
1

1/14/01 1

5. Concurrency Control
for Transactions

 CSE 593 Transaction Processing

Philip A. Bernstein
Copyright ©2001 Philip A. Bernstein

1/14/01 2

Outline
1. A Model for Concurrency Control
2. Serializability Theory
3. Synchronization Requirements for Recoverability
4. Two-Phase Locking
5. Implementing Two-Phase Locking
6. Locking Performance
7. Hot Spot Techniques
8. Query-Update Techniques
9. Phantoms
10. B-Trees
11. Tree locking

1/14/01 3

5.1 A Model for Concurrency Control
The Problem

• Goal - Ensure serializable (SR) executions

• Implementation technique - Delay operations
that would lead to non-SR results (e.g. set locks
on shared data)

• For good performance minimize overhead and
delay from synchronization operations

• First, we’ll study how to get correct (SR) results

• Then, we’ll study performance implications

1/14/01 4

System Model
Transaction 1 Transaction N

Database
System

Start,
SQL Ops
Commit, Abort

Query Optimizer
Query Executor
Access Method

(record-oriented files)
Page-oriented Files

Database

1/14/01 5

How to Implement SQL

• Query Optimizer - translates SQL into an ordered
expression of relational DB operators (Select,
Project, Join)

• Query Executor - executes the ordered expression
by running a program for each operator, which in
turn accesses records of files

• Access methods - provides indexed record-at-a-
time access to files (OpenScan, GetNext, …)

• Page-oriented files - Read or Write (page address)

1/14/01 6

Which Operations Get Synchronized?

Record-oriented operations

Page-oriented operations

SQL operations
Query Optimizer
Query Executor
Access Method

(record-oriented files)
Page-oriented Files

• It’s a tradeoff between
– amount of concurrency and

– overhead and complexity of synchronization

• For now, assume page operations
– notation: ri[x], wi[x] where “x” is a page

 and use the neutral term data manager

2

1/14/01 7

Assumption - Atomic Operations

• We will synchronize Reads and Writes.

• We must therefore assume they’re atomic
– else we’d have to synchronize the finer-grained

operations that implement Read and Write

• Read(x) - returns the current value of x in the DB

• Write(x, val) overwrites all of x (the whole page)

• This assumption of atomic operations is what
allows us to abstract executions as sequences of
reads and writes (without loss of information).
– Otherwise, what would wk[x] ri[x] mean?

1/14/01 8

Assumption - Txns communicate
only via Read and Write

• Read and Write are the only operations the
system will control to attain serializability.

• So, if transactions communicate via messages,
then implement SendMsg as Write, and
ReceiveMsg as Read.

• Else, you could have the following:
 w1[x] r2[x] send2[M] receive1[M]
– data manager didn’t know about send/receive and

thought the execution was SR.

• Also watch out for brain transport

1/14/01 9

Transactions Can Communicate via
Brain Transport

T1: Start
. . .
Display output

 Commit

T2: Start
Get input from display
. . .
Commit

User reads output
…
User enters input

Brain
transport

1/14/01 10

Brain Transport (cont’d)

• For practical purposes, if user waits for T1 to
commit before starting T2, then the data manager
can ignore brain transport.

• This is called a transaction handshake
(T1 commits before T2 starts)

• Reason - Locking preserves the order imposed by
transaction handshakes
– e.g., it serializes T1 before T2.

• Stating this precisely and proving it is non-trivial.

• … more later ….

1/14/01 11

5.2 Serializability Theory

• The theory is based on modeling executions as
histories, such as

H1 = r1[x] r2[x] w1[x] c1 w2[y] c2

• First, characterize a concurrency control
algorithm by the properties of histories it allows.

• Then prove that any history having these
properties is SR

• Why bother? It helps you understand why
concurrency control algorithms work.

1/14/01 12

Equivalence of Histories
• Two operations conflict if their execution order

affects their return values or the DB state.
– a read and write on the same data item conflict

– two writes on the same data item conflict

– two reads (on the same data item) do not conflict

• Two histories are equivalent if they have the
same operations and conflicting operations are in
the same order in both histories
– because only the relative order of conflicting

operations can affect the result of the histories

3

1/14/01 13

Examples of Equivalence
• The following histories are equivalent

 H1 = r1[x] r2[x] w1[x] c1 w2[y] c2

 H2 = r2[x] r1[x] w1[x] c1 w2[y] c2

 H3 = r2[x] r1[x] w2[y] c2 w1[x] c1

 H4 = r2[x] w2[y] c2 r1[x] w1[x] c1

• But none of them are equivalent to
 H5 = r1[x] w1[x] r2[x] c1 w2[y] c2

because r2[x] and w1[x] conflict and
r2[x] precedes w1[x] in H1 - H4, but
w1[x] precedes r2[x] in H5.

1/14/01 14

Serializable Histories
• A history is serializable if it is equivalent to a serial

history

• For example,
H1 = r1[x] r2[x] w1[x] c1 w2[y] c2

is equivalent to
H4 = r2[x] w2[y] c2 r1[x] w1[x] c1

(r2[x] and w1[x] are in the same order in H1 and H4.)

