1. Introduction

CSE 593 Transaction Processing
Philip A. Bernstein

23001 1

Outline

1. The Basics

2. ACID Properties

3. Atomicity and Two-Phase Commit
4. Availability

5. Performance

6. Styles of System

23001

1.1 The Basics - What' s a Transaction?

¢ The execution of a program that performs an
administrative function by accessing a shared
database, usually on behalf of an on-line user.

Examples

* Reserve an airline seat. Buy an airline ticket

* Withdraw money from an ATM.

* Verify acredit card sale.

* Order an item from an Internet retailer

» Download avideo clip and pay for it

« Play abid at an on-line auction

2301 3

The“ities” are What Makes

Transaction Processing (TP) Hard
* Reliability - system should rarely fail
 Availability - system must be up al the time

* Response time - within 1-2 seconds

» Throughput - thousands of transactions/second

« Scalabhility - start small, ramp up to Internet-scale

» Security —for confidentiality and high finance
Configurability - for above requirements + low cost
Atomicity - no partia results

Durahility - atransaction isalegal contract
Distribution - of users and data

22001

What Makes TP Important?

* |t's at the core of electronic commerce

¢ Most medium-to-large businesses use TP for
their production systems. The business can’t
operate without it.

« |t'sahuge dlice of the computer system
market — over $50B/year. Probably the
single largest application of computers.

TP System Infrastructure
» User’'sviewpoint
— Enter arequest from a browser or other display device

— The system performs some application-specific work,
which includes database accesses

— Receive areply (usualy, but not always)
» The TP system ensures that each transaction

— isan independent unit of work

— executes exactly once, and

— produces permanent results.
» TP system makes it easy to program transactions
e TP system has tools to make it easy to manage

143001




TP System Infrastructure ...
Defines System and Application Structure

‘Presentation Manager‘ _Front-End

(Client)
requests
A
Workflow Control
(routes requests) |« Back-End
Transaction Program|  (Server)
. Database System .

Application Servers
* A software product to create, execute and manage TP
applications
Formerly called TP monitors. Some people say
App Server = TP monitor + web functionality.
Programmer writes an app. to process a single request.
App Server scalesit up to alarge, distributed system

— E.g. application developer writes programs to debit a checking
account and verify a credit card purchase.

— App Server helps system engineer deploy it to 10/100s of
servers and 10K of displays

— App Server helps system engineer deploy it on the Internet,
accessible from web browsers

12001

N

App Server Architecture, pre-Web

* Boxes below are distributed on an intranet

- Message
Presentation Server ‘ Inputs
“Requests
twork

‘Workflow Controller

Transaction Server‘ Transaction Server

01

System Characteristics

 Typically < 100 transaction types per application
* Transaction size has high variance. Typically,

— 0-30 disk accesses

— 10K - 1M instructions executed

— 2-20 messages
* A large-scale example: airline reservations

— 150,000 active display devices

— plusindirect access via Internet travel agents

— thousands of disk drives

— 3000 transactions per second, peak

23001

Application Servers (cont’ d)

¢ Components include
— an application programming interface (API)
(e.g., Enterprise Java Beans)
— tools for program development

— tools for system management (app deployment,
fault & performance monitoring, user mgmt, etc.)

22001

Automated Teller Machine
(ATM) Application Example

Bank Branch1  Bank Branch 2 Bank Branch 500
v v v Rl JROR v R A
L L
— \
Workflow Workflow
Controller Controller
\ \
CIRRUS Checking Credit Card Loan
Accounts Accounts Accounts | |Accounts

12




Application Server Architecture

Message
Inputs

equests

po

A other TP
‘Workflow Controller P lntffljst} systems

~.

Transaction Server‘ ‘Transaction Server‘

13001

System Software Vendor’'s View

* TPis partly acomponent product problem
— Hardware
— Operating system
— Database system
— Application Server

e TPispartly a system engineering problem
— Getting all those components to work together

to produce a system with all those “ilities”.

This course focuses primarily on
Database System and Application Server

12001

Internet Retailer

L

The
Internet

Web | | Workflow
Server Controller
‘ Music ‘ ‘ Electronics ‘ ‘ Computers ‘
1/3/01 14
Outline
v'1. The Basics

2. ACID Properties

3. Atomicity and Two-Phase Commit
4. Availability

5. Performance

6. Styles of System

22001

1.2 The ACID Properties

 Transactions have 4 main properties
— Atomicity - al or nothing
— Consistency - preserve database integrity
— Isolation - execute as if they were run alone
— Durability - resultsaren’t lost by afailure

Atomicity

« All-or-nothing, no partial results.
— E.g. in amoney transfer, debit one account, credit the
other. Either debit and credit both run, or neither runs.

