft’s product suite are called COM+ (formerly known as
Microsoft Transaction Server (MTS)) and ship as part of Windows 2000. COM+ has awide
variety of features, including integration with many related products, such as Microsoft Message
Queueg, IIS, and SQL Server. The main grading metric is the number and complexity of
transaction-related features of MTS and related products that you exercise and get working.

Background material:

» Documentation for COM+ can be found in MSDN under
Platform SDK / Component Services/ COM+
especially the COM+ Services Primer and Services Provided by COM+.

* You will need to know a modest amount of SQL for this project, e.g., to create asimple
database, to read and write a database in SQL, and to issue those SQL callsfrom an
application (probably via ADO (Active Data Objects)).

Complexity of the application itself is not agoa and will not be rewarded, grading-wise. To
start, the reservation system’ s functions should be as similar as possible to those of the Java/lC#
project. Y ou should add application functionality only insofar as it helps you demonstrate some
technical capability of the system.

A sample application that illustrates some of COM+'s basic features is described in the com+
Services Primer. Y ou should build your travel reservation system to illustrate the following basic
features before embarking on other ones:

» Database connection pooling

= Shared property (resource) manager. For example, you could maintain the total amount of
money that all customers have spent during today’ s sessions.

= Context object related to a Transaction Server object
» Transaction attributes (requires transaction, requires new transaction, supports transactions)

= Transactional RPC, which allows a component running a transaction to call another
component to do further work on behalf of the same transaction.

= Stateful vs. stateless objects

Microsoft TP Application Project 1

CSES93 Transaction Processing 1/3/01
Here are some other features to consider:

= Run one or more componentsin I1S and access them from aweb browser.
= Run components in separate servers, possibly on separate machines, against a single database

= Run componentsin separate servers with different databases. For example, customer data
(which includes alist of the customer’ s reservations) could be maintained in a separate
database than flight, auto, and hotel data.

= Put the administrative functions into a separate component, so that you can protect them
using a separate security role. Possibly add programmatic security.

» Force atransaction manager failure during the uncertainty period. Show how COM+ displays
the transaction state, and show the state being resolved when the failure is repaired.

» Use Microsoft Message Queue for a queued transaction type, such as processing a request to
join the airline’ s Airport Lounge Club.

= UseBizTak Orchestration to run a multi-transaction workflow.

= Configure aWindows 2000 cluster, replicate one of the application servers, and show how it
continues to run after anodefails.

= Write scripts that automate installation, so you application can be installed to run on another
machine with minimal operator involvement.

» Demonstrate the use of DisableCommit.
* Do alittle performance measurement.

= Develop aresource dispenser and/or integrate a simple resource manager with the Distributed
Transaction Coordinator (2-phase commit). These are particularly challenging features [
probably more than is doable in the available time. So if you're interested in this challenge,
read the COM+ documentation carefully before deciding to divein.

Feel free to suggest features other than those in the above list.

It'simportant to proceed incrementally. Make sure you have a solid working solution of your
base features before immersing yourself in the challenging feature. Keep it simple enough to get
an end-to-end system working well enough to run ademo. In particular, keep the user interface
very simple.

Deliverables - A write-up is required to summarize what you have done. Especialy, explain
what product features you have exercised and where they appear in your code. The write-up can
be short, as long as the code is readable and well commented. A final demonstration is required.

Microsoft TP Application Project 2