• Therefore, H1 is serializable.

1/14/01 15

Another Example

• H6 = r1[x] r2[x] w1[x] r3[x] w2[y] w3[x] c3 w1[y] c1 c2

is equivalent to a serial execution of T2 T1 T3,
H7 = r2[x] w2[y] c2 r1[x] w1[x] w1[y] c1 r3[x] w3[x] c3

• Each conflict implies a constraint on any equivalent
serial history:

H6 = r1[x] r2[x] w1[x] r3[x] w2[y] w3[x] c3 w1[y] c1 c2

T2→T1 T1→T3 T2→T1

T2→T3

1/14/01 16

Serialization Graphs
• A serialization graph, SG(H), for history H tells the

effective execution order of transactions in H.

• Given history H, SG(H) is a directed graph whose
nodes are the committed transactions and whose
edges are all Ti → Tk such that at least one of Ti’s
operations precedes and conflicts with at least one
of Tk’s operations

H6 = r1[x] r2[x] w1[x] r3[x] w2[y] w3[x] c3 w1[y] c1 c2

SG(H6) = T2 →T1 →T3

1/14/01 17

The Serializability Theorem
A history is SR if and only if SG(H) is acyclic.

Proof: (if) SG(H) is acyclic. So let Hs be a serial
history consistent with SG(H). Each pair of
conflicting ops in H induces an edge in SG(H).
Since conflicting ops in Hs and H are in the same
order, Hs≡H, so H is SR.

(only if) H is SR. Let Hs be a serial history equivalent
to H. Claim that if Ti → Tk in SG(H), then Ti

precedes Tk in Hs (else Hs≡H). If SG(H) had a cycle,
T1→T2→…→Tn→T1, then T1 precedes T1 in Hs,
a contradiction. So SG(H) is acyclic.

1/14/01 18

How to Use
the Serializability Theorem

• Characterize the set of histories that a
concurrency control algorithm allows

• Prove that any such history must have an
acyclic serialization graph.

• Therefore, the algorithm guarantees SR
executions.

• We’ll use this soon to prove that locking
produces serializable executions.

4

1/14/01 19

5.3 Synchronization Requirements
 for Recoverability

• In addition to guaranteeing serializability,
synchronization is needed to implement abort easily.

• When a transaction T aborts, the data manager wipes
out all of T’s effects, including
– undoing T’s writes that were applied to the DB, and

– aborting transactions that read values written by T
(these are called cascading aborts)

• Example - w1[x] r2[x] w2[y]
– to abort T1, we must undo w1[x] and abort T2

(a cascading abort)
1/14/01 20

Recoverability
• If Tk reads from Ti and Ti aborts, then Tk must abort

– Example - w1[x] r2[x] a1 implies T2 must abort

• But what if Tk already committed? We’d be stuck.
– Example - w1[x] r2[x] c2 a1

– T2 can’t abort after it commits

• Executions must be recoverable:
A transaction T’s commit operation must follow the
commit of every transaction from which T read.
– Recoverable - w1[x] r2[x] c1 c2

– Not recoverable - w1[x] r2[x] c2 a1

• Recoverability requires synchronizing operations.

1/14/01 21

Avoiding Cascading Aborts
• Cascading aborts are worth avoiding to

– avoid complex bookkeeping, and

– avoid an uncontrolled number of forced aborts

• To avoid cascading aborts, a data manager should
ensure transactions only read committed data

• Example
– avoids cascading aborts: w1[x] c1 r2[x]

– allows cascading aborts: w1[x] r2[x] a1

• A system that avoids cascading aborts also
guarantees recoverability.

1/14/01 22

Strictness
• It’s convenient to undo a write, w[x], by restoring its

before image (=the value of x before w[x] executed)

• Example - w1[x,1] writes the value “1” into x.
– w1[x,1] w1[y,3] c1 w2[y,1] r2[x] a2

– abort T2 by restoring the before image of w2[y,1], = 3

• But this isn’t always possible.
– For example, consider w1[x,2] w2[x,3] a1 a2

– a1 & a2 can’t be implemented by restoring before images

– notice that w1[x,2] w2[x,3] a2 a1 would be OK

• A system is strict if it only reads or overwrites
committed data.

1/14/01 23

Strictness (cont’d)
• More precisely, a system is strict if it only executes

ri[x] or wi[x] if all previous transactions that wrote x
committed or aborted.

• Examples (“…” marks a non-strict prefix)
– strict: w1[x] c1 w2[x] a2

– not strict: w1[x] w2[x] … a1 a2

– strict: w1[x] w1[y] c1 w2[y] r2[x] a2

– not strict: w1[x] w1[y] w2[y] a1 r2[x] a2

• “Strict” implies “avoids cascading aborts.”