— Successful completion is called Commit.
— Transaction failure is called Abort.
» Commit and abort are irrevocabl e actions.
* An Abort undoes operations that aready executed
— For database operations, restore the data' s previous value
from before the transaction
— But some real world operations are not undoable.
Examples - transfer money, print ticket, fire missile




Example - ATM Dispenses Money
(anon-undoabl e operation)

Tl: Start

Dispense Money

Commit System (.:rashes
Transaction aborts
Money is dispensed
Tl: Start
c it
omm ¢ System crashes

(’ Dispense fdoney

Deferred operation
never gets executed

1/3/01 19

Reading Uncommitted Output Isn’t
Undoable

Tl: Start

Display output

M User reads output
e e . > |
If , Abort| ' B =
srror Sl User entersinput \.

Brain
transport

T2: Start
| > Get input from display

Commit

23001

Compensating Transactions

« A transaction that reverses the effect of another
transaction (that committed). For example,
—“Adjustment” in afinancial system
— Annul amarriage
¢ Not all transactions have complete compensations
— E.g. Certain money transfers (cf. “The Firm”)
— E.g. Fire missile, cancel contract
— Contract law has alot to say about appropriate
compensations
4 A well-designed TP application should have a
compensation for every transaction type

22001 21

Consistency

* Every transaction should maintain DB consistency
— Referential integrity - E.g. each order references an
existing customer number and existing part numbers
— The books balance (debits = credits, assets = liabilities)
¢ Consistency preservation is a property of a
transaction, not of the TP system
(unlikethe A, 1, and D of ACID)
« |f each transaction maintains consistency,
then serial executions of transactions do too.

2201 22

Some Notation

r,[x] = Read(x) by transaction T,
w;[x] = Write(x) by transaction T,
* ¢; = Commit by transaction T;

a = Abort by transaction T,

A history is a sequence of such operations,
in the order that the database system
processed them.

Consistency Preservation Example

T, Start; Tz Start,
A = Read(x); B = Read(x);
A=A-1 C = Read(y);
Commit: erte(x, B);
Commit;

 Consistency predicateisx >y.

* Seria executions preserve consistency.
Interleaved executions may not.

* H=rq[X] r5[X] r[y] wo[X] wyly]
—eg. try it with x=4 and y=2 initially

01 24




Isolation

Intuitively, the effect of a set of transactions

should be the same as if they ran independently

« Formally, an interleaved execution of
transactionsis serializable if its effect is
equivalent to aserial one.

* Impliesauser view where the system runs each
user’s transaction stand-alone.

» Of course, transactions in fact run with lots of
concurrency, to use device parallelism.

1/3/01 25

A Seridizability Example

T,: Start; T,: Start;
A = Read(x); B = Read(x);
A=A+1; B=B+1;
Write(x, A); Write(y, B);
Commit; Commit;

H =ry[x] r[x] wy[x] ¢; w,[y] ¢,
* Hisequivalent to executing T, followed by T,
* Note, H isnot equivalent to T, followed by T,

Also, note that T, started before T, and finished
before T,, yet the effect isthat T, ran first.

23001 26

Seriaizability Examples (cont’d)

« Client must control the relative order of transactions,
using handshakes
(wait for T,to commit before submitting T,).

* Some more serializable executions:
MIXI Yl Wyl wyX] =T, T,=T, T,
1oyl ralyl Woly] wy[x] =T, T, 7 T, T,
MIX] Yl Wyl wyly] =T, T, =T, T,

 Seridlizability saysthe execution isequivalent to
some serid order, not necessarily to all serial orders

22001 27

Non-Serializable Examples

* 1,[X] r,[X] w,[x] wy[X] (race condition)
—eg. T, and T, are each adding 100 to x

* (X1 1oLyl WolX] wy[y]
— e.g. each transaction istrying to make x =y,

but the interleaved effect is a swap

* 1,[X] 1aly]l wy[X] 0,IX] 1oly] & Wiyl ¢
(inconsistent retrieval)
—eg. T, ismoving $100 from x to y.
— T,seesonly half of theresult of T,

o Compareto the OS view of synchronization

Durability

¢ When atransaction commits, its results will
survive failures (e.g. of the application, OS,
DB system ... even of the disk).

