
CSE593 Transaction Processing 1/3/01

Microsoft TP Application Project 1

Microsoft Application TP Project

The purpose of this project is to gain an understanding of how to build a transaction processing
(TP) application using a commercial application server and related products. Your goal is to use
Microsoft’s products to construct a distributed TP application that implements a travel
reservation system.

The core TP services of Microsoft’s product suite are called COM+ (formerly known as
Microsoft Transaction Server (MTS)) and ship as part of Windows 2000. COM+ has a wide
variety of features, including integration with many related products, such as Microsoft Message
Queue, IIS, and SQL Server. The main grading metric is the number and complexity of
transaction-related features of MTS and related products that you exercise and get working.

Background material:

• Documentation for COM+ can be found in MSDN under
Platform SDK / Component Services / COM+
especially the COM+ Services Primer and Services Provided by COM+.

• You will need to know a modest amount of SQL for this project, e.g., to create a simple
database, to read and write a database in SQL, and to issue those SQL calls from an
application (probably via ADO (Active Data Objects)).

Complexity of the application itself is not a goal and will not be rewarded, grading-wise. To
start, the reservation system’s functions should be as similar as possible to those of the Java/C#
project. You should add application functionality only insofar as it helps you demonstrate some
technical capability of the system.

A sample application that illustrates some of COM+’s basic features is described in the COM+
Services Primer. You should build your travel reservation system to illustrate the following basic
features before embarking on other ones:

�� Database connection pooling

�� Shared property (resource) manager. For example, you could maintain the total amount of
money that all customers have spent during today’s sessions.

�� Context object related to a Transaction Server object

�� Transaction attributes (requires transaction, requires new transaction, supports transactions)

�� Transactional RPC, which allows a component running a transaction to call another
component to do further work on behalf of the same transaction.

�� Stateful vs. stateless objects

CSE593 Transaction Processing 1/3/01

Microsoft TP Application Project 2

Here are some other features to consider:

�� Run one or more components in IIS and access them from a web browser.

�� Run components in separate servers, possibly on separate machines, against a single database

�� Run components in separate servers with different databases. For example, customer data
(which includes a list of the customer’s reservations) could be maintained in a separate
database than flight, auto, and hotel data.

�� Put the administrative functions into a separate component, so that you can protect them
using a separate security role. Possibly add programmatic security.

�� Force a transaction manager failure during the uncertainty period. Show how COM+ displays
the transaction state, and show the state being resolved when the failure is repaired.

�� Use Microsoft Message Queue for a queued transaction type, such as processing a request to
join the airline’s Airport Lounge Club.

�� Use BizTalk Orchestration to run a multi-transaction workflow.

�� Configure a Windows 2000 cluster, replicate one of the application servers, and show how it
continues to run after a node fails.

�� Write scripts that automate installation, so you application can be installed to run on another
machine with minimal operator involvement.

�� Demonstrate the use of DisableCommit.

�� Do a little performance measurement.

�� Develop a resource dispenser and/or integrate a simple resource manager with the Distributed
Transaction Coordinator (2-phase commit). These are particularly challenging features
probably more than is doable in the available time. So if you’ re interested in this challenge,
read the COM+ documentation carefully before deciding to dive in.

Feel free to suggest features other than those in the above list.

It’s important to proceed incrementally. Make sure you have a solid working solution of your
base features before immersing yourself in the challenging feature. Keep it simple enough to get
an end-to-end system working well enough to run a demo. In particular, keep the user interface
very simple.

Deliverables - A write-up is required to summarize what you have done. Especially, explain
what product features you have exercised and where they appear in your code. The write-up can
be short, as long as the code is readable and well commented. A final demonstration is required.