1/14/01 24

5.4 Two-Phase Locking
• Basic locking - Each transaction sets a lock on each

data item before accessing the data
– the lock is a reservation

– there are read locks and write locks

– if one transaction has a write lock on x, then no other
transaction can have any lock on x

• Example
– rli[x], rui[x], wli[x], wui[x] denote lock/unlock operations

– wl1[x] w1[x] rl2[x] r2[x] is impossible

– wl1[x] w1[x] wu1[x] rl2[x] r2[x] is OK

5

1/14/01 25

Basic Locking Isn’t Enough
• Basic locking doesn’t guarantee serializability

• rl1[x] r1[x] ru1[x] wl1[y] w1[y] wu1[y] c1

 rl2[y] r2[y] wl2[x] w2[x] ru2[y] wu2[x] c2

• Eliminating the lock operations, we have
 r1[x] r2[y] w2[x] c2 w1[y] c1 which isn’t SR

• The problem is that locks aren’t being released
properly.

1/14/01 26

Two-Phase Locking (2PL) Protocol
• A transaction is two-phase locked if:

– before reading x, it sets a read lock on x
– before writing x, it sets a write lock on x
– it holds each lock until after it executes the

corresponding operation
– after its first unlock operation, it requests no new locks

• Each transaction sets locks during a growing phase
and releases them during a shrinking phase.

• Example - on the previous page T2 is two-phase
locked, but not T1 since ru1[x] < wl1[y]
– use “<” for “precedes”

1/14/01 27

2PL Theorem: If all transactions in an execution are
two-phase locked, then the execution is SR.

Proof: Define Ti ⇒ Tk if either
– Ti read x and Tk later wrote x, or
– Ti wrote x and Tk later read or wrote x

• If Ti ⇒ Tk, then Ti released a lock before Tk

obtained some lock.

• If Ti ⇒ Tk ⇒ Tm, then Ti released a lock before Tm

obtained some lock (because Tk is two-phase).

• If Ti ⇒... ⇒ Ti, then Ti released a lock before Ti

obtained some lock, breaking the 2-phase rule.

• So there cannot be a cycle. By the Serializability
Theorem, the execution is SR.

1/14/01 28

2PL and Recoverability
• 2PL does not guarantee recoverability

• This non-recoverable execution is 2-phase locked
 wl1[x] w1[x] wu1[x] rl2[x] r2[x] c2 … c1

– hence, it is not strict and allows cascading aborts

• However, holding write locks until after commit or
abort guarantees strictness
– and hence avoids cascading aborts and is recoverable

– In the above example, T1 must commit before it’s first
unlock-write (wu1): wl1[x] w1[x] c1 wu1[x] rl2[x] r2[x] c2

1/14/01 29

Automating Locking
• 2PL can be hidden from the application

• When a data manager gets a Read or Write
operation from a transaction, it sets a read or write
lock.

• How does the data manager know it’s safe to
release locks (and be two-phase)?

• Ordinarily, the data manager holds a transaction’s
locks until it commits or aborts. A data manager
– can release read locks after it receives commit

– releases write locks only after processing commit,
to ensure strictness

1/14/01 30

2PL Preserves Transaction Handshakes
• Recall the definition: Ti commits before Tk starts

• 2PL serializes txns consistent with all transaction
handshakes. I.e. there’s an equivalent serial
execution that preserves the transaction order of
transaction handshakes

• This isn’t true for arbitrary SR executions. E.g.
– r1[x] w2[x] c2 r3[y] c3 w1[y] c1

– T2 commits before T3 starts, but the only equivalent
serial execution is T3 T1 T2

– rl1[x] r1[x] wl1[y] ru1[x] wl2[x] w2[x] wu2[x] c2

(stuck, can’t set rl3[y]) r3[y] … so not 2PL

6

1/14/01 31

2PL Preserves Transaction
Handshakes (cont’d)

• Stating this more formally …

• Theorem:
 For any 2PL execution H,
 there is an equivalent serial execution Hs,
 such that for all Ti, Tk,
 if Ti committed before Tk started in H,
 then Ti precedes Tk in Hs.

1/14/01 32

Brain Transport  One Last Time

• If a user reads committed displayed output of Ti

and uses that displayed output as input to
transaction Tk, then he/she should wait for
Ti to commit before starting Tk.

• The user can then rely on transaction handshake
preservation to ensure Ti is serialized before Tk.

1/14/01 33

5.5 Implementing Two-Phase Locking
• Even if you never implement a DB system, it’s

valuable to understand locking implementation,
because it can have a big effect on performance.

• A data manager implements locking by
– implementing a lock manager

– setting a lock for each Read and Write

– handling deadlocks

1/14/01 34

Lock Manager
• A lock manager services the operations

– Lock(trans-id, data-item-id, mode)

– Unlock(trans-id, data-item-id)

– Unlock(trans-id)

• It stores locks in a lock table. Lock op inserts
[trans-id, mode] in the table. Unlock deletes it.