* Makesit possible for atransaction to be alegal
contract.

¢ Implementation is usually viaalog
— DB system writes all transaction updates to its log
— to commit, it adds arecord “commit(T;)"” to thelog

— when the commit record is on disk, the transaction is
committed.

— system waits for disk ack before acking to user

Outline

v'1. The Basics
v'2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Availability
5. Performance
6. Styles of System




1.3 Atomicity and Two-Phase Commit

« Distributed systems make atomicity harder

 Suppose a transaction updates data managed by
two DB systems.

» One DB system could commit the transaction,
but afailure could prevent the other system from
committing.

 The solution is the two-phase commit protocol.

e Abstract “DB system” by resource manager

(could be a SQL DBMS, message mgr, queue
mgr, OO DBMS, etc.)

Two-Phase Commit

e Mainidea- all resource managers (RMs) save a
durable copy of the transaction’ s updates before
any of them commit.

* If one RM fails after another commits, the failed
RM can still commit after it recovers.

* The protocol to commit transaction T

— Phase 1 - T's coordinator asks al participant RMsto
“prepare the transaction”. Participant RMs replies
“prepared” after T's updates are durable.

— Phase 2 - After receiving “prepared” from all
participant RMs, the coordinator tells all participant
RMs to commit.

23001 32

Two-Phase Commit
System Architecture

‘Application Program‘

Start
: Commit, Abort

; Other
| Transaction | .
Manager (TM) Transaction
Managers

1. Start transaction returns a unique transaction identifier

2. Resource accesses include the transaction identifier.
For each transaction, RM registers with TM

3. When application asks TM to commit, the TM runs
two-phase commit.

1 33

Outline

v'1. The Basics

v'2. ACID Properties

v'3. Atomicity and Two-Phase Commit
4, Availability
5. Performance
6. Styles of System

23001 34

1.4 Availability
Fraction of time system is able to do useful work

Some systems are very sensitive to downtime
— airline reservation, stock exchange, telephone switching
— downtimeis front page news

Downtime Availability
1 hour/day 95.8%

1 hour/week 99.41%

1 hour/month 99.86%

1 hour/year 99.9886%
1 hour/20years  99.99942%

Contributing factors
— failures due to environment, system mgmt, h/w, s'w

— recovery time =

1.5 Performance Requirements

Measured in max transaction per second (tps) or
per minute (tpm), and dollars per tps or tpm.
Dollars measured by list purchase price plus 5 year
vendor maintenance (“cost of ownership”)
Workload has this profile:

— 10% application server plus application

— 30% communications system (not counting presentation)
—50% DB system

TP Performance Council (TPC) sets standards

— http://www.tpc.org.
TPC A & B (‘89-'95), now TPC C & W

01 36




TPC-A/B — Bank Tellers

* Obsolete (aretired standard), but interesting
 Input is 100 byte message requesting deposit/withdrawal
» Database tables = { Accounts, Tellers, Branches, History}

Start
Read message from terminal (100 bytes)
Read+write account record (random access)
Write history record (sequential access)
Read+write teller record (random access)
Read+write branch record (random access)
Write message to terminal (200 bytes)

Commit

« End of history and branch records are bottlenecks

1/3/01 37

The TPC-C Order-Entry Benchmark

Table Rows/Whse | Bytes/row
Warehouse 1 89
District 10 95
Customer 30K 655
History 30K 46
Order 30K 24
New-Order 9K 8
OrderLine 300K 54
Stock 100K 306
Item 100K 82

» TPC-C uses heavier weight transactions

2201 38

TPC-C Transactions

¢ New-Order

— Get records describing a warehouse, customer, & district

— Update the district

— Increment next available order number

— Insert record into Order and New-Order tables

— For 5-15 items, get Item record, get/update Stock record

— Insert Order-Line Record
« Payment, Order-Status, Delivery, Stock-Level have

similar complexity, with different frequencies
¢ tpmC = number of New-Order transaction per min.

22001 39

Commentson TPC-C

« Enables apples-to-apples comparison of TP systems
 Does not predict how your application will run,

or how much hardware you will need,
or which system will work best on your workload

 Not al vendors optimize for TPC-C. E.g., IBM has

claimed DB2 is optimized for a different workload,
so they have only recently published TPC numbers

2201 40

Typica TPC-C Numbers

* $10- $50/ tpmC. Uniform spread across the range.
— Top 49 price/performance results on MS SQL Server & Win 2000.
— Fujitsu at $21. Sybase at $27. IBM DB2 at $32. Oracle at $36

« System cost $153K (Intergraph) - $14.2M (IBM)

« Examples of high throughput
— Compag 550K tpmC, $10.4M, $21/tpmC (MS SQL, MS COM+)
— IBM 441K tpmC, $14.2M, $32/tomC (IBM DB2, MS COM+)

« Examples of low cost (all use MS SQL Server, COM+)
— Compag, 20.2K tpmC, $201K, $10/tpmC
— Dell, 30.2K tpmC, $335K, $11/tpmC
— HP, 33.1K tpmC, $393K, $12/tpmC

» Results are very sensitive to date published.

yam 4

TPC/W —Web Retailer

Introduced 12/99. One published measurement so far.

Features - DB accesses to generate dynamic web pages,
secure U, secure payments (via secure socket layer (SSL))

Scale factor: 1K — 10M items (in the catal og).

Web Interactions per sec (WIPS) @ ScaleFactor

— IBM: 1262 WIPS@ 10,000; $277 / WIPS; $350K total
Profiles - shop (WIPS), browse (WIPSh), order (WI1PSo)

Tables—{ Customer, Order, Order-Line, Item, Author,
CreditCardTxns, Address, Country}

Transactions — HomeWeb, ShoppingCart, AdminRequest,
AdminConfirm, CustomerRegister, BuyRequest,
BuyConfirm, OrderInquiry, OrderDisplay, Search,
_.SearchResult, NewProducts, BestSellers, ProductDetall, ,,




Outline

v'1. The Basics
v'2. ACID Properties
v'3. Atomicity and Two-Phase Commit
v'4. Availability
v'5. Performance
6. Styles of System

13001 43

1.6 TPis System Engineering
» Compare it to other kinds of system engineering ...
» Batch processing - Submit ajob and receive file output.

« Time sharing - Invoke programsin a process, which
may interact with the process's display

* Real time - Submit requests that have a deadline

¢ Client/server - PC calls aserver over anetwork to
access files or run applications

 Decision support - Submit queries to a shared database,
and process the result with desktop tools

¢ TP- Submit a request to run atransaction

2201 44

TP vs. Batch Processing (BP)

» A BP application is usually uniprogrammed so
serializability istrivial. TP is multiprogrammed.
» BP performance is measured by throughput.
TP isaso measured by response time.

» BP can optimize by sorting transactions by the file key.
TP must handle random transaction arrivals.

» BP produces new output file. To recover, re-run the app.
» BPhasfixed and predictable load, unlike TP.

» But, wherethereis TP, there is aimost always BP too.

— TP gathers the input. BP post-processes work that has weak
response time requirements
— So, TP systems must also do BP well.

12001 45

TPvs. Timesharing (TS)

» TSisautility with highly unpredictable load. Different
programs run each day, exercising featuresin new
combinations.

* By comparison, TPis highly regular.
* TShasless stringent availability and atomicity
requirements. Downtime isn’t as expensive.

2201 46

TPvs. Real Time (RT)

* RT has more stringent response time requirements. It may
control aphysical process.

* RT deals with more specialized devices.

* RT doesn’t need or use a transaction abstraction
— usudly loose about atomicity and seridizability

¢ InRT, response time goals are usually more important
than completeness or correctness. In TP, correctnessis
paramount.

yam 47

TP and Client/Server (C/S)

* |scommonly used for TP, where client prepares
requests and server runs transactions

* Inasensg, TP systems were the first C/S systems,
where the client was a terminal




TP and Decision Support Systems
(DSSs)

* DSSsrun long queries, usualy with lower data integrity
requirements than TP.

¢ A.k.a datawarehouse (DSSisthe more generic term.)

¢ TP systems provide the raw data for DSSs.

13001 49

23001

Outline

v'1. The Basics

v'2. ACID Properties

v'3. Atomicity and Two-Phase Commit
V4, Availability

v'5. Performance

v 6. Styles of System

What’' s Next?

« This chapter covered TP system structure and
properties of transactions and TP systems

¢ Therest of the course drills deeply into each
of these areas, one by one.

22001 51