Data Item List of Locks Wait List

x [T1,r] [T2,r] [T3,w]

y [T4,w] [T5,w] [T6, r]

1/14/01 35

Lock Manager (cont’d)

• Caller generates data-item-id, e.g. by hashing data
item name

• The lock table is hashed on data-item-id

• Lock and Unlock must be atomic, so access to the
lock table must be “locked”

• Lock and Unlock are called frequently. They must
be very fast. Average < 100 instructions.
– This is hard, in part due to slow compare-and-swap

operations needed for atomic access to lock table

1/14/01 36

Lock Manager (cont’d)

• In MS SQL Server
– Locks are approx 32 bytes each.

– Each lock contains a Database-ID, Object-Id, and other
resource-specific lock information such as record id
(RID) or key.

– Each lock is attached to lock resource block (64 bytes)
and lock owner block (32 bytes)

7

1/14/01 37

Deadlocks
• A set of transactions is deadlocked if every

transaction in the set is blocked and will remain
blocked unless the system intervenes.
– Example rl1[x] granted

rl2[y] granted
wl2[x] blocked
wl1[y] blocked and deadlocked

• Deadlock is 2PL’s way to avoid non-SR executions
– rl1[x] r1[x] rl2[y] r2[y] … can’t run w2[x] w1[y] and be SR

• To repair a deadlock, you must abort a transaction
– if you released a transaction’s lock without aborting it,

you’d break 2PL 1/14/01 38

Deadlock Prevention
• Never grant a lock that can lead to deadlock

• Often advocated in operating systems

• Useless for TP, because it would require running
transactions serially.
– Example to prevent the previous deadlock,

rl1[x] rl2[y] wl2[x] wl1[y], the system can’t grant rl2[y]

• Avoiding deadlock by resource ordering is unusable
in general, since it overly constrains applications.
– But may help for certain high frequency deadlocks

• Setting all locks when txn begins requires too much
advance knowledge and reduces concurrency.

1/14/01 39

Deadlock Detection
• Detection approach: Detect deadlocks automatically,

and abort a deadlocked transactions (the victim).
• It’s the preferred approach, because it

– allows higher resource utilization and
– uses cheaper algorithms

• Timeout-based deadlock detection - If a transaction
is blocked for too long, then abort it.
– Simple and easy to implement

– But aborts unnecessarily and

– some deadlocks persist for too long

1/14/01 40

Detection Using Waits-For Graph

• Explicit deadlock detection - Use a Waits-For Graph
– Nodes = {transactions}

– Edges = {Ti → Tk | Ti is waiting for Tk to release a lock}

– Example (previous deadlock) T1 T2

• Theorem: If there’s a deadlock, then the waits-for
graph has a cycle.

1/14/01 41

Detection Using Waits-For Graph
(cont’d)

• So, to find deadlocks
– when a transaction blocks, add an edge to the graph

– periodically check for cycles in the waits-for graph

• Don’t test for deadlocks too often. (A cycle won’t
disappear until you detect it and break it.)

• When a deadlock is detected, select a victim from
the cycle and abort it.

• Select a victim that hasn’t done much work
(e.g., has set the fewest locks).

1/14/01 42

Cyclic Restart
• Transactions can cause each other to abort forever.

– T1 starts running. Then T2 starts running.

– They deadlock and T1 (the oldest) is aborted.

– T1 restarts, bumps into T2 and again deadlocks

– T2 (the oldest) is aborted ...

• Choosing the youngest in a cycle as victim avoids
cyclic restart, since the oldest transaction is never
the victim.

• Can combine with other heuristics, e.g. fewest-locks

8

1/14/01 43

MS SQL Server
• Aborts the transaction that is “cheapest” to roll

back.
– “Cheapest” is determined by the amount of log

generated.
– Allows transactions that you’ve invested a lot in to

complete.

• SET DEADLOCK_PRIORITY LOW
(vs. NORMAL) causes a transaction to sacrifice
itself as a victim.

1/14/01 44

Distributed Locking

• Suppose a transaction can access data at many
data managers

• Each data manager sets locks in the usual way

• When a transaction commits or aborts, it runs
two-phase commit to notify all data managers it
accessed

• The only remaining issue is distributed deadlock

1/14/01 45

Distributed Deadlock
• The deadlock spans two nodes.

Neither node alone can see it.

• Timeout-based detection is popular. Its weaknesses
are less important in the distributed case:
– aborts unnecessarily and some deadlocks persist too long
– possibly abort younger unblocked transaction to avoid

cyclic restart

rl1[x]
wl2[x] (blocked)

Node 1

rl2[y]
wl1[y] (blocked)

Node 2

1/14/01 46

Oracle Deadlock Handling

• Uses a waits-for graph for single-server
deadlock detection.

• The transaction that detects the deadlock is
the victim.

• Uses timeouts to detect distributed
deadlocks.

1/14/01 47

Fancier Dist’d Deadlock Detection
• Use waits-for graph cycle detection with a central

deadlock detection server
– more work than timeout-based detection, and no

evidence it does better, performance-wise
– phantom deadlocks? - No, because each waits-for edge

is an SG edge. So, WFG cycle => SG cycle
(modulo spontaneous aborts)

• Path pushing - Send paths Ti→ … → Tk to each
node where Tk might be blocked.
– Detects short cycles quickly
– Hard to know where to send paths.

Possibly too many messages
1/14/01 48

Locking Granularity
• Granularity - size of data items to lock

– e.g., files, pages, records, fields

• Coarse granularity implies
– very few locks, so little locking overhead

– must lock large chunks of data, so high chance of
conflict, so concurrency may be low

• Fine granularity implies
– many locks, so high locking overhead

– locking conflict occurs only when two transactions try to
access the exact same data concurrently

• High performance TP requires record locking

9

1/14/01 49

Multigranularity Locking (MGL)
• Allow different txns to lock at different granularity

– big queries should lock coarse-grained data (e.g. tables)

– short transactions lock fine-grained data (e.g. rows)

• Lock manager can’t detect these conflicts
– each data item (e.g., table or row) has a different id

• Multigranularity locking “trick”
– exploit the natural hierarchy of data containment

– before locking fine-grained data, set intention locks on
coarse grained data that contains it

– e.g., before setting a read-lock on a row, get an
intention-read-lock on the table that contains the row

1/14/01 50

MGL Type and Instance Graphs
Database

Area

File

Record

DB1

A1 A2

F1 F2 F3

R1.1 R1.2 R2.1 R2.2 R2.3 R2.1 R2.2

Lock Type
Graph

Lock Instance Graph

• Before setting a read lock on R2.3, first set an intention-read
lock on DB1, then A2, and then F2.

• Set locks root-to-leaf. Release locks leaf-to-root.

1/14/01 51

MGL Compatibility Matrix
r w ir iw riw

r y n y n n

w n n n n n

ir y n y y y

iw n n y y n

riw n n y n n

riw = read with
intent to write,
for a scan that
updates some
of the records it
reads

• E.g., ir conflicts with w because ir says there’s a fine-
grained r-lock that conflicts with a w-lock on the container

• To r-lock an item, need an r-, ir- or riw-lock on its parent

• To w-lock an item, need a w-, iw- or riw-lock on its parent
1/14/01 52

MGL Complexities
• Relational DBMSs use MGL to lock SQL queries,

short updates, and scans with updates.

• Use lock escalation - start locking at fine-grain and
escalate to coarse grain after nth lock is set.

Area

File

Record

Index

Index Entry

• The lock type graph is a
directed acyclic graph, not
a tree, to cope with indices

• R-lock one path to an item.
W-lock all paths to it.

1/14/01 53

MS SQL Server

• MS SQL Server can lock at table, page, and row level.
• Uses intention read (“share”) and intention write

(“exclusive”) locks at the table and page level.
• Tries to avoid escalation by choosing the “appropriate”

granularity when the scan is instantiated.

Table

Page

Index Range Extent

1/14/01 54

Outline
1. A Model for Concurrency Control
2. Serializability Theory
3. Synchronization Requirements for Recoverability
4. Two-Phase Locking
5. Implementing Two-Phase Locking
6. Locking Performance
7. Hot Spot Techniques
8. Query-Update Techniques
9. Phantoms
10. B-Trees
11. Tree locking

á

á

á

á

á

10

1/14/01 55

5.6 Locking Performance

• Deadlocks are rare
– up to 1% - 2% of transactions deadlock

• The one exception to this is lock conversions
– r-lock a record and later upgrade to w-lock

– e.g., Ti = read(x) … write(x)

– if two txns do this concurrently, they’ll deadlock
(both get an r-lock on x before either gets a w-lock)

– To avoid lock conversion deadlocks, get a w-lock first
and down-grade to an r-lock if you don’t need to write.

– Use SQL Update statement or explicit program hints

1/14/01 56

Conversions in MS SQL Server

• Update-lock prevents lock conversion deadlock.
– Conflicts with other update and write locks, but not

with read locks.

– Only on pages and rows (not tables)

• You get an update lock by using the UPDLOCK
hint in the FROM clause

Select Foo.A
From Foo (UPDLOCK)
Where Foo.B = 7

1/14/01 57

Blocking and Lock Thrashing

Throughput

Low

High

of Active Txns
Low High

• The locking performance problem is too much delay
due to blocking
– little delay until locks are saturated
– then major delay, due to the locking bottleneck
– thrashing - the point where throughput decreases with

increasing load

thrashing

1/14/01 58

More on Thrashing

• It’s purely a blocking problem
– It happens even when the abort rate is low

• As number of transactions increase
– each additional transaction is more likely to block

– but first, it gathers some locks, increasing the
probability others will block (negative feedback)

1/14/01 59

Avoiding Thrashing

• If over 30% of active transactions are blocked,
then the system is (nearly) thrashing
so reduce the number of active transactions

• Timeout-based deadlock detection mistakes
– They happen due to long lock delays

– So the system is probably close to thrashing

– So if deadlock detection rate is too high (over 2%)
reduce the number of active transactions

1/14/01 60

Interesting Sidelights
• By getting all locks before transaction Start, you

can increase throughput at the thrashing point
because blocked transactions hold no locks
– But it assumes you get exactly the locks you need

and retries of get-all-locks are cheap

• Pure restart policy - abort when there’s a conflict
and restart when the conflict disappears
– If aborts are cheap and there’s low contention for

other resources, then this policy produces higher
throughput before thrashing than a blocking policy

– But response time is greater than a blocking policy

11

1/14/01 61

How to Reduce Lock Contention
• If each transaction holds a lock L for t seconds,

then the maximum throughput is 1/t txns/second

Start CommitLock L

t

• To increase throughput, reduce t (lock holding time)
– Set the lock later in the transaction’s execution

(e.g., defer updates till commit time)

– Reduce transaction execution time (reduce path length,
read from disk before setting locks)

– Split a transaction into smaller transactions
1/14/01 62

Reducing Lock Contention (cont’d)
• Reduce number of conflicts

– Use finer grained locks, e.g., by partitioning tables
vertically

Part# Price OnHand PartName CatalogPage

Part# Price OnHand Part# PartName CatalogPage

1/14/01 63

Mathematical Model of Locking

• N transactions each own K/2 locks on average
– KN/2 in total

• Each lock request has probability KN/2D of
conflicting with an existing lock.

• Each transaction requests K locks, so its probability
of experiencing a conflict is K2N/2D.

• Probability of a deadlock is proportional to K4N/D2

– Prob(deadlock) / Prop(conflict) = K2/D

– if K=10 and D = 106, then K2/D = .0001

• K locks per transaction

• D lockable data items

• N transactions

• T time between lock requests

1/14/01 64

5.7 Hot Spot Techniques

• If each txn holds a lock for t seconds, then the
max throughput is 1/t txns/second for that lock.

• Hot spot - A data item that’s more popular than
others, so a large fraction of active txns need it
– Summary information (total inventory)

– End-of-file marker in data entry application

– Counter used for assigning serial numbers

• Hot spots often create a convoy of transactions.
The hot spot lock serializes transactions.

1/14/01 65

Hot Spot Techniques (cont’d)

• Special techniques are needed to reduce t
– Keep the hot data in main memory

– Delay operations on hot data till commit time

– Use optimistic methods

– Batch up operations to hot spot data

– Partition hot spot data

1/14/01 66

Delaying Operations Until Commit

• Data manager logs each transaction’s updates

• Only applies the updates (and sets locks) after
receiving Commit from the transaction

• IMS Fast Path uses this for
– Data Entry DB

– Main Storage DB

• Works for write, insert, and delete, but not read

12

1/14/01 67

Locking Higher-Level Operations
• Read is often part of a read-write pair, such as

Increment(x, n), which adds constant n to x,
but doesn’t return a value.

• Increment (and Decrement) commute

• So, introduce Increment and Decrement locks

r w inc dec
r y n n n
w n n n n

inc n n y y
dec n n y y

• But if Inc and Dec have a
threshold (e.g. a quantity of
zero), then they conflict
(when the threshold is near)

1/14/01 68

Solving the Threshold Problem
Another IMS Fast Path Technique

• Use a blind Decrement (no threshold) and
Verify(x, n), which returns true if x ≥ n

• Re-execute Verify at commit time
– If it returns a different value than it did during normal

execution, then abort

– It’s like checking that the threshold lock you didn’t
set during Decrement is still valid.

bEnough = Verify(iQuantity, n);
If (bEnough) Decrement(iQuantity, n)
else print (“not enough”);

1/14/01 69

Optimistic Concurrency Control

• The Verify trick is optimistic concurrency control

• Main idea - execute operations on shared data
without setting locks. At commit time, test if there
were conflicts on the locks (that you didn’t set).

• Often used in client/server systems
– Client does all updates in cache without shared locks

– At commit time, try to get locks and perform updates

1/14/01 70

Batching
• Transactions add updates to a mini-batch and only

periodically apply the mini-batch to shared data.
– Each process has a private data entry file,

in addition to a global shared data entry file

– Each transaction appends to its process’ file

– Periodically append the process file to the shared file

• Tricky failure handling
– Gathering up private files

– Avoiding holes in serial number order

1/14/01 71

Partitioning

• Split up inventory into partitions

• Each transaction only accesses one partition

• Example
– Each ticket agency has a subset of the tickets

– If one agency sells out early, it needs a way to
get more tickets from other agencies (partitions)

1/14/01 72

5.8 Query-Update Techniques
• Queries run for a long time and lock a lot of data —

a performance nightmare when trying also to run
short update transactions

• There are several good solutions
– Use a data warehouse

– Accept weaker consistency guarantees

– Use multiversion data

• Solutions trade data quality or timeliness for
performance

13

1/14/01 73

Data Warehouse
• A data warehouse contains a snapshot of the DB

which is periodically refreshed from the TP DB

• All queries run on the data warehouse

• All update transactions run on the TP DB

• Queries don’t get absolutely up-to-date data

• How to refresh the data warehouse?
– Stop processing transactions and copy the TP DB to the

data warehouse. Possibly run queries while refreshing

– Treat the warehouse as a DB replica and use a replication
technique

1/14/01 74

Degrees of Isolation
• Serializability = Degree 3 Isolation

• Degree 2 Isolation (a.k.a. cursor stability)
– Data manager holds read-lock(x) only while reading x,

but holds write locks till commit (as in 2PL)

– E.g. when scanning records in a file, each get-next-record
releases lock on current record and gets lock on next one

– read(x) is not “repeatable” within a transaction, e.g.,
rl1[x] r1[x] ru1[x] wl2[x] w2[x] wu2[x] rl1[x] r1[x] ru1[x]

– Degree 2 is commonly used by ISAM file systems

– Degree 2 is often a DB system’s default behavior!
And customers seem to accept it!!!

1/14/01 75

Degrees of Isolation (cont’d)

• Could run queries Degree 2 and updaters Degree 3
– Updaters are still serializable w.r.t. each other

• Degree 1 - no read locks; hold write locks to commit

• Unfortunately, SQL concurrency control standards
have been stated in terms of “repeatable reads” and
“cursor stability” instead of serializability, leading
to much confusion.

1/14/01 76

ANSI SQL Isolation Levels

• Uncommitted Read - Degree 1

• Committed Read - Degree 2

• Repeatable Read - Uses read locks and write locks,
but allows “phantoms”

• Serializable - Degree 3

1/14/01 77

MS SQL Server
• Lock hints in SQL FROM clause

– All the ANSI isolation levels, plus …

– UPDLOCK - use update locks instead of read locks

– READPAST - ignore locked rows (if running read
committed)

– PAGLOCK - use page lock when the system would
otherwise use a table lock

– TABLOCK - shared table lock till end of command or
transaction

– TABLOCKX - exclusive table lock till end of
command or transaction

1/14/01 78

Multiversion Data
• Assume record granularity locking

• Each write operation creates a new version instead
of overwriting existing value.

• So each logical record has a sequence of versions.

• Tag each record with transaction id of the
transaction that wrote that version

Tid Previous E# Name Other fields
123 null 1 Bill
175 123 1 Bill
134 null 2 Sue
199 134 2 Sue
227 null 27 Steve

14

1/14/01 79

Multiversion Data (cont’d)
• Execute update transactions using ordinary 2PL

• Execute queries in snapshot mode
– System keeps a commit list of tids of all committed txns

– When a query starts executing, it reads the commit list

– When a query reads x, it reads the latest version of x
written by a transaction on its commit list

– Thus, it reads the database state that existed when it
started running

1/14/01 80

Commit List Management
• Maintain and periodically recompute a tid T-Oldest, such

that
– Every active txn’s tid is greater than T-Oldest
– Every new tid is greater than T-Oldest
– For every committed transaction with tid ≤ T-Oldest,

its versions are committed
– For every aborted transaction with tid ≤ T-Oldest,

its versions are wiped out

• Queries don’t need to know tids ≤ T-Oldest
– So only maintain the commit list for tids > T-Oldest

1/14/01 81

Multiversion Garbage Collection

• Can delete an old version of x if no query will
ever read it
– There’s a later version of x whose tid ≥ T-Oldest

(or is on every active query’s commit list)

• Originally used in Prime Computer’s
CODASYL DB system and Oracle’s Rdb/VMS

1/14/01 82

Oracle Multiversion
Concurrency Control

• Data page contains latest version of each record, which
points to older version in rollback segment.

• Read-committed query reads data as of its start time.

• Read-only isolation reads data as of transaction start time.

• “Serializable” query reads data as of the txn’s start time.
– An update checks that the updated record was not modified after

txn start time.

– If that check fails, Oracle returns an error.

– If there isn’t enough history for Oracle to perform the check,
Oracle returns an error. (You can control the history area’s size.)

– What if T1 and T2 modify each other’s readset concurrently?

1/14/01 83

Oracle Concurrency Control (cont’d)

• The result is not serializable!

• In any SR execution, one transaction would have
read the other’s output

r1[x] r1[y] r2[x] r2[y] w1[x′] c1 w2[y′] c2

1/14/01 84

5.9 Phantoms
• Problems when using 2PL with inserts and deletes

T1: Read Accounts 1, 2, and 3
T2: Insert Accounts[4, Tacoma, 100]
T2: Read Assets(Tacoma), returns 500
T2: Write Assets(Tacoma, 600)
T1: Read Assets(Tacoma), returns 600
T1: Commit

Acct# Location Balance Location Total
1 Seattle 400
2 Tacoma 200
3 Tacoma 300

Seattle 400
Tacoma 500

Accounts Assets

The phantom record

15

1/14/01 85

The Phantom Phantom Problem
• It looks like T1 should lock record 4, which isn’t

there!

• Which of T1’s operations determined that there
were only 3 records?
– Read end-of-file?

– Read record counter?

– SQL Select operation?

• This operation conflicts with T2’s Insert
Accounts[4,Tacoma,100]

• Therefore, Insert Accounts[4,Tacoma,100]
shouldn’t run until after T1

 commits
1/14/01 86

Avoiding Phantoms - Predicate Locks
• Suppose a query reads all records satisfying

predicate P. For example,
– Select * From Accounts Where Location = “Tacoma”
– Normally would hash each record id to an integer lock id
– And lock control structures. Too coarse grained.

• Ideally, set a read lock on P
– which conflicts with a write lock Q if some record can

satisfy (P and Q)

• For arbitrary predicates, this is too slow to check
– Not within a few hundred instructions, anyway

1/14/01 87

Precision Locks
• Suppose update operations are on single records

• Maintain a list of predicate Read-locks

• Insert, Delete, & Update write-lock the record and
check for conflict with all predicate locks

• Query sets a read lock on the predicate and check
for conflict with all record locks

• Cheaper than predicate satisfiability, but still too
expensive for practical implementation.

1/14/01 88

5.10 B-Trees
• An index maps field values to record ids.

– Record id = [page-id, offset-within-page]

– Most common DB index structures: hashing and B-trees

– DB index structures are page-oriented

• Hashing uses a function H:V→B, from field values
to block numbers.
– V = social security numbers. B = {1 .. 1000}

H(v) = v mod 1000

– If a page overflows, then use an extra overflow page

– At 90% load on pages, 1.2 block accesses per request!

– BUT, doesn’t help for key range access (10 < v < 75)

1/14/01 89

B-Tree Structure

Ki Pi Ki+1K1 P1 Kn-1 Pn.

K´i P´i K´i+1K´1 P´1 K´n-1 P´n.

• Index node is a sequence of [pointer, key] pairs

• K1 < K2 < … < Kn-2 < Kn-1

• P1 points to a node containing keys < K1

• Pi points to a node containing keys in range [Ki-1, Ki)

• Pn points to a node containing keys > Kn-1

• So, K ´1 < K ´2 < … < K ´n-2 < K ´n-1

1/14/01 90

Example n=3
127 496

14 83 221 352

127 145 189 221 245 320

521 690

352 353 487

• Notice that leaves are sorted by key, left-to-right

• Search for value v by following path from the root

• If key = 8 bytes, ptr = 2 bytes, page = 4K, then n = 409

• So 3-level index has up to 68M leaves (4093)

• At 20 records per leaf, that’s 136M records

16

1/14/01 91

Insertion
• To insert key v, search for the leaf where v should appear

• If there’s space on the leave, insert the record

• If no, split the leaf in half, and split the key range in its
parent to point to the two leaves

19 --

12 14 17
X

15 19

12 14

X

15 17

To insert key 15
• split the leaf
• split the parent’s range [0, 19)
 to [0, 15) and [15, 19)
• if the parent was full, you’d
 split that too (not shown here)
• this automatically keeps the
 tree balanced

1/14/01 92

B-Tree Observations
• Delete algorithm merges adjacent nodes < 50% full,

but rarely used in practice

• Root and most level-1 nodes are cached, to reduce
disk accesses

• Secondary (non-clustered) index - Leaves contain
[key, record id] pairs.

• Primary (clustered) index - Leaves contain records

• Use key prefix for long (string) key values
– drop prefix and add to suffix as you move down the tree

1/14/01 93

Key Range Locks
• Lock on B-tree key range is a cheap predicate lock

127 496

221 352

221 245 320

• Select Dept Where ((Budget > 250)
 and (Budget < 350))
• lock the key range [221, 352) record
• only useful when query is on an
 indexed field

• Commonly used with multi-granularity locking

– Insert/delete locks record and intention-write locks range

– MGL tree defines a fixed set of predicates, and thereby
avoids predicate satisfiability

1/14/01 94

5.11 Tree Locking
• Can beat 2PL by exploiting root-to-leaf access in a

tree

• If searching for a leaf, after setting a lock on a node,
release the lock on its parent

A

B C D

E F

wl(A) wl(B) wu(A) wl(E) wu(B)

• The lock order on the root serializes access
to other nodes

1/14/01 95

B-tree Locking
• Root lock on a B-tree is a bottleneck

• Use tree locking to relieve it

• Problem: node splits

• So, don’t unlock a node till you’re sure its child won’t split
(i.e. has space for an insert)

• Implies different locking rules for different ops
(search vs. insert/update)

19 --

12 14 17
X

P

C

If you unlock P before splitting C,
then you have to back up and lock
P again, which breaks the tree
locking protocol.

1/14/01 96

B-link Optimization
• B-link tree - Each node has a side pointer to the next

• After searching a node, you can release its lock before
locking its child

– r1[P] r2[P] r2[C] w2[C] w2[C´] w2[P] r1[C] r1[C´]

19 --

12 14 17

P

CX

15 19

12 14

X

15 17

P

C´C

• Searching has the same behavior as if it locked the child
before releasing the parent … and ran later (after the insert)

